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Abstract: This paper addresses regression analysis of partly interval censored data. Partly interval censored failure time data consist of

both exact observed and interval censored observations on the survival time of interest. Furthermore, there may exist a cured subgroup,

indicating that a proportion of study subjects are not susceptible to the failure event of interest. For the problem, we assume a logistic

model for the cure probability and that the failure times of the uncured group come from a wide class of transformation models, which

includes proportional hazards and proportional odds models as special cases. For the determination of the proposed estimators, an EM

algorithm based on some subject-specific independent Poisson variables is developed to calculate the maximum likelihood estimators.

Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. A motivating

application from NASA’s Hypobaric decompression sickness experiment is also provided.

Keywords: EM algorithm, Maximum likelihood estimation, Mixture cure models, Partly interval censored data, Semiparametric
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1 Introduction

Partly interval censored failure time data arise when the failure times can be observed exactly for some subjects and for
the remaining subjects. The event time of interest is only known to belong to an finite or half-open time interval. Such data
include interval censored failure time data as special case and often occur in many fields especially in medical follow-up
studies (Odell et al. [1]). Many authors discussed the analysis of such data under various situations including estimating
the survival function, regression analysis and log-rank test ( Turnbull [2], Kim [3] and Zhao et al. [3]).

A typical underlying assumption in failure time data analysis is that all subjects can eventually experience the event of
interest when the follow-up time is long enough and it is well-known that sometimes this assumption may be untrue since
some subjects may be cured or immune to the event. For the latter situation, we mean that there exists a cured subgroup
in the whole population and mixture cure model proposed by Farewell [4], which treats the whole population as a mixture
of cured subgroup and non-cured subgroup and assumes a cure rate model for cure probability. A survival model of the
non-cure subjects is usually used to take this into account.

The mixture cure model has been extensively investigated in the literature. Among others, studies of mixture cure
model under right censored data include Ku and Chen [5], Sy and Taylor [6], Lu and Ying [7] and Fang et al. [8]. For
current status data with a cured subgroup, Lam and Xue [9] and Ma [10] investigated the fitting of accelerate failure time
model and cox model to such data, respectively. Furthermore, previous works on the analysis of interval censored data
with cure models include Kim and Jhun [11] and Ma [12], who assume cox model for the failure times in the non-cured
subgroup. The book by Maller and Zhou [13] presents a detailed discussion on the statistical inference method for mixture
cure model. In this paper, we address regression analysis of partly interval censored failure time data with a cured subgroup
through a mixture of the general linear model for the cure probability and a general class of transformation models for
the failure times of non-cured subjects. For inference, an EM algorithm using Poisson variables will be developed to
calculate the maximum likelihood estimators, which have the advantages of estimating the parameters in the cure model
and survival model separately, and prove close-form estimator for the baseline cumulative hazards function of failure time.
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The rest of this paper is organized, as follows: In Section 2, we introduce some notations, the model and some
assumptions to be used throughout the paper and the corresponding likelihood function. The nonparametric maximum
likelihood estimation procedure is developed in Section 3 and for the implementation of the procedure, an EM algorithm
is proposed with the use of the subject-specified independent Poisson variables. In Section 4, we develop asymptotic
properties of the estimators, including the consistency and asymptotic normality. Simulation results shown in Section 5
indicate that the proposed approach works well in finite sample. In Section 6, we apply the approach to NASA’s
Hypobaric decompression sickness data. Section 7 is dedicated to some discussion and concluding remarks.

2 Assumptions, Models and the Likelihood Function

Consider a failure time study in which there may exist a cured or non-susceptible subgroup. Let T denote the failure time
of interest and D be cure indicator, which indicates, by the value 1 or 0, whether the subject is susceptible or not. Under
the mixture cure modeling approach, the failure time of interest can be decomposed as

T = DT ∗+(1−D)∞,

where T ∗ < ∞ denotes the failure time of the susceptible subject. To describe the covariate effects on T and D, we will
assume that given X , the cumulative hazard function of T ∗ takes the form

