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Abstract: In this paper, a novel approach known as DistFSM is presented for the FSM on a single graph. The DistFSM operation

performed on a cloud computing system is framed on a set of heterogeneous clusters. Each cluster is a set of homogenous nodes.

The input graph is converted into a sparse matrix. This matrix is partitioned horizontally into a sequence of non-equivalent chunks.

Each chunk size is computed to be appropriate to the available worker resources in one of the clusters. In each cluster, the chunk is

partitioned vertically into equivalent tasks. Each task is assigned to one of the worker nodes. The proposed partitioning method defined

as the Hori-Vertical partition and aims to accomplish the load balancing among the different nodes in the different clusters. Each node

performs its operation individually without any communication with other nodes. The non-equivalent chunks assigned to the different

clusters allow them to finish their operation simultaneously. This strategy increases the resource usage by prohibiting or reducing the

waiting time of the high-performance clusters. Finally, the results of all clusters are summarized and submitted to a distributed shared

memory of the orchestration node to perform the required aggregation operations.
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1 Introduction

Data mining is the field of discovering and extracts
significant and valuable knowledge from large databases
[1]. Recently, there are different applications include
various relationships among the objects that are presented
in the form of the graphs [2]. The main reason for this
development is the ability of the graph to save the
complex and enormous data [3]. For examples, in the
social networks, the nodes used to represent the users
while their relationships are represented by the edges[4].
In the chemical structures, nodes are used to represent the
atoms while edges are used to represent the bonds
between them [5], and so on. Hence, the term “Big Graph
Mining” has been occurred [3,7]. Moreover, a significant
research area known as the Frequent Subgraph Mining
(FSM) has been established [8]. The FSM is convenient in
many domains of the real-world application. For instance,
Social Structural Role Mining (SSRM) for dynamic social
network has been introduced [9]. This model clarifies that
graph mining can offer information concerning
somebody’s involvement rate amongst his social network

and the impact on the interrelated community dynamics
[10]. In addition, graph mining is implemented to decide
personal compatibility [11]. This model aims to use the
available information to measure the matching between
the leader and the deputy in an organization, or between
the students with their consultant.

Most FSM algorithms include two central phases: the
production of the candidate subgraph patterns and the
frequency computation [12]. The most imperative factor
affects the performance of the FSM algorithm that has
occurred when the same candidates are generated more
than once. The production of redundant candidates should
be avoided to get an efficient algorithm. The second phase
is to compute the frequency of the candidates produced to
determine the most frequent subgraph among them. In
order to compute the frequency of a subgraph, it is
required to find the number of isomorphic subgraphs in a
database. Therefore, subgraph isomorphism is a vital
problem for the applied algorithms due to the problem of
NP-complete [13].

In addition, there are several issues considered by the
algorithms implemented for FSM [14]. The first issue is
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related to the type of the input graph. The input data set
may be a single large graph or a set of small size graphs
called transactions [15]. The frequency computation of a
subgraph in the large single graph data set is dissimilar to
the transactional dataset. In the transactional dataset, the
number of transactions that contain this subgraph is used
to compute the frequencies of the candidates. For the
single graph-based FSM, the input data is an only one
very large graph that has hundreds of thousands nodes.
The FSM of the large single graph is depended on the
enumerations of the subgraphs occurrence. The mining of
the frequent subgraphs based on a single graph is faced by
a lot of the difficulties and the huge computations through
the matching process of the subgraphs that may be
overlapped [16,17].These complications are originated
through the necessary means that are required by two core
operations. The first operation is the efficient productions
of all subgraphs with various sizes. The second operation
is the subgraph isomorphism assessment. Assume N and
n be the number of vertexes of input graph G and
subgraph S, respectively. Normally, the complexity of

subgraph productions is O(2N2
) and the supported

assessment is O (Nn). Therefore, the whole complexity of

an FSM algorithm is O(2N2
.Nn), which increases

exponentially as the size of the graph database increases.

The second vital issue for the FSM is the
categorization of the algorithmic approaches. Actually,
there are two different algorithmic approaches for the
FSM. They are the apriori-based and pattern growth
approaches [18,19]. The purpose of both approaches is to
find the frequently occurring subgraph from the available
group of small graph sets or a single large graph.
However, the two approaches are different in the way of
mining the FSPs [20]. The apriori-based algorithms are
initiated with small-sized graphs then extended them
through joining subgraphs to get well-known subgraphs
[21,22]. On the other hand, the algorithms based on the
pattern growth approach are started by lengthening the
frequent subgraphs beginning from minimal frequent
subgraphs and the addition of one edge at each step up to
when they are still frequent [23].

