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Abstract: In this paper, we obtain the point and interval estimations for a three-parameter Burr-XII distribution (TPBXIID) based on

randomly-censored data. The maximum likelihood (ML) and Bayes estimation method are used to estimate the unknown parameters

of the TPBXIID. Furthermore, approximate confidence intervals (ACIs) for the unknown parameters are constructed. Markov chain

Monte Carlo (MCMC) method is applied to find the Bayes estimation. Also, highest posterior density (HPD) credible intervals (CRIs)

are obtained for the parameters. Gibbs within Metropolis-Hasting samplers are used to generate samples from the posterior density

functions. A couple of real data sets are discussed to illustrate the proposed methods. Finally, to compare different estimates proposed

in this paper, a Monte Carlo simulation study has been performed.

Keywords: Three-parameter Burr-XII distribution; Randomly censored data; Maximum likelihood estimators; Bayesian estimation;

MCMC method.

1 Introduction

The Burr-XII distribution originally introduced by Burr
[1] has been used for the lifetime modeling in reliability
analysis, life-testing problems and acceptance sampling
plans see Abbasi et al. [2]. Also, it has been fitted a wide
range of observational information in different areas such
as meteorology, finance and hydrology see Chen et al. [3].
For more details about applications of Burr-XII, see Ali
and Jaheen [4] and Burr [1]. Shao [5] expanded the
TPBXIID and studied the maximum likelihood estimation
and Shao et al.[6] studied the models for extremes for the
TPBXIID with application to flood frequency analysis.
Wu et al. [7] studied the estimation problems by using
Burr-XII based on progressive type-II censoring with
random removals. Silva et al. [8] suggested a
location-scale regression model based on Burr-XII
distribution. Paranaiba et al. [9] suggested the beta
Burr-XII. Paranaiba et al. [10] discussed Kumaraswamy
Burr-XII. Mead [11] presented the beta exponentiated
Burr-XII and Al-Saiarie et al. [12] studied the
Marshall-Olkin extended Burr-XII.
Recently, Gomes et al. [13] discussed theory and practice
for two extended Burr models (McDonald Burr-XII) and
Mead and Affy [14] studied the properties and

applications for five parameters Burr-XII distribution
which are called the Kumaraswamy exponentiated
Burr-XII distribution. The cumulative distribution
function (CDF) of the TPBXIID is given by

F(x;α,θ ,γ) = 1−
[
1+
( x

α

)θ]−γ
, x > 0, α,θ ,γ > 0,

(1)
and the probability density function (PDF) is

f (x;α,θ ,γ) =θ γ α−θ xθ−1
[
1+
( x

α

)θ]−(γ+1)
,

x > 0, α,θ ,γ > 0.
(2)

Here γ and θ are the shape parameters and α is a scale
parameter. Random censoring is a situation when the
units in the experiment are lost or removed from the
experiment randomly before its failure in a medical study,
for example some patients may leave the course of
treatment or die before its completion. Similarly, in
reliability engineering, an item may have to be removed
from the test before its complete failure because of its
breakage or for saving time and money. When items are
removed from the test at different random time points, it
is called randomly-censored. Gilbert [15] was the first
who introduced the random censoring. Many authors
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studied this type of censoring such as Breslow and
Crowley [16], Koziol and Green [17] and Csorgo and
Horvath [18]. Kim [19] implemented chi-square goodness
of fit tests for randomly-censored data. Ghitany [20]
analyzed Rayleigh survival model and its application to
randomly-censored data. Ghitany and Al-Awadhi [21]
studied maximum likelihood estimation of Burr-XII
distribution parameters under random censoring. Friesl
and Hurt [22] exponential distribution under random
censorship. Saleem and Aslam [23] discussed the
Bayesian analysis of the Rayleigh survival time assuming
the random censor time. Saleem and Raza [24] studied
the Bayesian analysis of the exponential survival time
assuming the exponential censor time. Danish and Aslam
[25,26] discussed the Bayesian estimation for generalized
exponential and Weibull distributions under
randomly-censored, respectively. Krishna and
Vivekanand [27] studied the estimation in Maxwell
distribution with randomly-censored data and Garg et al.
[28] discussed the generalized inverted exponential
distribution with randomly-censored data.
Recently, Krishna and Goel [29] dealt with maximum
likelihood and Bayes estimation in randomly-censored
geometric distribution. Danish et al. [30] dealt with
Bayesian inference for the Burr-XII distribution under
randomly-censored data and Krishna and Goel [31]
studied the classical and Bayesian inference in two
parameters exponential distribution with
randomly-censored data.
The aim of this paper is organized as follows: Section 2, a
mathematical formulation is discussed for TPBXIID
based on randomly-censored data. The maximum
likelihood estimators of the unknown parameters of
TPBXIID are presented in Section 3. Section 4 deals with
approximate confidence interval (ACI) based on MLEs.
In Section 5, we cover Bayes estimates and construction
of CRIs using the MCMC techniques under two different
loss functions for the TPBXIID. In Section 6, we analyze
two examples of real-data sets to illustrate the estimation
methods developed in this paper and also deals with a
Monte Carlo simulation results. Finally, conclusions
appear in Section 7.