G{Λ(t)exp(XT β )} , (1)

where G is a prespecified increasing transformation function, Λ(·) is an unknown baseline cumulative hazard function
that is also increasing and β is a p-dimensional vector of regression parameters. Model (1) gives many commonly used
models as special cases. For example, the choice of G(x) = x yields proportional hazards model, and it gives proportional
odds model when G(x) = log(1+ x). It is apparent that covariates may have some effects on D. For this, we will assume
that D follows the logistic model,

P(D = 1) = p =
exp(X̃T γ)

1+ exp(X̃T γ)
, (2)

where the first component of X̃ is 1 and X̃ may share the same components as X , and γ is a q-dimensional vector of
regression parameters. Therefore, the survival function of T under the mixture cure modeling approach is given by

1− p+ pexp
{

−G
(

Λ(t)exp(XT β )
)}

.

Suppose that the study consists of n independent subjects and yields partly interval censored failure time data. For
subject i, define ∆i = 1 if the failure time Ti can be observed exactly. For censored subject, let (Li,Ri] be the smallest
interval that contains Ti. We define δ1i = 1 if ith subject is left censored by Ri with Li = 0 in this situation, δ2i = 1 if
the failure time of ith subject falls in a finite time interval (Li,Ri], and δ3i = 1 if the failure time of ith subject has not
yet occurred at the last observation time Li and set Ri = ∞ with the constraint that ∆i + δ1i + δ2i + δ3i = 1. Under the
independent assumption between the failure times and the observation times, the likelihood function is given by

n

∏
i=1

{

pi λ (ti)eXT
i β G′

(

Λ(ti)exp(XT
i β )

)

exp
[

−G
(

Λ(ti)exp(XT
i β )

)]

}∆i

×
{

pi − pi exp
[

−G
(

Λ(Ri)exp(XT
i β )

)]}δ1i

× p
δ2i
i

{

exp
[

−G
(

Λ(Li)exp(XT
i β )

)]

− exp
[

−G
(

Λ(Ri)exp(XT
i β )

)]}δ2i

×
{

1− pi+ pi exp
[

−G
(

Λ(Li)exp(XT
i β )

)]}δ3i . (3)

The transformation function G can be derived by Laplace transformation of frailty variable with support [0,∞) as the
following form,

exp{−G(x)}=

∫ ∞

0
exp(−xt)φ(t|r)dt.

When φ(t|r) is the density function of a gamma variable with mean 1 and variance r, we can obtain G(x) = log(1+ r x)/r,
the logarithmic transformation function. One can find more detailed discussion on the frailty based transformations in
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Kosorok et al. [14]. Therefore, one can convert the transformation model (1) into proportional hazards frailty model and
the likelihood function can be re-expressed, as follows:

n

∏
i=1

∫

µi

{

pi λ (ti)eXT
i β µi exp

(

−Λ(ti)exp(XT
i β )µi

)

}∆i

×
{

pi − pi exp
(

−Λ(Ri)exp(XT
i β )µi

)}δ1i

× p
δ2i
i

{

exp
(

−Λ(Li)exp(XT
i β )µi

)

− exp
(

−Λ(Ri)exp(XT
i β )µi

)}δ2i

×
{

1− pi+ pi exp
(

−Λ(Li)exp(XT
i β )µi

)}δ3i φ(µi|r)dµi. (4)

3 Maximum Likelihood Estimation

To estimate β , γ and Λ(·), we consider nonparametric maximum likelihood estimating approach, which leads to assume
that Λ(·) is a step function with non-negative jumps at the distinct uncensored failure times, the observation times for
the left-censored subjects and the endpoints of the smallest time intervals that contain the failure times of interest for the
interval-censored subjects. Let c1 < .. . < cKn be the ordered distinct time points above. Denote λk for the non-negative
jump size at ck for k = 1, . . . ,Kn. Then, we can rewrite the likelihood function, as follows:

n

∏
i=1

∫

µi

{

pi

(

Kn

∏
k=1

λ
I(ck=ti)
k

)

exp(XT
i β )µi exp

(

− ∑
ck≤ti

λk exp(XT
i β )µi

)}∆i

×

{

pi − pi exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi

)}δ1i

× p
δ2i
i

{

exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi

)

− exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi

)}δ2i

×

{

1− pi+ pi exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi

)}δ3i

φ(µi|r)dµi. (5)

In the following, we will describe the derivation of our proposed EM algorithm, which relies on two-stage data
augmentation involving subject-specific independent Poisson variables. In the first stage, it is natural to treat the cure
indicator Di and latent variable µi as missing values. Let θ be the parameters to be estimated, then the likelihood function
would have the form

L1(θ ) =
n

∏
i=1

p
Di
i (1− pi)

1−Di

{(

Kn

∏
k=1

λ
I(ck=ti)
k

)

exp(XT
i β )µi exp

(

− ∑
ck≤ti

λk exp(XT
i β )µi

)}∆i

×

{

1− exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi

)}δ1i

×

{

exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi

)

− exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi

)}δ2i

× exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi

)δ3i Di

φ(µi|r). (6)

For the subject whose failure time can be observed exactly and the left censored or interval censored subject, it is
apparent that P(Di = 1) = 1. Then the likelihood function above is equivalent to the following form, which motivates us
to further extend the pseudo observed data in the following second stage data augmentation.
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n

∏
i=1

p
Di
i (1− pi)

1−Di

{(

Kn

∏
k=1

λ
I(ck=ti)
k

)

exp(XT
i β )µiDi exp

(

− ∑
ck≤ti

λk exp(XT
i β )µiDi

)}∆i

×

{

1− exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi Di

)}δ1i

×

{

exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi Di

)

− exp

(

− ∑
ck≤Ri

λk exp(XT
i β )µi Di

)}δ2i

× exp

(

− ∑
ck≤Li

λk exp(XT
i β )µi Di

)δ3i

φ(µi|r). (7)

In the second stage, for the ith subject, we introduce a set of new latent variables {Zik,k = 1, . . . ,Kn}, where Zik is
a Poisson random variable with the parameter λk exp(XT

i β )µiDi. By treating the latent variables µi’s, Di’s and Zik’s as
missing values, we would have the following pseudo complete data likelihood function,

Lc(θ ) =
n

∏
i=1

p
Di
i (1− pi)

1−Di

Kn

∏
k=1

p(Zik)φ(µi|r),

where ∑ck<ti
Zik = 0 and Zik|ck=ti = 1 if ∆i = 1, ∑tk≤Ri

Zik > 0 if δ1i = 1, ∑tk≤Li
Zik = 0 and ∑Li<tk≤Ri

Zik > 0 if δ2i = 1 and

∑tk≤Li
Zik = 0 if δ3i = 1. Note that similar Poisson variables were adopted by McMahan et al.[15], Wang et al.[16] and

Zeng et al.[17] for the analysis of current status data or interval censored failure time data without considering the cured
subgroup.

In the E-step, we take conditional expectations with respect to all latent variables in the log-likelihood function lc(θ ) =

logLc(θ ). This yields Q(θ ,θ (m)) = Q1(γ,θ
(m))+Q2(θ1,θ

(m)), where

Q1(γ,θ
(m)) =

n

∑
i=1

X̃T
i γ E(Di)− log

{

1+ exp(X̃T
i γ)

}

,

and

Q2(θ1,θ
(m)) =

n

∑
i=1

Kn

∑
k=1

XT
i β E(Zik)+ log(λk)E(Zik)−λk exp(XT

i β )E(µi Di).

To explain, we need to calculate the conditional expectations E(Zik) and E(µiDi) and E(Di) given in the following forms,

E(Zik) = ∆i

{

I(ck = ti)+λk exp(XT
i β )E(µiDi) I(ck > ti)

}

+δ1i

{

λk exp(XT
i β )

1− exp(−G(Wi))
I(ck ≤ Ri)+λk exp(XT

i β )E(µiDi) I(ck > Ri)

}

+δ2iλk exp(XT
i β )

∫

µi
µi(exp(−µiVi)− exp(−µiWi)){1− exp(−µi(Wi −Vi))}

−1 φ(µi|r)dµi

exp(−G(Vi))− exp(−G(Wi))
I(Li < ck ≤ Ri)

