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Abstract: This paper addresses the mathematical inspection of differential and integral equations for hybrid forms of special

polynomials using generating functions. The study aims to find out the differential equations of 3-variable Laguerre-Hermite

polynomials. The inclusion of the derivation of the Volterra integral equation of 3-variable Laguerre-Hermite polynomials brings a

novelty to the existing literature. Using Mathematica, the surface plots and curves of the aforementioned polynomials are explored and

their zeros are investigated.
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1 Introduction and preliminaries

Generating functions are the main tool for defining and
deriving the properties of special polynomials. They have
various advantages; for example, they transform the
problem on sequences to functions. The generating
function for the 3-variable Laguerre-Hermite polynomials
(3VLHP) LHi(a,b,c) are given by [1]:

H(a,b,c,w) =C0(aw)exp(bw+cw2) =
∞

∑
i=0

LHi(a,b,c)
wi

i!
,

(1)
where C0(aw) is the Bessel-Tricomi function of order zero:

C0(αa) = exp(−αD̂−1
a ){1}, D̂−i

a {1} :=
ai

i!
.

(2)

The Bessel-Tricomi function Ci(a) of order a has the
following series representation:

Ci(a) =
∞

∑
j=0

(−1) ja j

j!(i+ j)!
, i ∈N0. (3)

Using relation (3), equation (1) has the following form:

H(a,b,c,w)= exp((b−D−1
a )w+cw2)=

∞

∑
i=0

LHi(a,b,c)
wi

i!
.

(4)
The 3VLHP LHi(a,b,c) possesses the following series

expansion [1]:

LHi(a,b,c) = i!

[ i
2 ]

∑
k=0

ckLi−2k(a,b)

k! (i− 2k)!
, (5)

where Li(a,b) are 2-variable Laguerre polynomials,
defined as [2]:

Li(a,b) = i!
i

∑
j=0

(−1) ja jbi− j

( j!)2(i− j)!
(6)

and satisfy the following property:

Li(a,0) =
(−1)iai

i!
. (7)

The 3VLHP LHi(a,b,c) satisfies the following
differential equation:

(

2c
∂ 2

∂b2
+(b− a)

∂

∂b
− i

)

LHi(a,b,c) = 0 (8)
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and possesses the differential recurrence relation:

∂

∂b
LHi(a,b,c) = i LHi−1(a,b,c). (9)

Remark 1.1. For c = − 1
2
, the 3VLHP LHi(a,b,c)

becomes the 2-variable Laguerre-Hermite polynomials
(2VLHP) LH∗

i (a,b), defined as [3]:

G(a,b,c) =C0(aw)exp
(

bw−
1

2
w2

)

=
∞

∑
i=0

LH∗
i (a,b)

wi

i!
,

(10)
The topic on differential and integral equations is a

captivating area of research in various fields of science
and engineering. The differential equations and other
characterizations associated with Appell and q-Appell
polynomials are considered in [4,5,6,7]. Using
generating functions, linear and non-linear differential
equations of special polynomials and numbers are
derived, see [8,9,10,11,12]. Many authors have
investigated the properties of 3VLHP LHi(a,b,c) in
numerous aspects, see for example [13,14]. Motivated by
the works on differential and integral equations for the
hybrid polynomials, the differential and integral equations
for the 3VLHP are derived in this paper. The properties of
the 3VLHP are explored using graphical representations.

2 Main results

In this section, using generating function (4), we derive the
differential equations for 3VLHP LHi(a,b,c).

Theorem 2.1. For each M ∈ N, the following differential
equation:

H(M)(a,b,c,w) =
M

∑
m=0

αm(M,a,b,c)wmH(a,b,c,w),

(11)
has a solution H =H(a,b,c,w) = exp((b−D−1

a )w+cw2),

where H(M)(a,b,c,w) = dMH(a,b,c,w)
dwM and

α0(M+ 1,a,b,c)

=
M

∑
m=0

(b−D−1
a )mα1(M−m,a,b,c)+ (b−D−1

a )M+1
,

(12)

αM−1(M+ 1,a,b,c)