2 The Model and Assumptions

Assume n units are put on experiment with their lifetimes
as X1, . . . ,Xn which are independent and identically
distributed (iid) random variables with CDF FX(x) and
PDF fX (x). Assume that another sequence T1, . . . ,Tn is
the (iid) random censoring times of these units with CDF
FT (t) and PDF fT (t). Assume that Xi’s and Ti ’s are
mutually independent, so that one observes iid random
pairs (Y1,D1), . . . ,(Yn,Dn), where Yi = min(Xi,Ti),
i = 1, . . . ,n and also define Di as

Di =

{
1 if Xi ≤ Ti ,

0 if Xi ≥ Ti .

Now, it is simple to show that the joint PDF of Yi and Di is

fY,D(y,d) =
(

fX (y)(1−FT (y))
)d(

fT (y)(1−FX(y))
)1−d

.

y ≥ 0, d = 0,1.
(3)

The random variables X and T satisfy the proportional
hazards model with proportionality constant φ > 0, if

(
1−FT(t)

)
=
(
1−FX(t)

)φ
, (4)

for φ equal zero Equation (4) describes the case of no
censoring. From Equations (3) and (4) we get the joint
PDF of Yi and Di

fY,D(y,d) = fX (y)
(
1−FX(y)

)φ
φ1−d , y ≥ 0, d = 0,1.

(5)
From Equations (1) and (2), the joint PDF in Equation (5)
takes the following form:

fY,D(y,d;α,θ ,γ,φ) =θ γ α−θ yθ−1
[
1+
( y

α

)θ ]−γ(φ+1)−1

×φ1−d.
(6)

3 Maximum Likelihood Estimation

The likelihood function for TPBXIID is based on
randomly-censored sample data (y,d)=(y1,d1), . . . ,
(yn,dn) of size n as displayed in Section 2, from Equation
(6), the likelihood function is given by

L(y,d;α,θ ,γ,φ) =θ n γn α−nθ
[ n

∏
i=1

yθ−1
i

]

n

∏
i=1

[
1+
(yi

α

)θ]−γ(φ+1)−1

φn−∑n
i=1 di ,

or, equivalently,

L(y,d;α,θ ,γ,φ) =θ n γn α−nθ e(θ−1)∑n
i=1 lnyi

× e
−[γ(φ+1)+1]∑n

i=1 ln
[

1+
(

yi
α

)θ]

×φ n−∑n
i=1 di .

(7)
The log-likelihood function for the TPBXIID,

corresponding to Equation (7) is

ℓ(α,θ ,γ,φ) =n lnγ + n lnθ − nθ lnα +(θ − 1)
n

∑
i=1

lnyi

− [γ(φ + 1)+ 1]
n

∑
i=1

ln
[
1+
(yi

α

)θ]

+
(
n−

n

∑
i=1

di

)
lnφ .