The third issue is considered through the graph
representation method. Generally, the FSM algorithms
use two different techniques to exemplify the graphs.
They are the adjacency matrix and the adjacency list.
Graphs should be demonstrated uniquely to enable the
test of the subgraph isomorphism [24]. However, more
than one matrix may be adjacent representing the same
graph. So, novel methods are offered such as canonical
adjacency matrix (CAM) [25] and min DFS code [26].

The final issue considered in this area has appeared
when the existent datasets include very large graph data
or classified as big graph data. In this case, the big graph
data size cannot be fitted in the memory of a single
machine. So, the FSM algorithms applied to the small
graph database on a single machine should be modified to
be appropriate to deal with the big graph data. This

problem can be solved through two basic operations. In
the first operation, the large graph database is partitioned
into a set of applicable partitions. In the second operation,
the partitions are distributed among set system nodes to
be performed in a parallel manner by the applied FSM
algorithm [27,28]. Actually, the graph partitioning
methods are based on the layout of the database. The
traditional partitioning methods can be either horizontally
or vertically. In the horizontal layout of the database, each
tuple includes row id within the items in the transaction
[29]. Furthermore, the implementation of the database
binds the database items with its tid list. In other words,
each item is followed by the list of transaction ids that
have an occurrence of this item [30]. In fact, the
horizontal layout is the most practicable implementation
of the databases.

In this paper, a novel distributed approach for frequent
subgraphs mining of a single large graph has been
proposed. The proposed approach is implemented on a
cloud computing system using a set of worker nodes
distributed on a set of parallel heterogeneous clusters.
However, within each cluster the worker nodes are
homogenous. The proposed model offers a high-level
computation based on two levels of master nodes and the
set of parallel heterogeneous clusters connected through
shared memory. The shared memory is employed to store
the intermediate results to reduce the number of
input/output operations. In addition, a novel partitioning
method known as a hori-vertical method is proposed. It
targets to adapt the partition sizes of the distributed
subgraphs to be appropriate to the available processing
power of each node. Furthermore, the last operation is
aimed to achieve the load balancing among all nodes
within each cluster. The rest of this paper is organized as
follows. Section 2 describes the related studies that are
based on the parallel and distributed system, especially
for a single large graph. In Section 3, the proposed model
and the proposed adaptive partitioning method are
presented. Section 4 illustrates comparison analysis and
performance evaluation. Finally, the concluding remarks
are offered in Section 5.

2 Related Work

Recently, various algorithms have been proposed for a
single large graph. These algorithms include SUBDUE
[31], [32], GERM [33] and more recently GRAMI [34].
The majority of these algorithms are implemented in
sequential execution that necessitates abundant time to
mine large datasets. For instance, SUBDUE searches for
the possibly frequent substructures in the graph, which
can be compressed in perfectly. SiGraM uses the
concentrated autonomous set-based approach to compute
the support, which can be very costly. For GraMi, it uses
a restriction satisfaction-based method to support
computation for optimizing the storage of isomorphisms
in memory by identifying automorphism groups.

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 2, 297-307 (2020) / www.naturalspublishing.com/Journals.asp 299

On the other hand, the parallel and distributed
computing methods are employed to speed up the
computation. Two main frameworks are applied to
perform parallel computing. They are the distributed
Map-Reduce [35], and MPI (Message Passing Interface)
[36]. Distributed map-reduce is based on employing the
task which means to mine the frequency distribution of all
vertex of the subgraphs up to specific k vertices. In
contrast, for FSM, there is no constraint on the size of the
sub-graphs to be mined, but the minimum support can be
used to trim the search space [37]. Generally, the whole
implemented parallel FSM algorithms that are based on
the MapReduce are designed for graph transaction. They
are not applied to the single graph. In addition, they suffer
from the bottlenecks, since they spend a lot of time for
moving the data/processes into and out of the disk during
repeated execution of the algorithms. Moreover, several
of these algorithms cannot be applied for mining through
the subgraph extension [38,37]. The users should supply
the size of subgraph as input. However, the methods that
are established on the MPI such as DistGraph [36] have a
preferred performance due to their dependence on the
interconnected HPC (High-performance Computing)
machines. Nevertheless, these methods suffer from the
less availability of these machines for most of people. In
this research, a distributed subgraph mining approach has
been proposed. It is based on partitioning the input graph
using a novel hori-vertical partition method. In 2012,
Khadija Belbachir and Hafida Belbachir [41] proposed a
parallel version for a sequential algorithm. The
implementation of this parallelism doesn’t require much
communication between the nodes. But, the applied
method uses a non-adaptive partitioning method. The
database is divided horizontally into partitions of the
same size based on the memory size. Therefore, it suffers
from the inefficient use of the available system resources.