=
M−1

∑
m=0

(M−m)(2c)mαM−m(M−m,a,b,c)

+ (b−D−1
a )

M

∑
m=1

(2c)m−1αM−m(M−m+ 1,a,b,c),

(13)

αM(M+1,a,b,c) = (b−D−1
a )

M

∑
m=0

(2c)mαM−m(M−m,a,b,c),

(14)

αM+1(M+ 1,a,b,c) = (2c)M+1 (15)

and

αk(M+ 1,a,b,c)

= (k+ 1)
M−k

∑
m=0

(b−D−1
a )mαk+1(M−m,a,b,c)

+ 2c
M−k+1

∑
m=0

(b−D−1
a )mαk−1(M−m,a,b,c),

1 ≤ k ≤ M− 2.

(16)

Proof. Differentiation of

H = H(a,b,c,w) = exp((b−D−1
a )w+ cw2), (17)

with respect to w gives

H(1) =
∂

∂w
H(a,b,c,w) = ((b−D−1

a )+ 2cw)H. (18)

Furthermore, differentiating the above-mentioned
equation with respect to w, it gives

H(2) =
(

(2c+(b−D−1
a )2)+ 4c(b−D−1

a )w+ 4c2w2
)

H.

(19)
Processing in the same manner up to M times,

assertion (11) is obtained.

To find the coefficients αk(M + 1), differentiating
equation (11) with respect to w, we get

H(M+1) =
M−1

∑
m=0

(m+ 1)wmαm+1(M,a,b,c)H

+(b−D−1
a )

M

∑
m=0

αm(M,a,b,c)wmH

+ 2c
M+1

∑
m=1

αM−m(M,a,b,c)wmH,

(20)

which, on replacing M by M+ 1, becomes

H(M+1) =
M+1

∑
m=0

αm(M+ 1,a,b,c)wmH. (21)

Equating the coefficients on both sides of equations
(20) and (21), it follows that

α0(M+1,a,b,c)=α1(M,a,b,c)+(b−D−1
a )α0(M,a,b,c),

(22)

α1(M+1,a,b,c) = 2α2(M,a,b,c)+(b−D−1
a )α1(M,a,b,c)

+2cα0(M,a,b,c),

(23)

αM−1(M+ 1,a,b,c) = MαM(M,a,b,c)

+ (b−D−1
a )αM−1(M,a,b,c)+ 2cαM−2(M,a,b,c),

(24)
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αM(M+ 1,a,b,c) = (b−D−1
a )αM(M,a,b,c)

+ 2cαM−1(M,a,b,c),
(25)

αM+1(M+ 1,a,b,c) = 2cαM(M,a,b,c) (26)

and

αm(M+ 1,a,b,c)

= (m+ 1)αm+1(M,a,b,c)+ (b−D−1
a )αm(M,a,b,c)

+ 2cαm−1(M,a,b,c), 2 ≤ m ≤ M− 2.

(27)

In view of equations (11), (17) and (18), we find

α0(0,a,b,c) = 1, α0(1,a,b,c) = b−D−1
a and

α1(1,a,b,c) = 2c.
(28)

Moreover, in view of equations (11) and (19), we find

α0(2,a,b,c) = 2c+(b−D−1
a )2

,

α1(2,a,b,c) = 4c(b−D−1
a ) and

α2(2,a,b,c) = 4c2
.

(29)

Equation (22) gives

α0(M + 1,a,b,c)

= α1(M,a,b,c)+ (b−D−1
a )α1(M− 1,a,b,c)

+ (b−D−1
a )2α0(M − 1,a,b,c)

= α1(M,a,b,c)+ (b−D−1
a )α1(M− 1,a,b,c)

+ (b−D−1
a )2α1(M − 2,a,b,c)

+ (b−D−1
a )3α0(M − 2,a,b,c)

= · · ·

=
M

∑
m=0

(b−D−1
a )mα1(M−m,a,b,c)

+ (b−D−1
a )Mα0(1),

which, on using relation (28), yields assertion (12).

