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Abstract: In this paper, we discuss the solution of the semilinear conformable abstract Cauchy problem. We study the existence of mild

solution using the fractional semigroups. We establish the global and local mild solutions using the concept of contraction principle.

The stability and regularity of mild solutions are studied. Applications illustrating our main abstract results are also given.
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1 Introduction

Fractional differential equations have been proved to be one of the most effective tools in the modeling of many
phenomena in various fields of physics, mechanics, chemistry, engineering, etc. They have a great number of
applications in nonlinear oscillation of earthquakes, many physical phenomena such as seepage flow in porous media and
in the fluid dynamic traffic model. For more details on this theory and its applications we refer to [1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20].

Recently, Khalil et al. in [12] introduced a new differential operator, called the conformable derivative. Such a
fractional order derivative satisfies many well-known properties of the integer order derivative including linearity,
product rule and division rule. In addition, Rolle’s Theorem and Mean Value Theorem are also applicable, see [12]. In
2015, Abdeljawad in [1] made extensive results for the conformable fractional derivative. Khalil et al. in [21] presented a
geometric meaning of the conformable derivative via fractional cords. Based on the conformable fractional derivative,
Ableljawad et al. in [22] introduced the so called C0 −α−semigroup (Tα(t))t≥0 which is a generalization of the classical
strongly continuous semigroup with its infinitesimal generator. In the last few years many research articles, using
conformable derivative, were published, see [1,6,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42].

In this paper, we will study the following semilinear conformable fractional initial value problem:

{

dα u(t)
dtα +Au(t) = f (t,u(t)) t > t0

u(t0) = u0,
(1)

where
dα u(t)

dtα is the conformable fractional derivative of order α ∈ (0,1], A is a closed operator on a Banach space
(X ,‖.‖), u0 ∈ X , and f : [t0,S]×X −→ X is a function that satisfies some conditions. We denote by (C([t0,S] : X),‖.‖∞)
the Banach space of continuous functions from [t0,S] into X with the norm ‖g‖∞ = supt∈[t0,S] ‖g(t)‖.

This paper is organized as follows, in section 2 we introduce an important analysis of conformable fractional calculus
and fractional semigroups. In section 3, we study the existence, uniqueness, stability and regularity of the mild solution
of problem (1). In section 4 we give applications illustrating our abstract results.
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2 Preliminaries

In this section we introduce an important analysis of conformable calculus and conformable semigroups. Let us begin by
defining the Banach space L

p
α(0,S;X). Let p ≥ 1, we define the Banach space L

p
α(0,S;X) by

L
p
α (0,S;X) = { f : [0,S]→ X is measurable X valued function and

∫ S

0

1

t1−α
‖ f (t)‖pdt < ∞},

under the norm ‖ f‖p = (
∫ S

0
1

t1−α ‖ f (t)‖pdt)
1
p .

Definition 1.Let u : [0,∞)−→ X be an X valued function. The conformable derivative of u of order α ∈ (0,1], at t > 0 is

defined by

dα u(t)

dtα
= lim

ε→0

u(t + εt1−α)− u(t)

ε
,

where the limit is taken in the norm of X.

When the limit exists, we say that u is α−differentiable at t.

If u is α−differentiable in some (0,a], a > 0 and lim
t→0+

u(α)(t) exists in X, then we define u(α)(0) = lim
t→0+

u(α)(t).

The α−fractional integral of a function u ∈ L1
α (0,S;X) is given by

Ia
α(u)(t) =

∫ t

a

1

s1−α
u(s)ds

Theorem 1.If a function u : [0,∞)−→ X is α−differentiable at t > 0, α ∈ (0,1], then u is continuous at t. If, in addition,

u is differentiable, then
dα u(t)

dtα = t1−α du(t)
dt

.

Lemma 1.Let u : [0,∞)−→ X be differentiable and α ∈ (0,1]. Then, for all t > 0 we have

I0
α(

dα u

dtα
)(t) = u(t)− u(0).

Therefore, if u is continuous then

dα I0
α(u)(t)

dtα
= u(t).

Definition 2.(see [22]) Let α ∈ (0,a] for any a > 0. For a Banach space X, a family {Tα(t)}t≥0 ⊆ L (X ,X) is called a

fractional α−semigroup (or α−semigroup ) of operators if

(i)Tα(0) = I,

(ii)Tα(t + s)
1
α = Tα(t

1
α )Tα(s

1
α ) for all t,s ∈ [0,∞).