(8)
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Taking the first derivative of Equation (8) with respect to
α , θ , γ and φ and setting each of these derivatives equal to
zero, we obtain the likelihood equations for the parameters
α , θ , γ and φ as follows:

−nθ̂

α̂
+
[
γ̂(φ̂ + 1)+ 1

] n

∑
i=1

θ̂yi

(
yi
α̂

)θ̂−1

α2
[
1+
(

yi

α̂

)θ̂ ] = 0, (9)

n

θ̂
−n ln α̂+

n

∑
i=1

lnyi−
[
γ̂(φ̂ +1)+1

] n

∑
i=1

(
yi

α̂

)θ̂
ln
(

yi

α̂

)

1+
(

yi

α̂

)θ̂
= 0,

(10)

n

γ̂
− (φ̂ + 1)

n

∑
i=1

ln
[
1+
(yi

α̂

)θ̂ ]
= 0, (11)

−γ̂
n

∑
i=1

ln
[
1+
(yi

α̂

)θ̂]
+

1

φ̂

(
n−

n

∑
i=1

di

)
= 0. (12)

From (11) we obtain the MLE of γ̂ as

γ̂ = n

[
(φ̂ + 1)

n

∑
i=1

ln
[
1+
(yi

α̂

)θ̂]
]−1

, (13)

and from (12) we obtain the MLE of φ̂ as

φ̂ =

(
n−∑n

i=1 di

)

γ̂ ∑n
i=1 ln

[
1+
(

yi

α̂

)θ̂] . (14)

The maximum likelihood estimators of α and θ can be
found by solving the system of Equations (9) and (10),
but it is clear that is impossible to solve (9) and (10)
analytically because it is very difficult to get closed forms
for each parameter, we can use a suitable numerical
technique such as Newton-Raphson iteration method to
obtain the estimates, for more details see,
EL-Sagheer[32].

4 Approximate Confidence Interval

The asymptotic variances-covariances of the MLEs for
parameters α , θ , γ and φ are given by elements of the
inverse of the Fisher information matrix are defined as

Ii j =−E
(

∂ 2ℓ
∂δi∂δ j

)
,

where i, j = 1,2,3,4 and (δ1,δ2,δ3,δ4) = (α,θ ,γ,φ).
Unfortunately, the exact mathematical expressions for the
above expectations are very difficult to obtain. Therefore,
we give the approximate asymptotic varaince-covariance

matrix for the MLE, which is obtained by dropping the
expectation operator E

I−1(α,θ ,γ,φ) =




− ∂ 2ℓ
∂α2 − ∂ 2ℓ

∂α∂θ − ∂ 2ℓ
∂α∂γ − ∂ 2ℓ

∂α∂φ

− ∂ 2ℓ
∂θ∂α − ∂ 2ℓ

∂θ 2 − ∂ 2ℓ
∂θ∂γ − ∂ 2ℓ

∂θ∂φ

− ∂ 2ℓ
∂γ∂α − ∂ 2ℓ

∂γ∂θ − ∂ 2ℓ
∂γ2 − ∂ 2ℓ

∂γ∂φ

− ∂ 2ℓ
∂φ∂α − ∂ 2ℓ

∂φ∂θ − ∂ 2ℓ
∂φ∂γ − ∂ 2ℓ

∂φ 2




−1

=




v̂ar(α̂) cov(α̂, θ̂ ) cov(α̂, γ̂) cov(α̂, φ̂)
cov(θ̂ , α̂) v̂ar(θ̂ ) cov(θ̂ , γ̂) cov(θ̂ , φ̂ )

cov(γ̂, α̂) cov(γ̂, θ̂ ) v̂ar(γ̂) cov(γ̂, φ̂)
cov(φ̂ , α̂) cov(γ̂, θ̂ ) cov(φ̂ , γ̂) v̂ar(φ̂ )


 .

(15)
With

∂ 2ℓ

∂α2
=

nθ

α2
+
(
γ(φ + 1)+ 1

)

×
n

∑
i=1

[
θ
(

yi

α

)θ
[
−α2(θ − 1)

[
1+
(

yi

α

)θ]

[
α2
[
1+
(

yi

α

)θ]]2

−
2αyi(

yi

α )
−1
[
1+
(

yi

α

)θ]
+θy2

i

(
yi

α

)θ−2]

[
α2
[
1+
(

yi

α

)θ]]2

]
,

(16)

∂ 2ℓ

∂θ 2
=

−n

θ 2
−
(
γ(φ + 1)+ 1

) n

∑
i=1

(
yi

α

)θ(
ln
[

yi

α

])2

[
1+
(

yi

α

)θ
]2

, (17)