3 The Proposed Hori-Vertical Partition

Method

In the proposed model, the input graph is passed by two
basic operations methods. In the first operation, the input
graph should be converted into a sparse matrix, as shown
in Figure 1. In the sparse matrix, each 1 represents the
existence of the edge between two vertices in the graph.
On another hand, 0 means that there is no connection
between the two vertices in the graph.

In the second operation, a novel partitioning method is
offered to prepare the sparse matrix for mining processes.
The sparse matrix is partitioned in two dimensions
(horizontally and vertically). So, the partitioning method
is known as the Hori-Vertical partition method (H-VP). In
the horizontal dimension, the sparse matrix of the input
graph is divided into a set of chunks, as shown in figure 2.
The chunks are cut as a set of rows with different sizes.
Each chunk is assigned to a specific cluster among all

Fig. 1: Sparse Matrix

heterogeneous clusters in the proposed model. Hence, the
size of the chunk assigned to each cluster is determined to
be appropriate to the all available resources of the
workers within that cluster. Each chunk size depends on
the available parallel node resources. Within each cluster,
the assigned chunk is divided vertically into set of slices
(tasks) to be distributed over the parallel nodes, as shown
in figure 2. Each task is a set of rows and columns which
represented by w1 w2 ....wn. Moreover, each task is cut
with a specific size to represent the set of the itemsets that
is executed on a specific worker. However, the size of
each task is appropriate to the available resources of that
specific worker. In the following subsection, the relation
between the computation of chunk size and the available
resource of a specific cluster is clarified. By the same
way, the relation between the task size and the resource of
a specific worker is illuminated through the proposed
model details.

Fig. 2: Hori-vertical partitioning
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However, the H-VP technique is based on dividing the
database to be appropriate to the VMs (workers)
capability. In the parallel execution procedures of the
proposed model, the main task of each worker is to count
the frequency of itemset in the assigned task individually.
Generally, the H-VP is created to reduce the dependencies
between parallel processing.

Suppose that the graph database G is partitioned
horizontally into h chunks and vertically into v partitions
(tasks) at the same time. Then the database can be written
as:

G =
h⋃

i=1

v⋃

j=1

gi, j (1)

Lemma 1.If the graph database D is partitioned

horizontally and vertically simultaneously, for every

frequent subgraph x,y ∈ Lk. The new subgraph g = x∧ y

(join x and y ) will not be frequent subgraph if x and y are

not locally frequent subgraph in any of the same

horizontal partition.

Proof.Suppose x,y ∈ Lk, g = x∧ y and g ∈ Lk+1. Also, let
qx = {DBi, j|x locally frequent subgraph } and qy = {DBk,h|
y locally frequent subgraph }. Also, qx ∩qy = /0. However,
the subgraph g should be counted in some transaction to
be frequent (qx ∩ qy 6= /0 ). In other words, the candidate
subgraph g should be locally frequent in at least one chunk.

4 The Proposed Mining Model

The model of the proposed approach is designed to
enhance the operations of the frequent subgraphs deduced
from the partitioning of the main input graph. In order to
achieve this objective, distributed Frequent Subgraphs
Mining (DistFSM) is proposed as shown in Figure 3. In
this model, an adaptive load balancing technique is
included. This proposed model is implemented among a
set of heterogeneous clusters. Each cluster includes a set
of homogenous VMs.

