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Abstract: Recently the weighted thermostatted kinetic theory framework with discrete activity has been proposed for modeling the

weighted interactions in complex systems. This paper addresses the derivation of the weight function as a solution of an inverse

problem based on the macroscopic quantities and specifically on the high-order moments. The weight function, obtained by employing

the maximum entropy principle, generalizes the previous published results obtained by employing the zero-order moment.
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1 Introduction

The careful definition of the interactions among the
components of a complex system [1] plays a key role in
the modeling and simulation of the system. In particular if
the complex system consists of a network [2], a weight
function needs to be introduced in order to privilegiate
and differentiate the most important components that are
responsible for the macroscopic (collective) behaviours.
Different modeling structures, which have at the base the
interaction definitions, e.g. agent-based models [3–8] and
the differential equations-based models, have been
proposed [9–14].
Recently the thermostatted kinetic theory has been
proposed as a general paradigm for the analysis of a
complex system [15]. Based on some well-known
mathematical structures proposed for the inner
matter [16–18], the new thermostatted structures have
allowed to enlarge the modeling approach to complex
living systems [11, 19–21] even in nonequilibrium
conditions (action of an external force field). Accordingly,
the complex system is assumed to be composed by active
particles which are grouped into different functional
subsystems. The interactions among the active particles
are modelled by introducing interaction rates and

employing the stochastic game theory [22, 23].
In order to better differentiate the interactions, a weight
function has been associated to the interaction rate. The
derivation of the weight function depends on some
constrains (usually the moments of the distribution vector
function). In [24] the weight function has been obtained
as solution of an inverse problem based on the zero-order
moment (the density of the system) and by coupling the
methods of the inverse theory [25–28] and the
information theory [29–31].
This paper aims to generalize the construction of the
weight function proposed in [24] by allowing the
definition of inverse problems based on higher-order
moments. It is worth stressing that the thermostatted
framework includes an operator, called the thermostat
operator [32, 33], which allows the conservation of a
moment of the system. Accordingly the selected moment,
assumed to be the constraint of the system, can be
considered as the observed data of the inverse problem.
The weight function, obtained by employing the
maximum Shannon entropy principle [34–37], allows to
generalize the previous published results (see [24])
obtained by assuming the conservation of the zero-order
moment.
The present paper is organized into four more sections. In
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detail, after this introduction, the Section 2 deals with the
weighted discrete thermostatted framework; the Sections
3 and 4 are devoted to the related inverse problems based
on the global and local high-order moments of the
system. Section 5 concludes the paper with a critical
analysis and applications.

2 The weighted discrete thermostatted

kinetic framework

This section is devoted to the basics of the weighted
thermostatted kinetic theory that has been recently
employed for the analysis of n interacting
particle-systems (functional subsystems) composing a
complex system. An external action Fi : [0,+∞[→ R

+

acts on the i-th functional subsystem and then the whole
system is subjected to the external force field

F(t) = (F1(t),F2(t), . . . ,Fn(t)).
An ith functional subsystem is composed by particles,
called active particles, which are able to perform the same
strategy ui ∈ R, for i ∈ {1,2, . . . ,n}. A distribution

function fi(t) := f (t,ui) : [0,+∞[→ R
+ is introduced in

order to describe the time evolution of the ith functional
subsystem, for i ∈ {1,2, . . . ,n}; in particular
f(t) = ( f1(t), f2(t), . . . , fn(t)) denotes the distribution

function vector. Let δ (u − ui) be the delta function
centered in ui, accordingly

f (t,u) =
n

∑
i=1

fi(t)δ (u− ui)

represents the distribution function of the overall system.
The interaction domain Dt

fh
of the functional subsystem

fh represents the set of the functional subsystems which
are able, at the time t, to interact with fh. Accordingly, an
interaction function Ihk between the functional subsystem
fh and the functional subsystem fk ∈ Dt

fh
is introduced and

assumed factorize as follows:

Ihk(t) = whk(t)ηhk(t),

where ηhk : [0,+∞[→R
+ denotes the interaction rate and

whk : [0,+∞[→ R
+ models the weighted interactions

(weighted function) and is such that

n

∑
k=1

whk(t) = 1, ∀h ∈ {1,2, . . . ,n}. (1)

Considering the aforementioned parts, the global weighted

pth-order moment of the system at the time t is defined as
follows:

E
w
p [f](t) =

n

∑
h=1

n

∑
k=1

u
p
k whk(t) fk(t), (2)

where E
w
0 [f], E

w
1 [f] and E

w
2 [f] denotes the global weighted

density, the global weighted linear momentum and the
global weighted activation energy, respectively.

In particular the global weighted pth-order moment (2) is
the sum of the local weighted pth-order moment of each
functional subsystem. Indeed:

E
w
p [f](t) =

n

∑
h=1

n

∑
k=1

u
p
k whk(t) fk(t) =

n

∑
h=1

E
w
p,h[f](t), (3)

where

E
w
p,h[f](t) :=

n

∑
k=1

u
p
k whk fk(t), h ∈ {1,2, . . . ,n}. (4)

The weighted discrete thermostatted kinetic theory

framework reads:

d fi

dt
(t)+

n

∑
h=1

n

∑
k=1

(

u
p
k whk (Jk[f]+Fk)+ u

p
k w′

hk fk

Ew
p [f]

)

fi

=
n

∑
h=1

n

∑
k=1

ηhk whk Bi
hk fh fk − fi

n

∑
k=1

ηik wik fk +Fi,

(5)

where Bi
hk denotes the transition probability density that

the hth functional subsystem jumps in the ith functional
subsystem after the interactions with the kth functional
subsystem.

The next sections handle the definition and solution of
two inverse problems related to the mathematical
framework (5). Specifically the first inverse problem is
based on the knowledge of the global weighted pth-order
moment (2); the second inverse problem is based on the
knowledge of the local weighted pth-order moment (4).
It is worth stressing that the above mentioned inverse
problems belong to the class of the under-determined

inverse problems. Accordingly the definition of further
constraints needs to be taken into account in order to
ensure the uniqueness of the solution.
Let µ = (µ1,µ2, . . . ,µn) ∈ R

n. The Shannon entropy

associated to µ is defined as follows [30, 31]:

H[µ ] =−
n

∑
k=1

µk ln µk. (6)

In particular the existence of the maximum Shannon
entropy principle solution is investigated in the next
sections.
In what follows it is assumed that the vector solution f of
the weighted thermostatted framework (5) is composed
by continuous functions in the time interval [0,+∞[.

3 The first inverse problem

Let f0 be a non-negative initial condition. The following
inverse problem is considered:

n

∑
h=1

n

∑
k=1

u
p

k
whk(t) fk(t) = E

w
p , (7)
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where Ew
p := E

w
p [f0](t) is assumed to be known and whk(t)

is the unknown function.
The weight function whk is usually assumed to be
proportional to the pth-order moment of the particle uh.
Accordingly the function whk is assumed to factorize as
follows:

whk(t) = µk u
p
h fh(t), h,k ∈ {1,2, . . . ,n}, (8)

where µk is a real constant to be determined according to
the constrains. Thus the inverse problem (7) is rewritten,
as follows:

E
w
p =

n

∑
h=1

n

∑
k=1

u
p
h fh(t)u

p
k fk(t)µk

=
n

∑
h=1

n

∑
k=1

Khk(t)µk,

(9)

where

Khk(t) := u
p
h fh(t)u

p
k fk(t), ∀h,k ∈ {1,2, . . . ,n}. (10)

Let K[f](t) = (Khk(t)) ∈ R
n×n. The matrix K is a

symmetric and positive semidefinite matrix. Indeed if
v ∈ R

n \ {0}, one has:

vK tv =

(

n

∑
h=1

vh u
p
h fh(t)

)(

n

∑
k=1

vk u
p
k fk(t)

)

=

(

n

∑
h=1

vh u
p
h fh(t)

)2

≥ 0.