∂ 2ℓ

∂α∂θ
=

∂ 2ℓ

∂θ∂α
=

−R

α
+
(
γ(φ + 1)+ 1

)

×
R

∑
i=1

1
α

(
yi

α

)θ
[

ln
[

yi

α

]
+
(

yi

α

)θ
+ 1
]

[
1+
(

yi

α

)θ
]2

,
(18)

∂ 2ℓ

∂γ2
=

−n

γ2
, (19)

∂ 2ℓ

∂φ2
=

−
(
n−∑n

i=1 di

)

φ2
, (20)

∂ 2ℓ

∂α∂γ
=

∂ 2ℓ

∂γ∂α
= (φ̂ + 1)

n

∑
i=1

θ̂yi

(
yi

α̂

)θ̂−1

α2
[
1+
(

yi
α̂

)θ̂] , (21)

∂ 2ℓ

∂θ∂γ
=

∂ 2ℓ

∂γ∂θ
=

− (φ + 1)
n

∑
i=1

(
yi

α̂

)θ̂
ln
(

yi

α̂

)

1+
(

yi

α̂

)θ̂
,

(22)
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∂ 2ℓ

∂φ∂γ
=

∂ 2ℓ

∂γ∂φ
=

−
n

∑
i=1

ln
[
1+
(yi

α̂

)θ̂]
,

(23)

∂ 2ℓ

∂θ∂φ
=

∂ 2ℓ

∂φ∂θ
=

− γ
n

∑
i=1

(
yi

α̂

)θ̂
ln
(

yi

α̂

)

1+
(

yi

α̂

)θ̂
,

(24)

∂ 2ℓ

∂α∂φ
=

∂ 2ℓ

∂φ∂α
=

γ
n

∑
i=1

θ̂yi

(
yi

α̂

)θ̂−1

α2
[
1+
(

yi

α̂

)θ̂] .
(25)

The asymptotic normality of the MLEs can be used to
compute the approximate confidence intervals for
parameters α , θ , γ and φ . Therefore, (1 − η)100%
confidence intervals (CIs) for parameters α , θ , γ and φ
become
(

α̂ ±Zη/2

√
v̂ar(α̂)

)
,

(
θ̂ ±Zη/2

√
v̂ar(θ̂ )

)
,

(
γ̂ ±Zη/2

√
v̂ar(γ̂)

)
and

(
φ̂ ±Zη/2

√
v̂ar(φ̂ )

)
.

(26)

Where Zη/2 is a standard normal value.

5 Bayes Estimation

In this section, we obtain the Bayesian inference of the
unknown parameters TPBXIID based on
randomly-censored data under squared error (SE) loss
and general entropy (GE) loss functions. It is assumed
here that the parameters α , θ , γ and φ are independent
and follow the gamma prior distributions.

π1(α) ∝ αa1−1e−b1α , α > 0, (27)

π2(θ ) ∝ θ a2−1e−b2θ , θ > 0, (28)

π3(γ) ∝ γa3−1e−b3γ , γ > 0, (29)

π4(φ) ∝ φa4−1e−b4φ , φ > 0. (30)

Here all the hyper parameters a1,a2,a3,a4,b1,b2,b3 and
b4 are assumed to be known and non-negative.
The joint prior distribution for α , θ , γ and φ is

π(α,θ ,γ,φ) ∝ αa1−1θ a2−1γa3−1φa4−1

× e−b1α−b2θ−b3γ−b4φ .
(31)

From (7) and (31) we obtain the joint posterior density
function as follows

π∗(α,θ ,γ,φ |y,d) ∝ αa1−nθ−1θ a2+n−1γa3+n−1

× e−b1α−b4φ φa4+n−∑n
i=1 di−1

× e
−γ
[

b3+[(φ+1)+1]∑n
i=1 ln

[
1+
(

yi
α

)θ]]

× e−θ(b2−sumn
i=1 lnyi)−∑n

i=1 lnyi .
(32)

Therefore, the Bayes estimator of a function U(α,θ ,γ,φ)
under the SE loss function is as follows:

ÛBS(α,θ ,γ,φ) =E
[
U(α,θ ,γ,φ)|y,d

]

=

∫

α

∫

θ

∫

γ

∫

φ
U(α,θ ,γ,φ)

×π∗(α,θ ,γ,φ |y,d)dαdθdγdφ .