4.1 The Architecture of The Proposed Model

The architecture of a novel distributed approach for
frequent subgraphs mining across cloud computing
system is congregated in two main modules. They are the
module of the orchestration node and the cluster module.
The orchestration node module includes five main
components. These components are the chunk creator
(CC), the head-load balance (H-LB), the frequent
aggregation, the candidate generation and the distributed
shared memory (DSM). On the other hands, each cluster
module includes four main components. They are the
tasks creator, the VMs, the chunk frequency and the
cluster-load balancing (CL-B).In the following

Fig. 3: The Adaptive Frequent Subgraphs Mining.

subsection, the functions performed by each component
in each module is clarified. The function of each
component is explained according to its sequence in the
whole operation of the proposed model.

4.1.1 Chunk Creator (CC)

Before the start of CC operations, the input graph is
converted into the sparse matric form. The CC includes
two phases; Initial phase, and operational phase. In initial
phase, the CC generates a set of the same size chunks, as
shown in Algorithm 1. The number of chunks is
equivalent to the number of the clusters. Each chunk is a
set of rows. These chunks are identified as test chunks
because their size is selected randomly. Each one of these
chunks is passed to one of task creator (TC) in the parallel
clusters. In the initial phase, the same size of the chunks
is submitted to H-LB. On the other hand, the operational
phases include two cases. In the first case, the chunks are
cut from the original input sparse matrix. In the second
case, the chunks are created from candidate aggregation
after the count frequencies are performed on the first
candidate itemsets C1. In both cases of the operational
phase, the chunk size of each cluster is computed
according to the available resources of each cluster. The
computation method of the sizes of the chunks is
explained in the subsection of the cluster load-balance. In
the following, the pseudo-code of the chunks creator is
introduced.

4.1.2 Task Creator (TC)

The Task Creator (TC) receives its dedicated chunk and
divides it into s set of equivalent size tasks. These tasks
are distributed among the VMs of the cluster. The main
objective of the VM is to count the frequencies of its
dedicated candidate itemsets (ci

1 ⊂ C1). In addition, each
VM submits its consumed execution time of its assigned
task to the cluster load-balance. In the following, the
pseudo code of the Task creator is presented.

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 2, 297-307 (2020) / www.naturalspublishing.com/Journals.asp 301

Algorithm 1 Chunk Creator Algorithm

1: input:

2: G //The big graph

3: CL

Output

4: HG //graph chunk ( horizontal graph partition )

/* initializing the first candidate itemset.*/

5: if (Ck 6= φ)&(k = 1) then

6: Ck = u

7: end if

{ initial phase cluster loop}
8: for (∀cli ∈CL ) do

9: tstChi = createT stChunk(G)
10: cli.taskCreator(tstChi)
11: end for

12: remGraph = G−∑
|CL|
i=1 tstChi //the remaining un-distributed

partition of graph G

13: /* Operational phase */

14: opSizi = HLB.ClusterPartitionSize(cli) /* receive the

operational chunk size for cluster I from head load-balance

*/

//distributed the remaining of the graph

15: while (remGraph 6= φ ) do

16: for (∀cli ∈CL) do

17: chi = createOprChunk(G,opSizi,Ck) /*create

operational chunk for each cluster i */

18: cli.taskCreator(Chi,Ck) // send the chunk for the task

creator i

19: end for

20: end while

21: K ++ // finding the next frequent itemsets

22: Ck = candidateGenerator.Receive(K) /* take the kth

candidate Itemsets from the candidate generator */

23: while (Ck 6= φ ) or(remGraph 6= φ ) do

24: for (∀cli ∈CL) do

25: chi = createOprChunk(G,opSizi,Ck) /*create

operational chunk for each cluster i */

26: cli.taskCreator(Chi,Ck) // send the chunk for the task

creator i

27: end for

28: remGraph = G−∑
|CL|
i=1 tstChi

29: if (remGraph 6= φ ) then

30: Ck = CandidateGenerator.Receive(k) /* take the kth

candidate Itemsets from the candidate generator */

31: end if

32: end while

4.1.3 The chunk Frequencies

The main objective of the chunk frequencies is to receive
the count frequencies from the all VMs within the cluster.
It aims to perform the local frequent itemset that is passed
and stored in the distributed shared memory. In the
following, the pseudo code of the chunks frequencies is
presented.

