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Abstract: A simple step-stress accelerated life test (ALT) under progressive censoring of Type-II is considered in this paper. 
To minimize lifespan and decrease test cost, progressive type-II censoring and accelerated life testing are given. When the 
lifetime of test units matches the distribution of Burr-XII, cumulative exposure model is assumed. Also, model parameters 
maximum likelihood estimates (MLEs) are obtained. Furthermore, to demonstrate the proposed methods, actual dataset is 
analyzed. Lastly, estimators' estimated confidence intervals (CIs) are extracted. 
Keywords: Accelerated life testing with step-stress, progressive type-II censoring, Bayes estimation, Burr-XII distribution, 
cumulative exposure model, simulation analysis 
 

1. Introduction 

The investigator is also interested in extreme factors or changing stress factors such as temperature, voltage and load on 
experimental units' lifetimes in reliability and life testing studies. Stage stress testing (SST), a special class of accelerated life 
testing (ALT), enables the experimenter to increase the stress levels during the experiment at set times to gain information 
on life distribution parameters faster than under normal operating conditions. Nelson [1] researched the phase stress model 
and data analysis of accelerated life research. Miller et al. [2] proposed optimal simple stage stress plans for accelerated life 
testing. The optimum simple step-stress accelerated life tests with censoring were proposed by Bai et al. [3]. Rend et al. 
developed a Bayes model for accelerated life testing in step-stress [4]. With type-II censored exponential results, Xiong [5] 
studied inference on a simple step-stress model. In simple step-stress models, Watkins [6] studied inferences. For a simple 
step-stress model with type-II censoring, Balakrishnan et al. [7] studied point and interval estimation. Using log-logistic 
distribution with known scale parameters, Al-Masri [8] studied optimum times for the step-stress cumulative exposure model. 
Three related aspects of the maximum probability estimate of parameters were considered in Jalali [9] for the two Burr XII 
distribution parameters. The distribution function of Burr (c,k) [Burr Type XII] is 

𝐹(𝑥) = 1 − (1 + 𝑥))*+, 	 𝑥 > 0,                                                         (1) 
 

where parameter 𝑐 > 0 and 𝑘 > 0 are the shape parameters of the distribution. Its density function is 
𝑓(𝑥) = 𝑐𝑘𝑥)*3(1 + 𝑥))*(+43), 	 𝑥 > 0, 𝑐 > 0	𝑎𝑛𝑑	𝑘 > 0                                                         (2) 
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The distribution is unimodal with the mode at 𝑥 = 8 )*3
)+43

9
:.<

 and median at 𝑥 = 82
>
? − 19

:.<
. Lewis [10] studied Burr 

distribution as a general parametric family in applications for the theory of survivorship and reliability. He found the 𝑟AB 
moment about zero as follows 

𝜇DE = 𝑘𝛽 81 + D
)
, 𝑘 − D

)
9 , 	 𝑘 > D

)
, 	 𝑟 = 0,1,2, . ..			,                                                         (3) 

 
  

and the mean and the variance are, respectively,  
𝜇 = 𝑘𝛽 81 + 3

)
, 𝑘 − 3

)
9 and                                                                              (4) 

𝑉(𝑋) = 𝑘𝛽 81 + I
)
, 𝑘 − I

)
9 − J𝑘𝛽 81 + 3

)
, 𝑘 − 3

)
9K
I
,                                                         (5) 

where 𝛽(. , . ) is the standard beta function. Shape parameters 𝑐 and 𝑘 and the cumulative distribution functions associated 
with some special cases of Burr (c, k) distribution (Burr Type XII) are displayed in table 1. See Lewis [10]. 

Table 1: The Burr Type-XII distribution and its special cases. 
𝒄 𝒌  Distribution   𝑭(𝒙)  
𝑐 𝑘  Burr (c, k)  1 − (1 + 𝑥))*+  

4.874 6.158 Approximate normal  1 − (1 + 𝑥U.VWU)*X.3<V  
𝑐 ∞  Weibull  1 −𝑒𝑥𝑝 (−𝑥))  
1 ∞  Exponential  1 −𝑒𝑥𝑝 (−𝑥)  
∞ 𝑘  Generalized logistic  1 − (1 +𝑒𝑥𝑝 (𝑥))*+  
∞ 1  Logistic  1 − (1 +𝑒𝑥𝑝 (𝑥))*3  
∞ ∞  Gompertz  1 − (1 +𝑒𝑥𝑝 (𝑥))  
1 1  Pareto  1 − (1 + 𝑥)*3  