(11)

Moreover, it is easy to prove that if Ew
p [f0] = n then

n

∑
k=1

µk = 1. (12)

Bearing all above in mind, the following set of admissible
solutions is defined:

Mn =

{

µ ∈ R
n : µk ≥ 0,

n

∑
k=1

µk = 1

}

.

3.1 The maximum entropy solution

The maximum entropy solution of the inverse problem (9)
is the vector µH which is solution of the following
optimization problem:

µH = arg max
µ∈H (K,Ew

p )
H[µ ], (13)

where

H (K,E
w
p ) :=

{

µ ∈ Mn :
n

∑
h=1

n

∑
k=1

Khk(t)µk = E
w
p

}

. (14)

Considering all the above, the lagrangian function is read,
as follows:

L [f](µ ,λ0,λ1) =−
n

∑
j=1

µ j ln µ j − (λ0 − 1)

(

n

∑
j=1

µ j − 1

)

+λ1

(

E
w
p −

n

∑
i=1

n

∑
j=1

Ki jµ j

)

,

(15)

where λ0 − 1 and λ1 are the lagrangian multipliers, and
the derivative of the lagrangian function (15) with respect
to µk, for k ∈ {1,2, . . . ,n}, is read, as follows:

∂L

∂ µk

=−
∂

∂ µk

(µk ln µk)− (λ0 − 1)

+λ1

(

−
∂

∂ µk

(

n

∑
i=1

n

∑
j=1

Ki jµ j

))

=− ln µk − 1− (λ0− 1)−λ1

n

∑
i=1

Kik

=− ln µk −λ0 −λ1

n

∑
i=1

Kik.

Equating to zero and considering the constraints, one has:

exp(λ0) =
n

∑
k=1

exp

(

−λ1

n

∑
i=1

Kik

)

, (16)

and

µk =

exp

(

−λ1

n

∑
i=1

Kik

)

exp(λ0)
=

exp

(

−λ1

n

∑
i=1

Kik

)

n

∑
k=1

exp

(

−λ1

n

∑
i=1

Kik

) . (17)

Accordingly, the maximum entropy principle solution of
the inverse problem (9) is read, as follows:

whk(t) =

u
p
h exp

(

−λ1 u
p
k fk(t)

n

∑
i=1

u
p
i fi(t)

)

n

∑
k=1

exp

(

−λ1u
p
k fk(t)

n

∑
i=1

u
p
i fi(t)

) fh(t), (18)

where the Lagrange multiplier λ1 is solution of the
following nonlinear equation:

−
∂

∂λ1

ln
n

∑
k=1

exp

(

−λ1 u
p

k
fk(t)

n

∑
i=1

u
p
i fi(t)

)

= E
w
p .
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4 The second inverse problem

Let f0 be a non-negative initial condition. The following
inverse problem is now considered:

n

∑
k=1

u
p
k whk(t) fk(t) = E

w
p,h, (19)

where Ew
p,h := E

w
p,h[f0](t), for h ∈ {1,2, . . . ,n}, is assumed

to be known and whk(t) is the unknown function. As in
the last section, the weight function whk, for
h,k ∈ {1,2, . . . ,n}, is assumed to factorize as follows:

whk(t) = u
p
h µk fh(t), µk ∈ R, (20)

where now µk is the unknown constant to be determined.
Thus the inverse problem (19) is rewritten, as follows:

n

∑
k=1

(

u
p
h fh(t)u

p
k fk(t)

)

µk = E
w
p,h, h ∈ {1,2, . . . ,n}. (21)

Hence the vectorial form of the inverse problem (21) is
written, as follows:

K[f](t)µ = Ē
w
p , (22)

where Ēw
p =

(

E
w
p,1,E

w
p,2, . . . ,E

w
p,n

)

, µ = (µ1,µ2, . . . ,µn) ∈

R
n, and K[f](t) = (Khk(t)) ∈ R

n×n is the matrix (10).
As in the previous section, if it is assumed that Ew

p,h(t) = 1,

it is easy to prove that

n

∑
k=1

µk = 1.