Algorithm 2 Task Creator Algorithm

1: input:

2: HG /* graph chunk (horizontal graph partition)*/

3: Ck /* set of candidate */

4: T G = null //task group

5: k = 0 // k Number of candidate in a task

6: k =
|Ck|
|v| /* where v is the number of VMs in the cluster.*/

7: T G = createTasks(HG,k) /*create tasks has standard size*/

8: while ( T G 6= null ) do

9: for (∀vi ∈ v ) do

10: t = null

11: t = takeTask(T G) /* where t ∈ T G

12: InsertTasks(t,vi.queue)
13: end for

14: end while

Algorithm 3 Chunk Frequency Algorithm

1: // loop on VMs cluster

2: for (vi ∈ v) do

3: if (vi.Finish = true ) then

4: Ck.localCount = ti.condidCount(t,vi.queu)
5: end if

6: end for

7: DistributedSharedMemory.W rite(Ck.localCount)

4.1.4 The Cluster-Load Balancing

Actually, the load balancing is accomplished through a set
of procedures that are performed after the completion of
each task by its assigned VM. Each VM submits its
consumed execution time to the Cluster Load-Balance
(C-LB). In the C-LB, the total execution times of the all
VMs in each cluster are computed as in the following
equations.

T Pi =
mi

∑
j=1

T (V M j) (2)

Where:
T (VM j): is the total execution time of V M j.

mi: is number of VMs in cluster i.
TPi : is the total of the execution time for cluster i.

Hence, λi is the expected execution time for each row
in the chunk assigned to the cluster i, and can be computed
in the C-LB as follows:

λi =
TPi

|C|
(3)

Where:
|C|: is the previous chunk size.
After these computations, the C-LB submits the

expected execution time λi for each row in the chunk
assigned to the cluster i to the Head-Load Balance
(H-LB).
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4.1.5 H-LB Algorithm

H-LB algorithm receives the set of values for expected
execution times (λi,∀i) for all clusters in the system. The
main objective of the H-LB is to make all clusters finish
their work on their chunks simultaneously. So, the new
chunk sizes are determined based on the slowest cluster in
the system. Originally, the high performance clusters may
be idle for waiting the slowest clusters to finish its work.
Hence, the optimal solution for this problem is to create
an adaptive job for each cluster. This means that the
chunks assigned to the different clusters have different
sizes. This strategy increases the resource usage by
prohibiting or reducing as much as possible the waiting
time of the high-performance clusters. Hence, the H-LB
computes the new chunk size for each cluster in the
operational phase as follows.

H-LB selects the normalized λ using the following
equation: λ = maxn

i λ ; In other words, λ depends on the
least cluster performance.

Where:
n: is the number of system clusters.
Hence, the new chunk size for each cluster can be

computed as follows.

Zi =
λ

λi

Z

Z: represents the previous chunk size or the chunk size for
the previous iteration Zi: represents the new chunk size for
the next iteration

The new computed chunk size of each cluster is
provided to the chunk creator to be used in cutting of the
new chunks. Generally, the chunk size computation
should be performed after the first execution of the test
chunks. However, the chunk computations should be
avoided as possible in the operational phase. The main
reason of this avoidance is to minimize the predicted
overhead due to the chunk size computation. Hence, the
chunk sizes computations are not performed for each
iteration. Actually, they are performed for one of two
event occurrence. First, when any VM in any cluster is
failed. Second, if an additional machine is added to any of
the cluster. In this case, the C-LB computes the chunk
sizes are submitted to the H-LB.

Algorithm 4 The pseudo code of the C-LB

1: Output

2: λi // the expected execution time for each row in cluster j

3: Collect the execution time for each VM (v
j
i ) in the cluster

V j(v
j
i ∈V j)

4: Compute the total execution time T P j = ∑∀iv
j
i

5: Compute the execution time for each row λ j =
T Pi

|C|

6: Send λ j to H-LB

7: If allocated resources changed go to step 3

Algorithm 5 The pseudo code of the H-LB

1: input:

2:
∧

= {λ1, ...,λn} /* set of expected row execution time for

each in cluster in the system */

3: Z //initial chunk size or the chunk size for the previous

iteration

4: Output

5: ξ = {Z1, ...,Zn} /* the chunk size for each cluster*/

6: λ = maxn
i=1(λi)

7: for (i = {1, ...,n}) do

8: Zi =
λ
λi

Z

9: end for

/* ∀λi ∈
∧

*/

10: if (λi changes ) then

11: Go to step 6

12: end if

13: send ξ = {Z1, ...,Zn} to the Chunk Creator(CC)