As a lifetime model, the Burr (c, k) distribution can be used, at least when there is a large incidence of early failures 
dominating the distribution of lifetime (𝑐 > 1). Accelerated life testing and repair time are examples of such situations.  The 
two common distributions of survival or failure time, the Weibull and the exponential are both special or limiting cases of 
Burr (c, k) [Burr Type] 

2. Assumptions to Obtain the Simple Step-Stress Model 

2.1 Notation 

       ALT       Accelerated Life Testing 
       SST        Step Stress Testing 
       𝑆:, 𝑆3      Stress levels 
       PDF        Probability density function  
       CDF       Cumulative distribution function 
       𝐺(𝑡)       Cumulative exposure distribution (CED) function 
       𝑔(𝑡)        Probability exposure density (PED) function 
       𝑛             Identical units under an initial stress level 𝑆: 
       𝑡3:D:a < 𝑡I:D:a <. . . < 𝑡a:D:aThe ordered failure times of the 𝑛 unit under test  
       𝜏3           A fixed time before which the stress level is changed from 𝑆3 to 𝑆I  
       𝑡D:D:a       The time when the 𝑟AB failure occurs; the experiment is terminated 
       𝑁3           Number of units that fail before time 𝜏3 at stress level 𝑆3 
       𝑁I           Number of units that fail before time 𝜏I at stress level 𝑆I 
       𝑐e, 𝑘        The shape parameters of the Burr Type XII distribution 
       L(.)         Likelihood function 
       𝑙𝑜𝑔𝐿(. )  The logarithm of the likelihood function 
       F             Fisher information matrix 
       MSE       Mean square error 
      MLEs      Maximum likelihood estimates 

2.2 Model Description 

Suppose that the data comes from a step-stress model based on progressive Type-II censored with two stress levels, 𝑆: and 
𝑆3. The PDF and the CDF of Burr XII distribution are given by 
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𝑓e(𝑡; 𝑐e) = 𝑐e𝑘𝑡)j*3(1 + 𝑡)j)*(+43), 	 𝑡 > 0	 𝑘, 𝑐e > 0	 𝑖 = 1, 2,                                      (6) 
𝐹e(𝑡; 𝑐e) = 1 − (1 + 𝑡)j)*+, 	 𝑡 > 0	 𝑘, 𝑐e > 0	 𝑖 = 1, 2,                                                  (7) 

We deduce the cumulative exposure model (see, Alhadeed [12]) under Burr type-XII distribution. 
The CDF function of time to failure under a particular step-stress pattern can be expressed mathematically as follows: 
The cumulative population fraction of specimen failing by time 𝑡 in stress level 𝑆: is  

𝐺(𝑡) = 𝐹3(𝑡) = 1 − (1 + 𝑡)>)*+, 	 0 ≤ 𝑡 < 𝜏3.                                                               (8) 
The cumulative population fraction of specimen failing by time 𝑡 in stress level 𝑆3 is  

𝐺(𝑡) = 𝐹I[(𝑡 − 𝜏3) + 𝑢3] = 1 − [1 + ((𝑡 − 𝜏3) + 𝑢3))p]*+, 	 𝜏3 ≤ 𝑡 < 𝜏I,                                 (9) 
where 𝑢3,the equivalent starting time, is the solution of  

𝐹I(𝑢3) = 𝐹3(𝜏3) ,			⟹	𝑢3
)p = 𝜏3

)>	.                                                                        (10)                              
Then we get     

𝑢3 = 𝜏3
r>
rp.                                                                                           (11)                              

Then we can rewrite 𝐺(𝑡) in stress level 𝑆3 as follows: 

𝐺(𝑡) = 1 − s1 + t(𝑡 − 𝜏3) + 𝜏3
r>
rpu

)p

v
*+

, 	 𝜏3 ≤ 𝑡 < 𝜏I.                                            (12)                              

The simple step stress model is a particular case from the cumulative exposure model, so we can say that the cumulative 
exposure distribution (CED) function for Burr type-XII distribution at two stress level is given as: 

𝐺(𝑡) = w
𝐺3(𝑡) = 1 − (1 + 𝑡)>)*+,																												 0 ≤ 𝑡 < 𝜏3,

𝐺I(𝑡) = 1 − x1 + y𝑡 − 𝜏3 + 𝜏3
r>
rpz

)p

{
*+

, 	 𝜏3 ≤ 𝑡 < ∞.
                                            (13) 