From equation (24), we get

αM−1(M + 1,a,b,c)

= MαM(M,a,b,c)+ (b−D−1
a )αM−1(M,a,b,c)

+ 2c
(

(M− 1)αM−1(M − 1,a,b,c)+ (b−D−1
a )

αM−2(M − 1,a,b,c)+ 2cαM−3(M − 1,a,b,c))

= MαM(M,a,b,c)+ 2c(M− 1)αM−1(M− 1,a,b,c)

+ (b−D−1
a )(αM−1(M,a,b,c)+ 2cαM−2(M− 1,a,b,c))

+ (2c)2αM−3(M − 1,a,b,c)

= · · ·

=
M−2

∑
m=0

(M−m)(2c)mαM−m(M−m,a,b,c)

+ (b−D−1
a )

M−1

∑
m=1

αM−m(M−m+ 1,a,b,c)

(2c)m−1 +(2c)M−1α0(2),

which, on using equations (28) and (29) and simplifying,
becomes

αM−1(M+ 1,a,b,c)

=
M−2

∑
m=0

(M−m)(2c)mαM−m(M−m,a,b,c)+ (2c)M

+(b−D−1
a )

M

∑
m=1

(2c)m−1αM−m(M−m+ 1,a,b,c),

(30)

which, on rewriting (2c)M = (2c)M−1α1(1,a,b,c), yields
assertion (13).

From equation (25), we find

αM(M+ 1,a,b,c)

= (b−D−1
a ) αM(M,a,b,c)

+ 2c
(

(b−D−1
a ) αM−1(M− 1,a,b,c)

+ 2c αM−2(M− 1,a,b,c)
)

= (b−D−1
a )

(

αM(M,a,b,c)+ 2c αM−1(M− 1,a,b,c)

+ (2c)2αM−2(M− 2,a,b,c)+ (2c)3αM−3(M− 2,a,b,c)
)

= · · ·

= (b−D−1
a )

M−1

∑
m=0

(2c)mαM−m(M−m,a,b,c)

+ (2c)Mα0(1,a,b,c),

which, on using relation (28), gives assertion (14).

From equation (26), we get

αM+1(M+ 1,a,b,c) = 2c αM(M,a,b,c)

= (2c)2αM−1(M− 1,a,b,c)

= · · ·

= (2c)M+1
,
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which proves assertion (15).

From equation (23), we find

α1(M+ 1,a,b,c)

= 2
(

α2(M,a,b,c)+ (b−D−1
a )α2(M − 1,a,b,c)

)

+ 2c
(

α0(M,a,b,c)+ (b−D−1
a ) α0(M− 1,a,b,c)

)

+(b−D−1
a )2α1(M− 1,a,b,c)

= 2
(

α2(M,a,b,c)+ (b−D−1
a )α2(M − 1,a,b,c)

+ (b−D−1
a )2α2(M− 2,a,b,c)

)

+ 2c
(

α0(M,a,b,c)

+ (b−D−1
a ) α0(M− 1,a,b,c)+ (b−D−1

a )2

×α0(M− 2,a,b,c)
)

+(b−D−1
a )3α1(M− 2,a,b,c)

= · · ·

= 2
M−1

∑
m=0

(b−D−1
a )mα2(M−m,a,b,c)+ 2c

M−1

∑
m=0

(b−D−1
a )m

×α0(M−m,a,b,c)+ (b−D−1
a )Mα1(1,a,b,c),

which, on using relation (28), gives

α1(M + 1,a,b,c) = 2
M−1

∑
m=0

(b−D−1
a )mα2(M−m,a,b,c)

+ 2c
M

∑
m=0

(b−D−1
a )mα0(M−m,a,b,c).

(31)

Taking m = 2 in equation (27), we find

α2(M+1,a,b,c)

= 3α3(M,a,b,c)+(b−D−1
a ) α2(M,a,b,c)+2c α1(M,a,b,c)

= 3
(

α3(M,a,b,c)+(b−D−1
a ) α3(M−1,a,b,c)

)

+2c
(

α1(M,a,b,c)+(b−D−1
a ) α1(M−1,a,b,c)

)

+(b−D−1
a )2α2(M−1,a,b,c)

)

= · · ·

= 3
M−2

∑
m=0

(b−D−1
a )mα3(M−m,a,b,c)

+2c
M−2

∑
m=0

(b−D−1
a )mα1(M−m,a,b,c)

+(b−D−1
a )M−1α2(2,a,b,c),

which, in view of equations (28) and (29), becomes

α2(M+ 1,a,b,c) = 3
M−2

∑
m=0

(b−D−1
a )mα3(M −m,a,b,c)

+ 2c
M−1

∑
m=0

(b−D−1
a )mα1(M −m,a,b,c).