4.1.6 Frequent Aggregation

By each iteration end, the frequencies counts of the
candidate itemsets that represent the different tasks are
sent to the Chunk Frequency (CF). The CF aggregates the
frequent results that represent the whole chunk in a single
chunk-frequent-vector and send it to be saved in the
Distributed Shared Memory (DSM). For the successive
iterations, the frequent results of each chunk are also
represented by its own chunk-frequent-vector and send to
the DSM. Hence, the main function of the frequent
aggregation is to aggregate the similar frequent itemsets
from the all successive chunk-frequent-vector. This
operation of the chunk-frequent-vector aggregation is
performed by the end of each repetition. After the whole
chunk-frequent-vector of the all chunks has been
completed, the total frequencies of the itemsets are
determined by the frequent aggregation. Each frequency
of the itemset is compared by the minimum support
value(S) to determine the set of globally frequent itemsets
(Lk). Hence, the frequent aggregation sends the globally
frequent itemsets(Lk)to the Candidate Generation (CG).
The CG uses the globally frequent K− itemsets (Lk) to
generate the new candidate (K + 1)− itemsets(Lk+1).
Eventually, the new candidate (K + 1)− itemsets are sent
to the Chunk Creator (CC) to use these candidate in the
successive operations to generate the next and new
chunks.

5 Experiment and Result Discussion

All experiments are conducted on two heterogeneous
clusters formed on a cloud computing system [43]. The
first cluster includes 4 homogenous workers nodes. Each
node resource comprises of 5 GB of RAM, Intel (R) Xeon
(R) CPU with 1.8.00 GHz. The second cluster includes 4
homogenous workers nodes. Each node resource
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comprises of 3 GB of RAM, Intel (R) Xeon (R) CPU with
2.2 GHz. The whole nodes in both clusters are run on
Windows server 2008 R2 Enterprise. In addition, the
resources of the orchestration node are formed of 8 GB of
RAM, Intel (R) Xeon (R) CPU with 3.8 GHz. The whole
implemented algorithms are coded in Matlab 2012. The
proposed approach DistFsm is compared with different
research methods such as traditional parallel FSG [42],
Belbachir [41] and DistGraph methods [36]. The
comparisons among the different methods are performed
on a different database set for a large single graph. These
databases include ERDOS981, ERDOS971, ERDOS992,
ODLIS, California search engine [40], PDB1 [44], Paten
[39] and YouTube [6]. The different characteristics of the
different datasets which include the size of graphs, the
number of edges in the dataset are described in Table 1.
The performance of the compared methods and the
proposed approach DistFsm are determined by measuring
the execution times in seconds against the minimum
support threshold at different values. The result values of
the different comparisons methods using the different
datasets are also shown in Table 1.

The results of the comparisons among the different
methods that were performed on the different databases
are shown in the following sequence of figures 4. For
instance, Fig. 4 shows the performances result for using
the database of ERDOS981. Fig.5 shows the
performances result for using the database of ERDOS971.
Fig. 6 shows the performances result for using the
database of ERDOS992. Fig. 7 shows the performances
result for using the database of ODLIS, and so on. The
figures show that, the performance of the proposed
algorithm DistFSM is faster than the traditional parallel
FSG, Belbachir, and DistGraph algorithms for the all
values of minimum supports. In addition, the number of
results grows exponentially when the support threshold Θ
decreases. Thus, the running time of all compared
methods also grows exponentially. Moreover, when the
database size is increased as in the YouTube dataset and
lower minimum support Θ (0.01), the minimum
execution time for the all compared methods is
accomplished by the DistFSM. On other hand, as the size
of the database is decreased as in the EDROS981 and the
minimum support Θ (0.6) is increased, the DistFSM is
still the fastest among the all compared methods due to
less waste of the resource employment in the DistFSM
method. As a numerical example that demonstrates this
important result, for the dataset ”ODLIS” with minSup =
0.6. The run time of traditional parallel FSG is 0.046225
(s), Belbachir is 0.008072 (s), DistGraph is 0.000452 (s),
while that of DistFSM is 0.000353 (s), thus DISTFSM
algorithm doesn’t waste the time in the mining to get the
all frequent subgraphs compared with other methods, as
shown in Fig 7.