The corresponding probability exposure density (PED) function becomes 

𝑔(𝑡) = w
𝑔3(𝑡) = 𝑘𝑐3𝑡)>*3(1 + 𝑡)>)*(+43),																																																								 0 ≤ 𝑡 < 𝜏3,

𝑔I(𝑡) = 𝑘𝑐I x𝑡 − 𝜏3 + 𝜏3
r>
rp{

)p*3

× x1 + y𝑡 − 𝜏3 + 𝜏3
r>
rpz

)p

{
*(+43)

	 𝜏3 ≤ 𝑡 < ∞.
                   (14) 

Suppose that the time data for failure comes from a cumulative exposure model. We consider a simple step-stress model 
based on progressive type-II censorship with only two levels of stress, 𝑆: and 𝑆3.  
We have a simple step-stress model under progressive censoring of type-II for equivalent units at an initial stress level and 
are defined in advance. At the time of the first failure, 𝑅3 of 𝑛 − 1 surviving units are randomly removed from the experiment, 
at the time of the second failure, 𝑅I of 𝑛 − 2 − 𝑅3 surviving units are randomly removed from the experiment, and so on, 
the stress level is changed to 𝑆3 at a pre-fixed time 𝜏3. The life-testing experiment is terminated when the 𝑟AB failure time, 
𝑡D:D:a, occurs at a time in which all remaining 𝑅D = 𝑛 − 𝑟 −	⋯− 𝑅D*3 surviving units are removed. Figure (1) depicts such 
a simple step-stress model under progressive type-II censoring. 
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Fig. 1: Simple step-stress model under progressive type-II censoring 
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Under the assumption of the cumulative exposure model, the corresponding cumulative exposure distribution, CED 𝐺(𝑡), 
and PED 𝑔(𝑡) are given in Eqs. (13) and (14), respectively. We will observe the following progressively type-II censored 
data: 

𝑡 = �𝑡3:D:a < ⋯ ≤ 𝑡�>:D:a < ⋯ < 𝑡D:D:a�.                                            (15) 
With the corresponding progressive censoring scheme 

𝑅 = (𝑅3,⋯ , 𝑅D),                                            (16) 
where ∑ 𝑅�D

��3 = 𝑛 − 𝑟. 

3. Maximum Likelihood Estimation 

In this section, we consider the likelihood function based on the observed progressively type-II censored data given in Eq. 
(15) and then obtain the MLEs of the unknown parameters, 𝑐3, 𝑐I and 𝑘. Let 𝑡3:D:a < ⋯ < 𝑡D:D:a denote the observed 
progressively type-II censored sample. Then, the likelihood function of this censored sample seen by Balakrishnan and 
Aggarwal [13] can be written as 

𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 𝐶� ∏ 𝑔(𝑡e:D:a){1 − 𝐺(𝑡e:D:a)}�jD
e�3 ,				𝑡3:D:a < 𝑡I:D:a < ⋯ < 𝑡D:D:a	,                                            (17) 

where = 𝑁3 + 𝑁I , 𝑡 is the observed failure time data, and 
𝐶� = 𝑛(𝑛 − 1 − 𝑅3)(𝑛 − 2 − 𝑅3 − 𝑅I)⋯(𝑛 − 𝑟 + 1 − ∑ 𝑅eD*3

e�3 ) 	= ∏ 𝑅�∗D
��3 	,                                             (18) 

where ∑ (𝑅e + 1)D*3
e�� = 𝑅�∗. From the CED in Eq. (13) and the corresponding PED in Eq. (14), we obtain the likelihood 

function of 𝑐3, 𝑐I and 𝑘 based on the progressively type-II censored sample in Eq. (17) as follows: 
If 𝑁3 = 𝑟 and 𝑁I = 0 in Eq. (17), the likelihood function of  𝑐3, 𝑐I and 𝑘 in Eq. (17) is 
𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 𝐶��{∏ 𝑔3(𝑡e:D:a)D

e�3 }[1 − 𝐺3(𝑡e:D:a)]�j�  
																								= 𝐶��∏ 𝑘𝑐3𝑡e:D:a

)>*3(1 + 𝑡e:D:a
)> )*(+43)D

e�3 ��(1 + 𝑡e:D:a
)> )*+�j�	.                                                    (19) 