+δ2iλk exp(XT
i β )E(µiDi) I(ck > Ri)+ δ3i λk exp(XT

i β )E(µiDi) I(ck > Li),

E(µiDi) = ∆i

∫

µi
µ2

i exp(−µiMi)φ(µi|r)dµi

exp(−G(Mi))G′(Mi)
+ δ1i

1− exp(−G(Wi))G′(Wi)

1− exp(−G(Wi))

+δ2i

exp(−G(Vi))G′(Vi)− exp(−G(Wi))G′(Wi)

exp(−G(Vi))− exp(−G(Wi))
+ δ3i

pi exp(−G(Vi))G
′(Vi)

1− pi+ pi exp(−G(Vi))
,

and

E(Di) = ∆i + δ1i + δ2i+ δ3i

pi exp(−G(Vi))

1− pi+ pi exp(−G(Vi))
,
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where Vi = ∑ck≤Li
λk exp(XT

i β ), Wi = ∑ck≤Ri
λk exp(XT

i β ), Mi = ∑ck≤ti
λk exp(XT

i β ), and

G′(x) =

∫

µi
µi exp(−x µi)φ(µi|r)dµi

exp(−G(x))
=

(r x+ 1)−r−1−1

exp(−G(x))
,

and
∫

µi

µ2
i exp(−µix)φ(µi|r)dµi = (1+ r)(rx+ 1)−r−1−2 .

when φ(µi|r) is the gamma density function with known parameter r. Furthermore, we propose to employ Gauss-Laguerre
quadrature technique to calculate the following conditional expectation that has no closed-form,

∫

µi

µi(exp(−µiVi)− exp(−µiWi)){1− exp(−µi(Wi −Vi))}
−1 φ(µi|r)dµi.

In the M-step, we can update γ by solving the following score function,

n

∑
i=1

X̃i

{

E(Di)−
exp(X̃T

i γ)

1+ exp(X̃T
i γ)

}

. (8)

Setting
∂Q2(θ1,θ

(m))
∂λk

= 0, we can update λk with the following closed-form expression,

λk =
∑n

i=1 E(Zik)

∑n
i=1 E(µi Di)exp(XT

i β )
, k = 1, . . . ,Kn. (9)

Plugging the estimator above into equation Q2(θ1,θ
(m)), we can get the estimating equation for the regression parameter

β ,
n

∑
i=1

Kn

∑
k=1

E(Zik)

{

Xi −
∑n

i=1 E(µi Di)exp(XT
i β )Xi

∑n
i=1 E(µi Di)exp(XT

i β )

}

= 0. (10)

By combining all the above-mentioned discussions, the proposed EM algorithm can be summarized, as follows:

Step 0. Choose an initial value θ (0).

Step 1. At the (m+ 1)th iteration, first calculate the conditional expectations E(Zik), E(µiDi) and E(Di) at θ = θ (m).

Step 2. Determine the updated estimators γ(m+1) from the estimating function (8) using one step Newton-Raphson method.

Step 3. Update β (m+1) by solving the score equation (10) with one step Newton-Raphson method.

Step 4. Update λ
(m+1)
k by (9) by replacing β with β (m+1).

Step 5. Repeat Steps 1 - 4 until the convergence is satisfied.
For the convergence, various criteria can be applied as well as a simple and commonly used one is to check

‖θ̂ (m+1)− θ̂ (m)‖ ≤ ε , ‖β̂ (m+1)− β̂ (m)‖ ≤ ε , ‖γ̂(m+1)− γ̂(m)‖ ≤ ε for a given positive number ε = 10−6. We also set an

addition termination criterion that is to stop the EM algorithm when the standard errors of the α(k)’s, β (k)’s, γ(k)’s from
30 consecutive iterations are all smaller than ε1 = 10−3, also a given positive number.

For inference about the parameters of interest, η = (β T ,γT )T , we propose to employ nonparametric bootstrap method

to estimate the the asymptotic covariance matrix of η . To be specific, we first draw new data sets, say O(q)’s, of sample
size n with replacement from the original observed data Q times and let η̃ contain all the resulting estimators of η based

on O(q) for q = 1, . . . ,Q. Then one can use the sample covariance matrix of η̃ as an estimated covariance matrix of η . The
theoretical justifications of the bootstrap method under semiparametric models were given by Cheng and Huang [18], and
Cheng [19], with focusing on the distribution consistency and moment consistency, respectively.