Fig. 4: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DISTFSM methods for ERDOS981 dataset

Fig. 5: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DISTFSM methods for ERDOS971 dataset

Fig. 6: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DISTFSM methods for ERDOS992 dataset
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Table 1: Characteristics of the experimental results time (in second)

Dataset Num of Num of
Minimum

(?)

Traditional

time (in second)
Belbachir DistGraph DistFSM

Vertex Edges
support

(Θ )
parallel FSG method method time

ERDOS981 347 483

0.6 0.038353 0.004271 0.000758 0.000544

0.3 0.088042 0.009905 0.003761 0.0027

0.05 0.597076 0.063127 0.026694 0.021032

0.01 16.20034 2.936635 0.847732 0.608628

0.003 840.2437 511.7998 180.7032 129.735

0.001 1746.229 798.0491 268.206 204.691

ERDOS971 448 472 0.3 0.089511 0.00911 0.003992 0.003146

ERDOS971 448 472

0.1 0.449326 0.043532 0.015995 0.012169

0.05 1.095346 0.258724 0.01651 0.012786

0.01 8.292601 2.211906 0.134122 0.105615

0.001 809.8722 389.7837 85.17391 69.08383

ERDOS992 524 6100

0.6 0.237611 0.026358 0.003997 0.003026

0.3 0.337428 0.038415 0.012885 0.009251

0.1 2.857993 0.381867 0.042332 0.033247

0.05 13.71754 5.884974 1.628219 1.308947

0.01 139.8394 71.38091 15.75073 11.30821

ODLIS 2896 2909

0.6 0.046225 0.008072 0.000452 0.000353

0.3 0.084817 0.01882 0.005622 0.004503

0.01 3.690695 0.056807 0.020393 0.016491

0.05 8.691193 4.182621 0.674939 0.484572

0.001 233.3989 136.2786 58.10711 47.31791

California search engine 16150 9664

0.6 1.090441 0.122692 0.003348 0.003028

0.3 16.60339 5.707027 1.287254 1.028796

0.1 257.4042 111.4921 31.88925 24.28754

0.01 659.5966 350.9257 122.4421 98.36775

0.001 839.8848 533.1789 217.317 176.613

PDB1 20,226 83,356

0.3 19.77699 14.23943 8.998529 6.891181

0.1 290.6977 209.3024 132.2675 101.292

0.01 879.0151 632.8909 399.9519 306.2879

Paten 2,942,15 14,275,931

0.3 478.3892 344.4431 217.6671 166.6921

0.1 1567.239 1128.412 713.094 546.0956

0.01 4714.769 3394.634 2145.22 1642.835

YouTube 4,584,572 23,236,009

0.3 969.16 753.7952 549.9683 268.0095

0.1 5597.589 4590.264 3636.903 1253.603

0.01 9923.387 8424.798 5060.141 3109.306

6 Conclusion And Future Work

In this paper, DistFSM model is introduced for finding the
frequent subgraphs mining from a single large graph
database. The proposed model is implemented over a
cloud system. It distributes the load over the
heterogeneous cloud resources in a balanced manner. The
input graph is formed in a sparse matrix form. The sparse
matrix is partitioned using a new partitioning strategy
called ”Hori-Vertical”. This strategy is aimed to
accomplish the load balancing among the different nodes
in the heterogeneous clusters. First, the matrix is
partitioned horizontally into a set of non-equivalents
chunks. Each chunk has the appropriate size to the cluster
available resources. Subsequently, the chunk is
partitioned vertically into equivalent tasks. These tasks
are independent tasks, which can be processed in the

cluster VMs without communication overhead among
these nodes. The non-equivalent chunks assigned to the
different clusters allow them to finish their operation
simultaneously. This strategy increases resource
utilization over heterogeneous resources by eliminating
the idle time for the different performance clusters.
Finally, the results of clusters are aggregated and
submitted to a distributed shared memory in an
orchestration node to perform the global aggregation
operations. At last, the experiments show that our
methods outperform the DistFSM model. In future work,
apply DistFSM model on the stream of data, which can be
real-time insights in Big Data.
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Fig. 7: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DistFSM methods for ODLIS dataset

Fig. 8: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DistFSM methods for California search engine

Fig. 9: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DistFSMmethods for PDB1 dataset

Fig. 10: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DistFSM methods for PATEN dataset

Fig. 11: Runtimes of Traditional parallel FSG, Belbachir,

DistGraph and DistFSM methods for YouTube dataset
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