1. If 𝑁3 = 0 and 𝑁I = 𝑟 in Eq. (17), the likelihood function of  𝑐3, 𝑐I and 𝑘 in Eq. (17) is 
𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 𝐶�{∏ 𝑔I(𝑡e:D:a)[1 − 𝐺I(𝑡e:D:a)]�jD

e�3 },  
𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 

            𝐶� ��∏ 𝑘𝑐I x𝑡e:D:a − 𝜏3 + 𝜏3
r>
rp{

)p*3
D
e�3 × x1 + y𝑡e:D:a − 𝜏3 + 𝜏3

r>
rpz

)p

{
*(+43)

� 	x1 + y𝑡e:D:a − 𝜏3 + 𝜏3
r>
rpz

)p

{	
*+�j

�.    (20) 

2. In all other cases, the likelihood function of  𝑐3, 𝑐I and 𝑘 in Eq. (17) is 
𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 𝐶���∏ 𝑔3(𝑡e:D:a)

�>
e�3 �[1 − 𝐺3(𝑡e:D:a)]�j� × ��∏ 𝑔I(𝑡e:D:a)D

e��>43 �[1 − 𝐺I(𝑡e:D:a)]�j�	,  
𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = 𝐶���∏ 𝑘𝑐3𝑡e:D:a

)>*3(1 + 𝑡e:D:a
)> )*(+43)�>

e�3 � × (1 + 𝑡e:D:a
)> )*+�j  

																																	× �∏ 𝑘𝑐I x𝑡e:D:a − 𝜏3 + 𝜏3
r>
rp{

)p*3

× x1 + y𝑡e:D:a − 𝜏3 + 𝜏3
r>
rpz

)p

{
*(+43)

D
e��>43 �   

               																× x1 + y𝑡e:D:a − 𝜏3 + 𝜏3
r>
rpz

)p

{
*+�j

�	.                                                                                                         (21) 

From the likelihood function in Eq. (19) - Eq. (21), we observe the following: 
1. If 𝑁3 = 𝑟 and 𝑁I = 0 in Eq. (15), the likelihood function in Eq. (19) reveals that the MLEs of 𝑐I does not exits. 
2. If 𝑁3 = 0 and 𝑁I = 𝑟 in Eq. (15), Eq. (20) 's likelihood function reveals that the MLEs of 𝑐3, 𝑐I and 𝑘 do exist. 
3. If at least one failure before 𝜏3and at least one failure after 𝜏3occur in Eq. (15), the likelihood function in Eq. (21) reveals 

that the MLEs of 𝑐3, 𝑐I, and 𝑘 do exist. 
In the situation, where the log-likelihood function of 𝑐3, 𝑐I and 𝑘 is obtained from Eq. (21) as follows: 
ℒ = log 𝐿(𝑐3, 𝑐I, 𝑘|𝒕) = log[𝐶�] + 𝑟 log[𝑘] + 𝑁3 log[𝑐3] + 𝑁I log[𝑐I] + (𝑐3 − 1)∑ log[𝑡e:D:a]

�>
e�3   

																																											−� (𝑘(1 + 𝑅e) + 1) log�1 + 𝑡e:D:a
)> ��>

e�3 + (𝑐I − 1)� log x𝑡e:D:a − 𝜏3 + 𝜏3
r>
rp{

D

e��>43

  

                                         −� (𝑘(1 + 𝑅e) + 1) log x1 + y𝑡e:D:a − 𝜏3 + 𝜏3
r>
rpz

)p

{
D

e��>43

	.                                                  (22)          

Then, we obtain the estimators of  𝑐3, 𝑐I and 𝑘 by differentiating Eq. (22) with respect to 𝑐3, 𝑐I and 𝑘, respectively, and 
equating to zero, in this case, we have 
�ℒ
�+
= D

+
−� Log[1 + 𝑡e:D:a

)> ](1 + 𝑅e)
�>
e�3 −� log�1 + 𝐵e

)p� (1 + 𝑅e)
D
e�34�>

�
 � ¡

= 0	,             (23) 
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�ℒ
�)>

= �>
)>
+ ∑ log[𝑡e:D:a]

�>
e�3 −�

¢£¤[Aj:¥:¦]§jAj:¥:¦
r>

34Aj:¥:¦
r>

�>

e�3

+� ()p*3) ¢£¤[¨>]
)p©j

𝜏3
r>
rp

D

e��>43

−�
¢£¤[¨>]§j©j

rpª>

34©j
rp 𝜏3

r>
rp

D

e��>43

«
 � ¡

= 0	,   

                                                                                                                                                                                               (24) 
�ℒ
�)p

= �p
)p
+ ∑ log[𝐵e]D

e��>43 −� §j
)p¬34©j

rp
ylog[𝐵e] 𝑐I𝐵e

)p − log[𝜏3] 𝑐3𝜏3
r>
rp𝐵e

)p*3z
D

e��>43

−

)>()p*3)
)pp

� 3
©j
log[𝜏3] 𝜏3

r>
rp

D

e��>43

«
 � ¡

= 0,                    (25)                                         