Remark.If the inverse matrix of K[f](t) exists, then

whk(t) =

(

n

∑
l=1

K−1
kl (t)Ew

p,l

)

u
p
h fh(t), (23)

where K−1[f](t) = (K−1
kl (t)) denotes the inverse matrix of

K[f](t). It easy to see that the existence of the inverse
matrix is ensured if F = { f1(t), f2(t), . . . , fn(t)} is a set
of linearly independent functions.

4.1 The maximum entropy solution

As in the previous section, the following optimization

problem is established:

µH = arg max
µ∈H (K,Ēw

p )
H[µ ], (24)

where

H (K, Ē
w
p) :=

{

µ ∈ Mn : K[f](t)µ = Ē
w
p

}

. (25)

The related Lagrangian function L thus reads:

L [f](µ ,λ0,λ1,λ2, . . . ,λn) =

−
n

∑
j=1

µ j ln µ j − (λ0 − 1)

(

n

∑
j=1

µ j − 1

)

+
n

∑
i=1

λi

(

E
w
p,i −

n

∑
j=1

Ki jµ j

)

,

where λ0 − 1 and λi, for i ∈ {1,2, . . . ,n}, denote the
related lagrangian multipliers.
The related derivative of the lagrangian function with
respect to µk writes:

∂L

∂ µk

=−
∂

∂ µk

(

n

∑
j=1

µ j ln µ j

)

− (λ0 − 1)
∂

∂ µk

(

n

∑
j=1

µ j − 1

)

+
n

∑
i=1

λi
∂

∂ µk

(

E
w
p,i −

n

∑
j=1

Ki jµ j

)

=− ln µk −λ0 −
n

∑
i=1

λiKik.

Considering the previous section, one knows that the
maximum entropy principle solution whk(t), for
h,k ∈ {1,2, . . . ,n}, of the inverse problem (22) is read, as
follows:

whk(t) =

u
p
h exp

(

−u
p
k fk(t)

n

∑
i=1

λi u
p
i fi(t)

)

n

∑
k=1

exp

(

−u
p
k fk(t)

n

∑
i=1

λi u
p
i fi(t)

) fh(t), (26)

where the vector λ = (λ1,λ2, . . . ,λn) ∈ R
n
+ is solution of

the following nonlinear vectorial equation:

−∇λ ln
n

∑
k=1

exp

(

−u
p
k fk(t)

n

∑
i=1

λi u
p
i fi(t)

)

= E
w
p .

5 Conclusion and perspectives

The generalization of the results published in [24] has
been the main objective of the present paper. Specifically
the main aim is the definition of a robust mathematical
modeling theory which is able to adapt the interactions of
the active components of a complex system during its
natural or constrained evolution. According to the results
of [24] and of the present paper, the natural constraints
are established by the moments of the distribution vector
function (e.g. density and activation energy). The
important advantage of the approach proposed in the
present paper is the possibility to link the microscopic
behavior (the interactions) to the macroscopic behavior
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thus allowing the definition of a multiscale approach.
However, depending on the complex system under
consideration, knowledge of such a moment can be a
complicated issue and only some previsions of their time
evolution can be conjectured. This evolution is, for
instance, assumed in some living systems, such as in
biological and human behavior systems (crowds,
vehicular traffic) where the first-order moment or the
activation energy can be assumed to follow a stochastic
process. From the theoretical viewpoint, the inverse
problem has been resolved by employing the most famous
entropy principle of Shannon. Although the Shannon
entropy is considered an optimal function, other entropy
functions can be employed in an attempt to better
optimize the role and the rules of the interactions [38–41].
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[21] C. Bianca & L. Brézin, Modeling the antigen recognition

by B-cell and T-cell receptors through thermostatted kinetic

theory methods, International Journal of Biomathematics,

10, 1750072 (2017).