4 A Simulation Study

In this section, we present some results obtained from a simulation study conducted to assess the finite sample performance
of the inference procedure proposed in the previous sections. The cure indicator and failure time of interest (if not cured)
were generated from model (1) and model (2) with G(x) = log(1+ r x)/r (r ≥ 0) with different values for r and set
Λ(t) = 0.2 t. Note that as mentioned above, it gives the proportional hazards model and the proportional odds model with
r = 0 and 1, respectively. For each subject i, we first generated three random variables, Ui1, Ui2 and Ui3, which followed
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the uniform distribution over (0, 1), (0.2+Ui1, τ/2), and (0.5+Ui2, τ), respectively. If Ti belongs to (Ui1,Ui2], then we
assumed that Ti can be observed exactly, Ti was left-censored by Ui1 if Ti ≤Ui1, and if Ti >Ui3, then Ti was right-censored
or cured. Otherwise, Ti was interval-censored by Ui2 and Ui3. Here, we considered the situations that X̃i = (1,XT

i )
T and

X̃i 6= (1,XT
i )T . The results given below are based on 1000 replications, τ = 3, Q = 100, and n = 200 or 400.

Tables 1 and 2 present the results on the estimation of regression parameters β and γ with X̃i = (1,XT
i )

T . The former
investigated the one covariate situation with the Xi’s following the Bernoulli distribution with the success probability of
0.5 and we set β = 0 and γ = (1,−0.5)T , which yields about 39% and 32% right censored and cure rates, respectively.
The latter considered the two covariate situation, where Xi = (X1i,X2i)

T , with the X1i’s being generated from the Bernoulli
distribution with the success probability of 0.5 and the X2i’s from the uniform distribution over (−1,1). In this situation,
we set β = (0.5,−0.5)T and γ = (1,−0.5,−0.5)T corresponding to about 39% and 32% right censored and cure rates,
respectively. In both tables, the results include the estimated bias (Bias) given by the average of the estimates minus the
true value, the sample standard error (SSE) of the obtained estimates, the average of the standard error estimates (SEE),
and the 95% empirical coverage probability (CP). One can see that they suggest that the proposed estimator seems to be
unbiased and the variance estimation based on the bootstrap procedure seems to be reasonable. In addition, all empirical
coverage probabilities are in well accordance with the nominal value, indicating that the normal approximation to the
distribution of the proposed estimator appears to be appropriate, and as expected, the results become better when the
sample size increases.

Table 3 present the results on the estimation of regression parameters β and γ with X̃i 6= (1,XT
i )

T , where

X̃i = (1, X̃1i, X̃2i)
T and Xi = (X1i,X2i)

T . Specially, we generated X1i and X̃1i from two independent Bernoulli distribution
with the success probability of 0.5, X2i and X̃2i from two independent uniform distribution over (−1,1). We set the true
values of regression parameters the same as those in Table 2 and so obtain the similar right censored and cure rates as
above. It is apparent that the results given in Table 3 yielded similar conclusions as above and indicate that the proposed
inference procedure works well for the practical situation considered here.

5 An Application

Now we apply the methodology proposed in the previous sections to the NASA’s Hypobaric decompression sickness
database (HDSD). The database consists of 177 male (SEX=1) and 61 female (SEX=0) volunteers, aged between 20 to 54
years, who underwent dehydrogenation test procedures and were then exposed to a hypobaric environment. The variable
of interest is the time to onset of grade IV venous gas emboli (VGE). The study aims to investigate the mechanism of the
onset of grade IV VGE and its association with four explanatory variables, age, gender and two experimental variables
TR360 and NOADYN. The variable TR360 is the tissue ratio at 360 degrees, which is a measure of decompression stress.
The higher the TR360, the more quickly a high grade bubble is expected to occur. It is a continuous variable ranging
from 1.04 to 1.89. The variable NOADYN is also an experimentally manipulated variable, indicating whether the test
subject was ambulatory (NOADYN = 1; 195 subjects) or lower body adynamic (NOADYN = 0; 43 subjects) during the
test session.