Where 𝜃 = (𝑐3, 𝑐I, 𝑘)	,			�̄� = ¬�̂�3, �̂�I, �̄�	, 𝐴e = 1 + 𝑘(1 + 𝑅e)		and 	𝐵e = 𝑡e:D:a − 𝜏3 + 𝜏3
r>
rp. Since the closed-form solution to 

the nonlinear equations system (23-25) is tough to obtain, we use the Newton-Raphson method to solve the previous nonlinear 
equations simultaneously to obtain �̂�3, �̂�I,	 and �̄�, see tables (5-9). 

4. Asymptotic Variances and Covariance Matrix Under Progressively Type-II Censored 

The asymptotic variance and covariance matrix of maximum likelihood estimates are given by the elements of the inverse of 
the Fisher information matrix as follows: 

𝐼e�¬𝜃 ≅ 𝐸 µ− �p¶a	·	
𝜕𝜃j� ¹

º.                                                                              (26) 

Unfortunately, the exact mathematical expressions for the previous expectation are complicated to obtain. Therefore, the 
Fisher information matrix is given by  

𝐼e�¬𝜃 ≅ µ− �p¶a	·	
𝜕𝜃j� ¹

º,                                                                             (27) 

which is obtained by approximating the expectation on operation 𝐸 and replacing 𝑐3, 𝑐I and 𝑘 with �̂�3, �̂�I and �̄�, respectively, 
Cohen [14]. The asymptotic variance and covariance matrix 𝐹 of the maximum likelihood estimates can be written as follows:  

𝐹*3 =

⎝

⎜⎜
⎛
−�p ¢¾ ·

�+p
− �p ¢¾ ·

�+�)>
− �p ¢¾ ·

�+�)p

− �p ¢¾ ·
�)>�+

− �p ¢¾ ·
�)>

p − �p ¢¾ ·
�)>�)p

− �p ¢¾ ·
�)p�+

− �p ¢¾ ·
�)p�)>

− �p ¢¾ ·
�)pp ⎠

⎟⎟
⎞

*3

.                                                                              (28) 

The elements of matrix 𝐹 are given as the following:  
�pℒ
�+p

= − D
+p
	,                                                                                                                                                                             (29) 

�pℒ
�+�)>

= −� ÂAj:¥:¦
r>

34Aj
r>Ã log[𝑡e:D:a] (1 + 𝑅e)

�>

e�3

−� Â©j
rpª>

34©j
rpÃ

D

e��>43

log[𝜏3] (1 + 𝑅e)𝜏3
r>
rp	,                                                 (30) 

�pℒ
�+�)p

= −� (34�j)
34©j

rp ylog[𝐵e] 𝐵e
)p − )>

)p
log[𝜏3] 𝜏3

r>
rp𝐵e

)p*3z
D

e��>Ä>

	,                                                                                        (31) 

�pℒ
�)>p

= −�>
)>p
−� y−

¢£¤[¨>]p§jAj:¥:¦
pr>

¬34Aj:¥:¦
r> 

p + ¢£¤[¨>]p§jAj:¥:¦
r>

34Aj:¥:¦
r> z

�>

e�3

+ (𝑐I − 1)Å Æ 3
)pp©j

− ¨>

r>
rp

)pp©j
pÇ log[𝜏3]I 𝜏3

r>
rp

D

e��>43

  

															−� xÂ
©j
rpª>

)p¬34©j
rp
Ã log[𝜏3]I 𝐴e𝜏3

r>
rp − y

©j
p(rpª>)

¬34©j
rp

pz log[𝜏3]I 𝐴e𝜏3
pr>
rp {

D

e��>43

  

																+Å ¢£¤[¨>]§j¨>

r>
rp

34©j
rp Ælog[𝜏3] 𝜏3

r>
rp𝐵e

)p*I − ¢£¤[¨>]¨>

r>
rp©j

rpªp

)p
Ç

D

e��>43
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where, 𝐴e = 1 + 𝑘(1 + 𝑅e)	,			𝐵e = 𝑡e:D:a − 𝜏3 + 𝜏3
r>
rp.	Consequently, maximum likelihood estimators �̂�3, �̂�I and �̄� for 𝑐3, 𝑐I 

and 𝑘, respectively, have an asymptotic variance-covariance matrix defined by inverting Fisher information matrix 𝐹 and 
substituting �̄� = (�̂�3, �̂�I, �̄�) for 𝜃 = (𝑐3, 𝑐I, 𝑘), see Tables (5-9). 