Clearly, if α = 1, then 1−semigroups are just the usual semigroups.

Definition 3.(see [22]) An α−semigroup Tα(t) is called a C0−semigroup, if for each x ∈ X, Tα(t)x → x as t → 0+.

The conformable α−derivative of Tα(t) at t = 0 is called the α−infinitesimal generator of the fractional α−semigroup

Tα(t) , with domain equals:

{ x ∈ X , lim
t→0+

(Tα)
(α)(t)x exists }.

We will write A for such a generator.

Example 1.(see [22])

(i)For a bounded linear operator A, define T1
2
(t) = e2

√
tA. Then (T1

2
(t))t≥0 is 1

2
−semigroup.

(ii)Let X =C([0,∞) : R) be the Banach space of bounded uniformly continuous functions on [0,∞) with supremum norm.

For f ∈ X we define (T1
2
(t) f )(s) = f (s+

√
t). It is easy to check that T1

2
(t) is a C0 − 1

2
−semigroup of operators.

Theorem 2.(see [43]) Let Tα(t) be a C0 −α−semigroup where α ∈ (0,1]. There exist constants ω ≥ 0 and M ≥ 1 such

that

‖Tα(t)‖ ≤ Meωtα
for 0 ≤ t ≤ ∞.
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Corollary 1.(see [43]) If Tα(t) is a C0 −α−semigroup, then for every x ∈ X, t → Tα(t)x is a continuous function from

R
+
0 (the nonnegative real line) into X.

Theorem 3.(see [43]) Let Tα(t) be a C0 −α−semigroup where α ∈ (0,1] and A be its α−infinitesimal generator. Then

a)For x ∈ X

lim
ε→0

1

ε

∫ t+εt1−α

t

1

s1−α
Tα(s)xds = Tα(t)x for every t > 0.

b)For x ∈ X,
∫ t

0
1

s1−α Tα(s)xds ∈ D(A) and

A(

∫ t

0

1

s1−α
Tα(s)xds) = Tα(t)x− x.

c)For x ∈ D(A), Tα(t)x ∈ D(A) and
dα

dtα
Tα(t)x = ATα(t)x = Tα(t)Ax (2)

d)For x ∈ D(A)

Tα(t)x−Tα(s)x =

∫ t

s

1

u1−α
Tα(u)Axdu =

∫ t

s

1

u1−α
ATα(u)xdu

Lemma 2.(see [43]) Let A be the α−infinitesimal generator of a C0 −α−semigroup Tα(t). Then A is closed and densely

defined linear operator.

Proposition 1.(Gronwall’s inequality)(see [1])

Let r be a continuous, nonnegative function on [t0,S] and δ , k be nonnegative constants such that

r(t)≤ δ + k

∫ t

t0

1

s1−α
r(s)ds .

Then for all t ∈ [t0,S]

r(t)≤ δe
k
α (tα−tα

0 )

3 Main results

In this section we prove existence and uniqueness of mild solution of the abstract Cauchy problem (1) under certain
conditions. Before presenting our main results, we introduce the following assumptions

(H1)The function f (t, .) : X → X is uniformly Lipschitz continuous on X if there exist L > 0 such that

‖ f (t,y)− f (t,z)‖ ≤ L‖y− z‖

for all t ∈ [t0,S] and all y,z ∈ X .
(H2)The function f (.,y) : [t0,S]→ X is continuous for all y ∈ X

3.1 Existence And Uniqueness Of The Mild Solution

If u is the solution of (1), then the X valued function g(s) = Tα(t
α − sα)

1
α u(s) is α−deffirentiable for t0 < s < t and

dα g(s)

dsα
= ATα(t

α − sα)
1
α u(s)+Tα(t

α − sα)
1
α

dα u(s)

dsα

= ATα(t
α − sα)

1
α u(s)+Tα(t

α − sα)
1
α [−Au(s)+ f (s,u(s))]

= Tα(t
α − sα)

1
α f (s,u(s)). (3)

From assumptions, (H1) and (H2) on f , the X valued function s → T (tα − sα)
1
α f (s,u(s)) ∈ L1

α(0,S;X) and

I
t0
α (

dα g(s)

dsα
)(t) = Tα(t

α − tα)
1
α u(t)−Tα(t

α − tα
0 )

1
α u(t0) =

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,u(s))ds.
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So

u(t) = Tα(t
α − tα

0 )
1
α u0 +

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,u(s))ds. (4)

Definition 4.Let Tα(t) be a C0 −α−semigroup with its generator −A. If u0 ∈ X , then the function u ∈ C([t0,S] : X)
satisfying the integral equation (4) is called the mild solution of the initial value problem (1).