[22] J.K. Goeree & C.A. Holt, Stochastic game theory: For

playing games, not just for doing theory, Proceedings of the

National Academy of sciences, 96, 10564-10567 (1999).

[23] A. Perea & A. Predtetchinski, An epistemic approach to

stochastic games, International Journal of Game Theory, 48,

181-203 (2019).

[24] C. Bianca & M. Menale, On the weighted interactions in the

discrete thermostatted kinetic theory, Nonlinear Studies, 26,

95-108 (2019).

[25] A. Asanov, Regularization, Uniqueness and Existence of

Solutions of Volterra Equations of the First Kind, VSP,

Utrecht, (1998).

[26] A.L. Bughgeim, Volterra Equations and Inverse Problems,

VSP, Utrecht, (1999).

[27] Kirsch, An Introduction to the Mathematical Theory of

Inverse Problems, Springer, New York, Berlin, Heidelberg,

(1996).

[28] A.V. Kryazhimskii & Y.S. Osipov, Inverse Problems

for Ordinary Differential Equations: Dynamical Solutions,

Gordon and Breach, London, (1995).

[29] E.T. Jayne, Information theory and statistical mechanics,

Physical review, 106, 620 (1957).

[30] C.E. Shannon, A mathematical theory of communication,

Bell System Technical Journal, 27, 379-423 (1948).

[31] C.E. Shannon, A mathematical theory of communication,

Bell System Technical Journal, 27, 623-656 (1948).

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


532 C. Bianca, M. Menale: The maximum-entropy-based...

[32] O.G. Jepps & L. Rondoni, Deterministic thermostats,

theories of nonequilibrium systems and parallels with the

ergodic condition, Journal of Physics A: Mathematical and

Theoretical, 43, 133001 (2010).

[33] G.P. Morriss & C.P. Dettmann, Thermostats: analysis

and application, Chaos: An Interdisciplinary Journal of

Nonlinear Science, 8, 321-336 (1998).

[34] M. Batty, Space, scale, and scaling in entropy maximizing,

Geographical Analysis, 42, 395-421 (2010).

[35] R. Kleeman, Information theory and dynamical system

predictability, Entropy, 13, 612-649 (2011).

[36] Y. Liu, C. Liu & D. Wang. Understanding atmospheric

behaviour in terms of entropy: a review of applications of the

second law of thermodynamics to meteorology, Entropy, 13,

211-240 (2011).

[37] A. Mohammad-Djafari, Entropy, information theory,

information geometry and bayesian inference in data, signal

and image processing and inverse problems, Entropy, 17,

3989-4027 (2015).

[38] O. Esmer, Information Theory, Entropy and Urban Spatial

Structure, LAP Lambert Academic Publishing, Saarbrucken,

(2011).

[39] S. Kullback, Information Theory and Statistics, Wiley,

NewYork, (1959).

[40] S. Kullback S & R.A. Leibler, On information and

sufficiency, Ann Math Stat, 22, 79-86 (1952).

[41] H. Theil, Statistical Decomposition Analysis, North

Holland, Amsterdam, (1972).

Carlo Bianca is
full professor at the graduate
school ECAM-EPMI, Cergy
(France). He received the
PhD degree in Mathematics
for Engineering Science
at Polytechnic University of
Turin. His research interests
are in the areas of applied
mathematics and in particular

in mathematical physics including the mathematical
methods and models for complex systems, mathematical
billiards, chaos, anomalous transport in microporous
media and numerical methods for kinetic equations. He
has published research articles in reputed international
journals of mathematical and engineering sciences. He is
referee and editor of mathematical journals.

Marco Menale is a PhD
Student in ”Mathematics,
Physics and Applications for
Engineering” at Università
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