5. Confidence Interval for Burr-XII Distribution Under Progressive Type-II Censoring Data 

In this part of the paper, we concluded the parameters' upper and lower bound using a 95% confidence interval. The 
approximate confidence results are tabulated in Tables (5-9). 

6. The Numerical Algorithm Used in the Paper 

This section clarifies the algorithm used to generate a progressive type-II censored sample, and estimators �̂�3, �̂�I, �̄�, besides, 
the mean square error (MSE). 
Step 1. Given 𝜏3 and the original progressive type-II censored sample with censoring scheme 𝑅 = (𝑅3, ⋯ , 𝑅D), we obtain 
�̂�3, �̂�I and �̄� from Eq. (17). 
Step 2. Based on 𝑛, 𝑟, 𝑅, 𝜏3, �̂�3, �̂�I, and �̄�, we generate a random sample of size 𝑛 from Uniform (0, 1) distribution, and obtain 
progressive type-II censored uniform sample (𝑈3:D:a	, ⋯ , 𝑈D:D:a). 
Step 3. Find 𝑁3 such that 
                                         𝑈�>:D:a ≤ 1 − ¬1 − 𝜏3

)>*+ < 𝑈�>43:D:a	.                                                                                      (35) 
Then, for 1 ≤ 𝑖 < 𝑁3, we set 
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                                                                 𝑡e:D:a = J(1 − 𝑈e:D:a)
*>? − 1K

>
r>.                                                                            (36) 

And for  𝑁3 + 1 ≤ 𝑖 < 𝑟, we set 

                                                                 𝑡e:D:a = J(1 − 𝑈e:D:a)
*>? − 1K

>
rp + 𝜏3 − 𝜏3

r>
rp	.                                                          (37) 

 
Step 4. Based on 𝑟, 𝑁3, 𝜏3 and the progressive Type-II censored observations,  
                                                       �𝑡3:D:a, … , 𝑡�>:D:a, 𝑡�>43:D:a, … , 𝑡D:D:a�	.                                                                            (38) 
Step 5. Repeat steps 2-4 M times and arrange �̂�3, �̂�I and �̄� in an ascending order to obtain 
                                              ��̂�3

[3], . . . , �̂�3
[Ö]�, 	 ��̂�I

[3], . . . , �̂�I
[Ö]�	 𝑎𝑛𝑑	 ��̄�[3], . . . , �̄�[Ö]�.                                                   (39) 

Then, we get the estimators as follows:  
                                              �̂�3

∗ = 3
Ö
∑ �̂�3

[e]Ö
e�3 , 	 �̂�I

∗ = 3
Ö
∑ �̂�I

[e]Ö
e�3 	 𝑎𝑛𝑑	 �̄�∗ = 3

Ö
∑ �̄�[e]Ö
e�3 	.                                         (40) 

We were substituting the values of parameters �̂�3
∗, �̂�I

∗, and �̄�∗ to get (MSE). Furthermore, the asymptotic variance, covariance 
matrix and two-sided confidence intervals of the estimators are obtained. 

7. Application on Real Data Example  

In this section, we introduce a real data example. The real data in Table 2 was collected from chapter 5 of Zhu [15]. For more 
information about this data, see Zhu [15].  The failure times of the light bulbs are displayed in Table 1, and the unit removed 
from the test before failure is noted by +. In this case, the number of units under stress is 𝒏 = 𝟔𝟒, and 11 of these units were 
removed from the test before the failure.  