Theorem 4.Let −A be the generators of a C0 −α−semigroup Tα(t), t ≥ 0 on X. If assumptions, (H1) and (H2) hold, then

for every u0 ∈ X the initial value problem (1) has a unique mild solution u ∈C([t0,S] : X).

Proof.We define the mapping F : C([t0,S] : X)→C([t0,S] : X) by

(Fu)(t) = Tα(t
α − tα

0 )
1
α u0 +

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,u(s))ds. (5)

where t0 ≤ t ≤ S.

Claim: F has a unique fixed point.
Let u,v ∈C([t0,S] : X). We have

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α ‖ f (s,u(s))− f (s,v(s))‖ds

≤ ML‖u− v‖∞

∫ t

t0

sα−1 ds

≤ ML

α
(tα − tα

0 )‖u− v‖∞ , (6)

where M is a bound of T (t) on [t0,S]. Inductively by using (5) and (6) it follows that

‖(Fnu)(t)− (Fnv)(t)‖ ≤ (ML(tα − tα
0 ))

n

αnn!
‖u− v‖∞

where (Fn ≡ F ◦F ◦ ...◦F). Hence

‖Fnu−Fnv‖∞ ≤ (MLSα )n

αnn!
‖u− v‖∞.

For n large enough
(MLSα )n

αnn!
< 1. Hence by using the Banach contraction principle, F has a unique fixed point u ∈C([t0,S] :

X), which is the mild solution of the conformable initial value problem (1).

The uniqueness and the continuous dependence of the mild solution are consequences of the following result.

Theorem 5.(Stability of solution)

Assume that (H1) and (H2) are satisfied. Let u0,v0 ∈ X and denote by u and v the mild solutions of (1) associated to the

initial conditions u0 and v0, respectively. Then, we have the following estimate

‖u− v‖∞ ≤ Me
ML
α (Sα−tα

0 )‖u0 − v0‖
Proof.For t ∈ [t0,S] we have

‖u(t)− v(t)‖ ≤ ‖Tα(t
α − tα

0 )
1
α u0 −Tα(t

α − tα
0 )

1
α v0‖

+
∫ t

t0

1

s1−α
‖Tα(t

α − sα)
1
α ‖‖ f (s,u(s))− f (s,v(s))‖ds

≤ M‖u0 − v0‖+ML

∫ t

t0

1

s1−α
‖u(s)− v(s)‖ds .

Using Gronwall’s inequality in proposition 1 it follows that

‖u(t)− v(t)‖≤ Me
ML
α (Sα−tα

0 )‖u0 − v0‖ .
Thus

‖u− v‖∞ ≤ Me
ML
α (Sα−tα

0 )‖u0 − v0‖ .
This yields both uniqueness of u and Lipschitz continuous of the map u0 → u.
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From the proof of Theorem 4 we obtain a more general result:

Corollary 2.If A and f satisfy the conditions of Theorem 4, then for all g ∈C([t0,S];X) the integral equation

v(t) = g(t)+

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,v(s))ds

has a unique solution v ∈C([t0,S];X).

From Theorem 4, the uniform Lipschitz condition of the function f assures the existence of a global mild solution of (1).
Now, let us assume that f : [0,∞[×X −→ X satisfies only the following local Lipschitz condition:

(H3)for every τ ≥ 0 and constant k ≥ 0 there is a constant L(k,τ) such that for all y,z ∈ X with ‖y‖ ≤ δ , ‖z‖ ≤ δ and
t ∈ [0,τ]

‖ f (t,y)− f (t,z)‖ ≤ L(k,τ)‖y− z‖. (7)

Under this condition we have the following local version of Theorem 4.

Theorem 6.Let −A be the generator of a C0 −α−semigroup Tα(t) on X. If assumptions (H2) and (H3) hold, then for

every u0 ∈ X there is a tmax ≤ ∞ such that the initial value problem

{

dα u(t)
dtα +Au(t) = f (t,u(t)), t ≥ 0,

u(0) = u0

(8)

has a unique mild solution u on [0, tmax[. Moreover, if tmax < ∞, then limt→tmax ‖u(t)‖= ∞.