(32)

Consequently, for m = 3 in equation (27), we find

α3(M+ 1,a,b,c) = 4
M−3

∑
m=0

(b−D−1
a )mα4(M−m,a,b,c)

+ 2c
M−2

∑
m=0

(b−D−1
a )mα2(M−m,a,b,c).

(33)

Continuing the same process, we get for 1≤ k ≤ M−2

αk(M + 1,a,b,c)

= (k+ 1)
M−k

∑
m=0

(b−D−1
a )mαk+1(M−m,a,b,c)

+ 2c
M−k+1

∑
m=0

(b−D−1
a )mαk−1(M−m,a,b,c),

which gives assertion (16).

In view of Remark 1.1, the following consequence is
deduced:

Corollary 2.1. For each M ∈ N, the following differential
equation

G(M)(a,b,w) =
M

∑
m=0

βm(M,a,b)wmG(a,b,w), (34)

has a solution G = G(a,b,w) = exp((b−D−1
a )w− 1

2
w2),

where G(M)(a,b,w) = dMG(a,b,w)
dwM and

β0(M+ 1,a,b)

=
M

∑
m=0

(b−D−1
a )mβ1(M−m,a,b)+ (b−D−1

a )M+1
,

(35)

βM−1(M+ 1,a,b) =
M−1

∑
m=0

(M −m)(−1)mβM−m(M −m,a,b)

+ (b−D−1
a )

M

∑
m=1

(−1)m−1βM−m(M−m+ 1,a,b),

(36)

βM(M+1,a,b) = (b−D−1
a )

M

∑
m=0

(−1)mβM−m(M−m,a,b),

(37)

βM+1(M+ 1,a,b) = (−1)M+1 (38)

and

βk(M+ 1,a,b) = (k+ 1)
M−k

∑
m=0

(b−D−1
a )mβk+1(M −m,a,b)

−
M−k+1

∑
m=0

(b−D−1
a )mβk−1(M−m,a,b), 1 ≤ k ≤ M− 2.

(39)
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Next, we find out the integral equation for 3VLHP

LHn(x,y,z). Integral equations come out in various
problems of engineering and science. The integral
equation for the hybrid polynomials was investigated by
several researchers, see [15,16,17]. Numerous science
and engineering problems are expressible as differential
and integral equations, which have special functions as
their solutions.

Rewrite differential equation (8) as:

2c
∂ 2

∂b2 LHi(a,b,c)+ (b− a)
∂

∂b
LHi(a,b,c)

− i LHi(a,b,c) = 0.

(40)

In view of equations (5), (7) and (9), it follows that

LHi(a,0,c) = i!

[ i
2 ]

∑
k=0

ck(−a)i−2k

k! ((i− 2k)!)2
:= Pi(a,c), (41)

∂

∂b
LHi(a,0,c) = i!

[ i−1
2 ]

∑
k=0

ck(−a)i−2k−1

k! ((i− 2k− 1)!)2
:= Ri(a,c).

(42)
Using relation (9), it follows that

∂ 2

∂b2 LHi(a,b,c) = i(i− 1) LHi−2(a,b,c). (43)

Integrating equation (43) and using initial condition
(42), we have

∂

∂b
LHi(a,b,c) =

∫ b

0
i(i− 1) LHi−2(a,ξ ,c)dξ +Ri(a,c),

(44)
which, on further integrating and in view of initial
condition (41), gives

LHi(a,b,c) =
∫ b

0
i(i− 1) (b− ξ ) LHi−2(a,ξ ,c)dξ

+ bRi(a,c)+Pi(a,c).