Table 2:  The failure times in hours of 64 light bulbs 

No. Failure 
time No. Failure time No. Failure time No. Failure time 

1 12.07 17 91.22 33 14.00 49 94.38 
2 19.50 18 102.10 34 17.95 50 97.71 
3 22.10 19 105.10 35 24.00 51 101.53 
4 23.11 20 109.20 36 26.46 52 105.11 
5 24.00 21 114.40 37 26.58 53 112.11 
6 25.10 22 117.90 38 28.06 54 119.58 
7 26.90 23 121.90 39 34.00 55 120.20 
8 36.64 24 122.50 40 36.13 56 126.95 
9 44.10 25 123.60 41 40.85 57 129.25 
10 46.30 26 126.50 42 41.11 58 136.31 
11 54.00 27 130.10 43 42.63 59 140+ 
12 58.09 28 140+ 44 52.51 60 140+ 
13 64.17 29 140+ 45 62.68 61 140+ 
14 72.25 30 140+ 46 73.13 62 140+ 
15 86.90 31 140+ 47 83.63 63 140+ 
16 90.09 32 140+ 48 91.56 64 140+ 

To determine whether the data makes a good fit for the Burr distribution, we made a modified Kolmogorov Smirnov 
goodness-of-fit test for the progressive type-II censored data. This method was done by Pakyari and Balakrishnan [16]. The 
results of p-values for each stress level 𝑆e, 𝑖 = 1, 2, are tabulated in Table 3. the results shows us that the distributions provide 
an excellent fit to the given data because all p-values exceed 0.05. The MLEs of 𝑐3, 𝑐I, 𝑘 are introduced in Table 4. 

Table 3:  p-values and the value of the statistic for each level   
Stress (voltage) 2.25 V 2.44 V 

D 1.1006927863141185 0.013692047887372413 
p-value 0.30 0.965 

 
Our distribution makes a good fit for the data used by Zhu [15]. The MLEs are introduced in Table 3. 

 
 



42                                                                                                                          F. H. Riad et al.: Study on step-stress accelerated … 
 

 
 
© 2021 NSP 
Natural Sciences Publishing Cor. 
 

Table 4: Values of the parameters for the real dataset 
Parameter MLEs Lower bound Upper bound 

𝑐3 6.628880641589399 2.4194947611505766 18.161667165397084 
𝑐I 18.88352001192684 5.114098462680956 × 10*<< 6.972633214689974 × 10<X 
𝑘 0.027029 7.320913602421803 × 10*<V 9.979352642043303 × 10<Ü 

  
The relation between scale parameter and acceleration model has the following form	ln(𝜎e	) = 𝑎 + 𝑏	ln(𝑆e	), 𝑏 > 	0, 𝑖	 =
	0, 1, 2. By estimating the acceleration model's parameters, we can find that a = −8.42764859826418, 𝑏 =
12.913306559462917, 𝑘 = 0.024;	from the previous values, we can calculate the scale parameter under normal conditions,  
𝜎: = 	1.68737.  
By using the estimated values of 𝑘 and 𝜎:, the reliability function under use conditions is given by: 
R(t)= (1+t1.687373 )-0.024                                                                                                                                                          (41) 

                                                                                           
 

 

 
                                   Fig 2: Reliability function under average condition 

8. Simulation Study   

Simulation studies are conducted in this section to examine the performances of the MLEs, 95%  

approximate CI length. The algorithm is as follows: 
1. Assign values for 𝑛,𝑚, 𝜏. 
2. Generate a simple random sample of size 𝑚 from Uniform (0, 1) distribution, (𝑈3, 𝑈I, … , 𝑈ã). 
3. Determine the values of the censored scheme, 𝑅e, 𝑖 = 1, 2, … ,𝑚, such that ∑ 𝑅eã

e�3 = 𝑛 −𝑚. 

4. Set 𝐸e = 𝑈e

>
8jÄ∑ äå

æ
åçæªjÄ> 9

, 𝑖 = 1, 2, … ,𝑚. 
5. Obtain the progressive type-II censored sample,	𝑈3:ã:a∗ , 𝑈I:ã:a∗ , … , 𝑈ã:ã:a∗ , where 𝑈e:ã:a∗ = 1 −∏ 𝐸èã

è�ã*e43 , 𝑖 =
1, 2, … ,𝑚. 

6. Find 𝑛3, such that 𝑈a>:ã:a
∗ < 𝐹3(𝜏) ≤ 𝑈a>43:ã:a

∗ . 
7. From Steps (2)-(6), the order observations, 𝑡3:ã:a, 𝑡I:ã:a, … , 𝑡a>:ã:a, 𝑡a>43:ã:a, … , 𝑡ã:ã:a, are calculated as follows: 

              𝑡e:ã:a =

⎩
⎨

⎧ J(1 − 𝑈e:D:a)
*>? − 1K

>
r> ,																												𝑖 = 1, 2, … , 𝑛3,

J(1 − 𝑈e:D:a)*
>
? − 1K

>
rp + 𝜏3 − 𝜏3

r>
rp,													𝑖 = 𝑛3 + 1,… ,𝑚.