Proof.First, we want to show that for every t0 ≥ 0, u0 ∈ X the conformable initial value problem (1) has under our

assumptions, a unique mild solution u on interval [t0, t1] such that t1 = (tα
0 + δ (t0,‖u0‖))

1
α by choosing

δ (t0,‖u0‖) = min{α,
α‖u0‖

K(t0)L(K(t0),(t
α
0 +α)

1
α )+N(t0)

} (9)

where L(k, t) is the local Lipschitz constant of f as defined by (7), M(t0) = sup{‖Tα(t)‖ : 0 ≤ t ≤ (tα
0 +α)

1
α }, K(t0) =

2‖u0‖M(t0) and N(t0) = max{‖ f (t,0)‖ : 0 ≤ t ≤ (tα
0 +α)

1
α }. Indeed, we define the ball B(K(t0)) = {u ∈ C([t0, t1] : X) :

‖u‖ ≤ K(t0)}.
Claim: The mapping F defined by (5) maps the ball B(K(t0)) into itself.
For t ∈ [t0, t1] we have the following estimate

‖(Fu)(t)‖ ≤ ‖Tα(t
α − tα

0 )
1
α u0‖+

∫ t

t0

1

s1−α
‖Tα(t

α − sα)
1
α ‖(‖ f (s,u(s))− f (s,0)‖+ ‖ f (s,0)‖)ds

≤ M(t0)‖u0‖+(M(t0)K(t0)L(K(t0),(t
α
0 +α)

1
α )+M(t0)N(t0))

∫ t

t0

1

s1−α
ds

≤ M(t0)[‖u0‖+(K(t0)L(K(t0),(t
α
0 +α)

1
α )+N(t0))(

tα

α
− tα

0

α
)]

From the definition of t1 we get
‖(Fu)(t)‖ ≤ 2M(t0)‖u0‖= K(t0).

In this ball, assumptions (H1) and (H2) hold, with the constant L(K(t0),(t
α
0 +α)

1
α ). By the same argument in proof of

Theorem 4, F has a unique fixed point in this ball which is the mild solution of (1) on the interval [t0, t1].

Now, if u is a mild solution of (8) on the interval [0,τ], then it can be extended to the interval [0,(τα + δ )
1
α ] with δ > 0

by defining u(t) = v(t) on [τ,(τα + δ )
1
α ], where v(t) is the solution of the integral equation

v(t) = Tα(t
α − tα

0 )
1
α u(τ)+

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,v(s))ds, τ ≤ t ≤ (τα + δ )

1
α .

Moreover, δ depends only on ‖u(τ)‖, K(τ) and N(τ).
Let [0, tmax[ be the interval of existence of the mild solution u of (8). Assume that limt→tmax ‖u(t)‖ 6= ∞. Then there is a
sequence tn ր tmax such that for all n, ‖u(tn)‖ <C. If we choose tn close to tmax then the solution u defined on [0, tn] can
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be extended to [0,(tα
n + δ )

1
α ] where δ > 0 is independent of tn. Hence u can be extended beyond tmax which contradicts

the definition of tmax. So limt→tmax ‖u(t)‖= ∞.
For the uniqueness of the local mild solution of (8), if u and v are two mild solutions of (8), then on every closed interval
[0, t0] where both u and v exist, they coincide by the uniqueness argument given in the proof of Theorem 5. Therefore,
both u and v have the same tmax and u ≡ v on [0, tmax[.

Let −A be the infinitesimal generator of a C−α−semigroup Tα(t) on X . For all x∈D(A) we define |x|A = ‖x‖+‖Ax‖.
It is not difficult to show that D(A) with the norm |.|A is a Banach space which we denote by Y . Clearly Y ⊂ X and since
Tα(t) : D(A)→ D(A), Tα(t), t ≥ 0 is an α−semigroup on Y which is easily seen to be a C0 −α−semigroup on Y .
In general, if f satisfies the condition in Theorem 4 or Theorem 6, the mild solution of (1) need not be continuously
α−differentiable. A sufficient condition for the mild solution of (1) to be continuously α−differentiable solution is given
in the next theorem.