The time to onset of grade IV VGE is either exactly observed or known to lie between certain examination time points,
leading to interval-censored data. Furthermore, it has been suggested that not every subject will develop Grade IV VGE, so
there is an obvious need for a cure model. Figure 1 presents the Turnbull nonparametric estimate of the survival function
and one can see that the estimated survival curve has a clear non-zero plateau at the tail, indicating the possible existence
of a cured subgroup. In other words, it seems to be reasonable and more appropriate to incorporate the cure model for
analyzing the data here.

Previous authors (Conkin and Powell [20]) suggested that only subject-specific covariates can have an influence on
the susceptibility to experience the event. Therefore, only age and gender are considered in the logistic component for the
mixture cure rate model. Table 4 presents the estimation results obtained by the application of the proposed method. On
the effect of the TR360, the estimates indicate that the subjects with higher TR360 had longer time-to-onset of Grade IV
VGE. Furthermore, the estimated coefficients suggest that both age and NOADYN are significant, indicating that older
people may develop Grade IV VGE less rapidly and ambulatory subjects may develop the event more rapidly than lower
body adynamic subjects. The estimate also indicates that male subjects may have shorter time to the event than female
subjects, but this is not significant at the 5% level. For the cure probability, both age and sex are significant, indicating
that older male subjects were more susceptible to Grade IV VGE.

6 Discussion and Concluding Remarks

The classical hazard-based regression model is inappropriate for analyzing failure time data when there is a non-ignorable
proportion of cured subjects in the whole population who would never experience the event of interest. In this paper,
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mixture cure model was proposed to model partly interval censored data in the presence of a cured subgroup. Specially,
we assumed a logistic model for the cured probability and a wide class of transformation models for the failure times of
the uncured group. For inference, we developed an EM algorithm with the use of subject-specific independent Poisson
variables and by treating the cured indicators as missing values to obtain the maximum likelihood estimators. The proposed
EM algorithm has some very attractive features; for example the unknown high-dimensional baseline cumulative hazard
function denoted by the λk’s can be calculated explicitly and the low-dimensional regression parameters can be easily
updated with one-step Newton-Raphson method. In addition, numerical results indicated that the proposed estimating
method is reliable and appropriate for practical situations.

Model-checking is often of interest and challenging in mixture cure model. In practice, we selected the
transformation function by maximizing the log-likelihood function. It would be helpful to develop a formal model
selection or checking method to assess the adequacy of the transformation models for the failure times of uncured
subgroup and the logistic regression model for the cure probability. Furthermore, the additive hazards model attracts
great attention in survival analysis, which assumes a different type of covariate effect on the hazards function of the
failure time from the transformation models discussed above. It is worthwhile to develop the estimating method to
analyze partly interval censored data with a cured subgroup under additive hazards model.

Table 1: Simulation results for the regression parameter with one common covariate.

n = 200 n = 400

r Est SSE SEE CP Est SSE SEE CP

0 γ0 0.003 0.230 0.232 95.2 -0.006 0.157 0.161 95.3

γ1 0.012 0.311 0.315 95.7 0.002 0.212 0.219 96.4

β -0.008 0.296 0.300 95.3 0.008 0.206 0.206 95.5

0.5 γ0 0.003 0.229 0.233 95.0 0.002 0.156 0.161 95.8

γ1 0.012 0.309 0.315 94.8 -0.005 0.219 0.218 95.0

β 0.008 0.339 0.344 96.2 0.001 0.235 0.236 94.3

1 γ0 0.007 0.228 0.233 95.4 0.007 0.155 0.162 95.8

γ1 -0.005 0.317 0.314 94.7 -0.007 0.210 0.219 95.5

β 0.017 0.376 0.385 95.7 -0.009 0.256 0.265 96.4
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Table 2: Simulation results for the regression parameters with two common covariates.