                                                                

8. Solve the nonlinear system in Eqs. (23-25) and then evaluate  95% CI  for the three parameters, k, 𝑐3and 𝑐I. 
Table 5: 𝑛 = 30,𝑚 = 15,	𝑅3 = 𝑅I = 𝑅Ü = 5, 𝑐3 = 0.25856, 𝑐I = 0.27358, 𝑘 = 0.5, 𝜏3 = 4.2. 

Parameter MLEs mean value MSE Lower bound Upper bound Coverage 
probability 

CI length 

𝑐3 0.246 0.0048 0.094 0.3984 0.93 0.3047 
𝑐I 0.2963 0.0142 0.0606 0.532 0.92 0.3378 
𝑘 0.29883 0.048 0.0842 0.5146 0.66 0.4715 
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Table 6: 𝑛 = 30,𝑚 = 30,	𝑅3 = 𝑅I = ⋯ = 𝑅ã = 0, 𝑐3 = 0.25856, 𝑐I = 0.27358, 𝑘 = 0.5 and 𝜏3 = 4.2. 
Parameter MLEs mean value MSE Lower bound Upper bound Coverage 

probability 
CI length 

𝑐3 0.27445 0.0046 0.13 0.4193 0.99 0.2898 
𝑐I 0.28014 0.0063 0.113 0.4473 0.95 0.3063 
𝑘 0.51689 0.0272 0.2208 0.8129 0.96 0.5921 

 
Table 7:  𝑛 = 50,𝑚 = 30,	𝑅3 = 𝑅I = 10, 𝑅Ü … = 𝑅ã = 0, 𝑐3 = 0.25856, 𝑐I = 0.27358, 𝑘 = 0.5 and 𝜏3 = 4.2. 

Parameter MLEs mean value MSE Lower bound Upper bound Coverage 
probability 

CI length 

𝑐3 0.26125 0.00311 0.1376 0.38491 0.97 0.24731 
𝑐I 0.34075 0.01093 0.14307 0.53842 0.99 0.24183 
𝑘 0.32164 0.03741 0.12397 0.51931 0.61 0.39535 

 
Table 8: 𝑛 = 50,𝑚 = 50,	𝑅3 = 𝑅I = 𝑅Ü … = 𝑅ã = 0, 𝑐3 = 0.25856, 𝑐I = 0.27358, 𝑘 = 0.5 and 𝜏3 = 4.2. 

Parameter MLEs mean value MSE Lower bound Upper bound Coverage 
probability 

CI length 

𝑐3 0.26829 0.00333 0.15754 0.37905 0.95000 0.22151 
𝑐I 0.28030 0.00437 0.15266 0.40793 0.93000 0.22638 
𝑘 0.49723 0.01388 0.36960 0.62487 0.79000 0.25527 

 
Table 9: 𝑛 = 70,𝑚 = 56,	𝑅3 = 𝑅I = 𝑅Ü … = 𝑅W = 2, 𝑐3 = 0.25856, 𝑐I = 0.27358, 𝑘 = 0.5 and 𝜏3 = 4.2. 

Parameter MLEs mean value MSE Lower bound Upper bound Coverage 
probability 

CI length 

𝑐3 0.26628 0.00265 0.16929 0.36327 0.93000 0.19398 
𝑐I 0.30472 0.00520 0.17563 0.43382 0.97000 0.18765 
𝑘 0.40029 0.01629 0.23476 0.56582 0.79000 0.33106 

9. Conclusion                     

From the results in Tables (4-8), we have observed the following: 
1. The MSEs of MLEs of the considered parameters decrease as the sample size increases, except for a few cases. This 

may be due to fluctuations in data. 
2. The length of approximate CIs decreases as the sample size increases, except for a few cases. This may be due to 

fluctuations in data. 
3. For the real data sets, the Burr-XII distribution gives a good fit for the real data. 
4. Before acceleration, the real data was fitted using the usual Kolmogorov-Smirnov method, which provides a good 

fit for the data. 
5. The real data after acceleration was fitted using the modified Kolmogorov-Smirnov method, which provides a good 

fit for the data. 
6. We estimated the distribution parameters under normal conditions. The reliability function was graphed under the 

standard condition, as in figure 2.  
7. At time equals zero, the reliability function gives a 100% efficiency, and as time increases, the reliability function 

becomes a decreasing function. 
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