Theorem 7.Let f : [t0,S]×Y −→ Y be uniformly Lipschitz in Y and for all y ∈ Y the function f (t,y) is continuous from

[t0,S] into Y . Then for every u0 ∈D(A), the initial value problem (1) has a unique solution (continuously α−differentiable)

on [t0,S].

Proof.From Theorem 4, there exists a unique mild solution u ∈C([t0,S] : Y ) satisfying the integral equation

u(t) = Tα(t
α − tα

0 )
1
α u0 +

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,u(s))ds .

Let g(s) = f (s,u(s)). From our assumption it follows that g(s) ∈ D(A) for s ∈ [t0,S]. Therefore g ∈ C([t0,S] : Y ). This
implies that s → g(s) and s → Ag(s) are continuous on X . Then from Corollary 4.3 (see [43]), the initial value problem

{

dα v
dt

+Av = g(t)

v(t0) = u0

(10)

has a unique solution (continuously α−defferentiable) v on [t0,S]. This solution is clearly a mild solution of (10) and
therefore

v(t) = Tα(t
α − tα

0 )
1
α u0 +

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α g(s)ds

= Tα(t
α − tα

0 )
1
α u0 +

∫ t

t0

1

s1−α
Tα(t

α − sα)
1
α f (s,u(s))ds

= u(t).

Thus u is a continuously α−differentiable solution of (1) on [t0,S].

Corollary 3.Let f : [t0,S]×Y −→Y be locally Lipschitz continuous in Y uniformly in [t0,S]. Then for every u0 ∈ D(A), the

initial value problem (1) has a unique solution (continuously α−differentiable) on a maximal interval [t0, tmax[. If tmax ≤ S

then

lim
t→tmax

(‖u(t)‖+ ‖Au(t)‖) = ∞.

In this situation, it may be that ‖u(t)‖ is bounded on [t0, tmax[ and only ‖Au(t)‖→ ∞ as t → tmax.

4 Applications

Example 2.Consider the semilinear conformable heat equation:

{

∂ α v(t,x)
∂ tα = 1

2

∂ 2v(t,x)
∂x2

+ a(t)cos(v(t,x)) t > 0 −∞ < x <+∞ ,

v(0,x) = g(x)
(11)

where α ∈ (0,1) and h is bounded continuous function on [0,∞), g is continuous function on R.
Let X =C[−∞,+∞] be the Banach space of bounded uniformly continuous functions with usual supremum norm ‖ f‖∞ =
sup−∞<x<+∞ ‖ f (x)‖. Define the operator A by:

A =
∂ 2

∂x2
(.), D(A) = {ψ ∈ X : ψ ′

,ψ ′′ ∈ X} .
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One can easily show that A is a generator of C0 −α−semigroup which is just a modified heat semigroup defined by

(Tα(t) f )(x) =

{
∫

R
Nt(x− y) f (y)dy, t > 0

f (x), t = 0

where Nt(y) =
√

α
2πtα e−

αy2

2tα .

The α−semigroup property follows from the fact that

√

α

2π(t + t ′)
e
− αx2

2(t+t′) =

√

α

2πt

√

α

2πt ′

∫

R

e
− α(x2−y2)

2t − αy2

2t′ dy

(using Fubini’s theorem).From the strong continuity of the classical heat C0−semigroup T1 and the remark that Tα(t) =

T1(
tα

α ) we can show that Tα is a C0 −α−semigroup. Since A is generator of T1 (in the sense of natural derivative) then it
follows that for all t > 0:

dα

dtα
Tα(t) =

dα

dtα
T1(

tα

α
) = t1−α d

dt
T1(

tα

α
) = t1−αtα−1Ṫ1(

tα

α
) = Ṫ1(

tα

α
) .

So for f ∈ D(A)

lim
t→0

dα

dtα
Tα(t) f = lim

t→0
Ṫ1(

tα

α
) = A f =

∂ 2

∂x2
f .

Let u : [0,+∞)→ X defined by u(t)(x) = v(t,x) and u(0)(x) = g(x). Then the semilinear conformable heat equation (11)
takes the following abstract form :

{

dα u(t)
dtα = Au(t)+ a(t)cos(u(t)) t > t0

u(t0) = g.

Let g ∈ D(A). From Theorem 7 and since f (t,u) = a(t)cos(u) is uniformly Lipschitz for all u ∈ D(A) and continuous on
t, the above conformable initial value problem has a unique continuously α−differentiable solution.
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