(45)

Using equations (43) – (45) in differential equation
(40), we get

2ci(i− 1) LHi−2(a,b,c)+ i(i− 1)(b− a)

∫ b

0
LHi−2(a,ξ ,c)dξ

+Ri(a,c)− i2(i− 1)
∫ b

0
(b− ξ ) LHi−2(a,ξ ,c)dξ

+ bRi(a,c)+Pi(a,c) = 0,

which, on replacing i by i+ 2, gives the following integral
equation for the 3VLHP LHi(a,b,c):

(i+ 2)(i+ 1)

(

2c LHi(a,b,c)+
∫ b

0

(

(b− a)

− (i+ 2)(b− ξ )
)

LHi(a,ξ ,c)dξ

)

+(b+ 1)Ri+2(a,c)+Pi+2(a,c) = 0.

Remark 2.1.

Taking c =− 1
2

and proceeding similarly as above, the
integral equation associated with 2-variable
Laguerre-Hermite polynomials LH∗

i (a,b) can be obtained.

In the forthcoming section, we use Mathematica to
draw the surface plots and curves of the 3VLHP

LHi(a,b,c). In addition, zeros of the polynomials are
explored to be located in a remarkably symmetrical way.

3 Graphical approach

This section aims to present the benefit of using graphical
and numerical aspects to support theoretical prediction
and to discover new interesting pattern of the zeros of the
polynomials. The softwares Mathematica is used to show
the behaviour of the polynomials by plotting the graphs
for special values of indices. The investigation in this
manner will provide a new approach to examine several
interesting properties of hybrid special polynomials, see
[18,6].

Using relations (5) and (6), we get the following
explicit series representation of 3VLHP LHi(a,b,c):

LHi(a,b,c) = i!

[ i
2 ]

∑
k=0

i−2k

∑
j=0

(−1) ja jbi−2k− jck

k! ( j!)2 (i− 2k− j)!
. (46)

For i = 30 and c = 2, we display the surface and
contour plot of 3VLHP LHi(a,b,c), see Figure 1 and 2.
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Figure 1: Surface plot of LH30(a,b,2)
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Figure 2: Contour plot of LH30(a,b,2)

For i = 30 and c =−2, the surface and contour plot of
3VLHP LHi(a,b,c) are drawn, see Figure 3 and 4.
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5

-1´ 10
27

0

1´ 10
27

Figure 3: Surface plot of LH30(a,b,−2)

-5 0 5

-5

0

5

Figure 4: Contour plot of LH30(a,b,−2)

These graphs show the distinct behaviour of the
3VLHP LHi(a,b,c). Both contour and surface plots help
visualize the response surface. A surface plot displays a
3-dimensional view of the surface defined by a function
of two variables, while a contour plot provides a
2-dimensional view of the surface.

Next, for i = 30 and b = c = 2, the graph of LHi(a) is
drawn, see Figure 5. For i = 30 and b = 2;c = −2, the

graph of LHi(a) is drawn, see Figure 6.
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Figure 5: Curve of LH30(a,2,2)
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Figure 6: Curve of LH30(a,2,−2)

Using Mathematica, the real and complex roots of the
special polynomials related to 3VLHP LHi(a,b,c) are
explored. The distribution of the zeros of LHi(a) are
observed in the complex plane. For i = 30 and b = c = 2,
zeros of LHi(a) are drawn, see Figure 7 and for i = 30 and
b = c =−2, zeros of LHi(a) are plotted, see Figure 8.
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Figure 7: Zeros of LH30(a,2,2)
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Figure 8: Zeros of LH30(a,−2,−2)

Similarly, for i = 20 and b = c = 2, zeros of LHi(a) are
drawn, see Figure 9 and for i = 20 and b = c = −2, zeros
of LHi(a) are plotted, see Figure 10.
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Figure 9: Zeros of LH20(a,2,2)
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Figure 10: Zeros of LH20(a,−2,−2)

The investigation regarding surface plots, contour
plots, shapes and scattering of zeros of the special
polynomials will be tremendously beneficial for the
researchers to understand the behaviour of the
polynomials and location of their zeros in the complex
plane.
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