n = 200 n = 400

r Est SSE SEE CP Est SSE SEE CP

0 γ0 0.024 0.240 0.239 95.3 0.013 0.163 0.164 94.9

γ1 -0.020 0.319 0.322 95.0 -0.009 0.229 0.222 95.2

γ2 -0.015 0.273 0.282 95.4 0.003 0.190 0.193 94.7

β1 -0.016 0.276 0.275 94.1 -0.008 0.182 0.186 95.3

β2 0.012 0.241 0.246 95.4 0.002 0.172 0.167 93.8

0.5 γ0 0.027 0.223 0.238 96.2 0.017 0.163 0.164 95.3

γ1 -0.025 0.314 0.322 94.7 -0.018 0.221 0.221 94.9

γ2 -0.009 0.280 0.281 94.6 -0.009 0.194 0.195 94.5

β1 -0.019 0.322 0.326 95.2 -0.002 0.221 0.224 95.5

β2 -0.004 0.280 0.290 96.4 0.002 0.203 0.200 94.8

1 γ0 0.026 0.241 0.240 95.1 0.012 0.161 0.164 94.5

γ1 -0.018 0.324 0.321 95.1 -0.009 0.219 0.221 94.9

γ2 -0.010 0.279 0.282 95.5 -0.009 0.202 0.196 94.5

β1 -0.026 0.367 0.383 96.3 0.002 0.237 0.255 96.9

β2 -0.012 0.338 0.337 94.9 0.004 0.220 0.228 96.0

Table 3: Simulation results for the regression parameters with two different covariates.

n = 200 n = 400

r Est SSE SEE CP Est SSE SEE CP

0 γ0 0.010 0.232 0.238 96.1 0.008 0.154 0.165 96.6

γ1 0.001 0.318 0.322 95.7 0.000 0.209 0.220 95.8

γ2 -0.019 0.277 0.281 95.7 -0.007 0.197 0.194 94.5

β1 -0.014 0.267 0.278 95.2 -0.010 0.186 0.189 95.7

β2 0.019 0.244 0.241 95.0 0.016 0.167 0.166 95.0

0.5 γ0 0.013 0.221 0.238 96.0 0.008 0.157 0.163 95.9

γ1 0.006 0.304 0.320 95.8 -0.001 0.208 0.220 96.1

γ2 -0.014 0.285 0.282 95.7 -0.015 0.187 0.194 96.1

β1 -0.030 0.336 0.329 94.6 -0.009 0.217 0.225 95.5

β2 -0.008 0.295 0.290 95.0 0.011 0.192 0.196 95.1

1 γ0 0.026 0.241 0.239 95.3 0.012 0.162 0.164 95.6

γ1 -0.007 0.322 0.321 94.4 -0.010 0.218 0.222 95.1

γ2 -0.015 0.285 0.282 95.1 -0.002 0.193 0.194 94.6

β1 -0.018 0.363 0.380 96.0 -0.008 0.258 0.257 94.7

β2 0.007 0.312 0.331 96.6 0.004 0.224 0.224 95.4
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Table 4: Analysis results of NASA’s Hypobaric Decompression Sickness Data

EST SEE p-value

m = 3 Logistic model Intercept -3.063 0.581 <0.001

Age 1.179 0.363 0.001

Gender 1.589 0.579 0.006

PH model Age -0.318 0.071 <0.001

Gender -0.163 0.186 0.380

TR360 -1.196 0.536 0.026

NOADYN 0.865 0.321 0.007

m = 4 Logistic model Intercept -2.944 0.562 <0.001

Age 1.106 0.355 0.002

Gender 1.504 0.562 0.007

PH model Age -0.294 0.068 <0.001

Gender -0.152 0.173 0.383

TR360 -1.092 0.508 0.031

NOADYN 0.809 0.306 0.008

m = 5 Logistic model Intercept -2.815 0.546 <0.001

Age 1.028 0.339 0.002

Gender 1.435 0.540 0.007

PH model Age -0.274 0.062 <0.001

Gender -0.135 0.159 0.395

TR360 -1.028 0.487 0.034

NOADYN 0.785 0.287 0.006

Fig. 1: Turnbull non-parametric estimated survival probability for the time to Grade IV VGE
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