(33)

The Bayes estimator of a function U(α,θ ,γ,φ) under the
GE loss function is as follows

ÛBG(α,θ ,γ,φ) =
[
E[U(α,θ ,γ,φ)]−a|y,d]

]− 1
a

=
(∫

α

∫

θ

∫

γ

∫

φ
[U(α,θ ,γ,φ)]−a

×π∗(α,θ ,γ,φ |y,d)dαdθdγdφ
)− 1

a
.

(34)
It is evident that is not possible to compute (33) and (34)
analytically because it is very difficult to get explicit
forms for the marginal posterior distributions for each
parameter. Then, we propose using the MCMC method to
approximate (33) and (34) under SE loss and GE loss
functions.

5.1 MCMC method

In this section, we propose using the MCMC to generate

samples from (32), we compute the Bayes estimates of

α,θ ,γ and φ and also, construct the corresponding HPD

CRIs. A lot of papers dealt with MCMC technique such

as, Chen and Shao [33], EL-Sagheer[32] and Ghazal and

Hasaballah [34,35,36]. The conditional posterior

densities distributions of α,θ ,γ and φ can be obtained

from Equation (32) up to proportionality as the following,

to simply we use π∗
1 (α), π∗

2 (θ ), π∗
3 (γ) and π∗

4 (φ) instead

of π∗
1 (α|θ ,γ,φ ,(y,d)), π∗

2 (θ |α,γ,φ ,(y,d)),

π∗
3 (γ|α,θ ,φ ,(y,d)) and π∗

4 (φ |α,θ ,γ,(y,d)),

respectively:

π∗
1 (α) ∝ αa1−nθ−1e−b1α

× e
−[γ(φ+1)+1]∑n

i=1 ln
[

1+
(

yi
α

)θ]
,

(35)
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π∗
2 (θ) ∝ θ a2+n−1αa1−nθ−1e−θ (b2−∑n

i=1 lnyi)

× e
−[γ(φ+1)+1]∑n

i=1 ln
[

1+
(

yi
α

)θ]
,

(36)

π∗
3 (γ) ∝ γa3+n−1

e
−γ

[
b3+(φ+1)∑n

i=1 ln
[

1+
(

yi
α

)θ]]
,

(37)

π∗
4 (φ) ∝ φ a4+n−∑n

i=1 di−1

× e
−φ

[
b4+γ ∑n

i=1 ln
[

1+
(

yi
α

)θ]]
.

(38)

It can be seen that (37) is a gamma density with shape
parameter (a3 + n) and scale parameter(

b3 + (φ + 1)∑n
i=1 ln

[
1+
(

yi

α

)θ ])
and (38) is a gamma

density with shape parameter (a4 + n) and scale

parameter
(

b4 + γ ∑n
i=1 ln

[
1+
(

yi

α

)θ ])
. Therefore,

samples of γ and φ can be easily generated using any
gamma-generating routine. However, the posterior
densities in Equations (35) and (36) cannot be reduced
analytically to well-known distributions and therefore, it
is impossible to sample directly by standard methods,
however, the plots of posterior distribution of α and θ
show that they are similar to normal distribution, as seen
in Figure (1) and in Figure (2) respectively. Furthermore,
the conditional posterior densities in Equations (35) and
(36) are log-concave. So, to generate random numbers
from thes two distributions, we propose using the
Metropolis-Hastings algorithm with normal proposal
distribution, see Metropolis et al. [37] Now, we are
applying the next MCMC algorithm to draw samples
from the posterior density (32) and in turn to obtain the
Bayes estimates of the parameters (α,θ ,γ,φ) and the
corresponding CRIs.

Fig. 1: Posterior density functions π∗
1 (α|θ ,γ ,φ ,(y,d)) of α .

Fig. 2: Posterior density functions π∗
2 (θ |α,γ ,φ ,(y,d)) of θ .

∂ 2π∗
1 (α)

∂α2
=

−(a1 − nθ − 1)

α2
−
[
1+ γ(φ + 1)

]

×
n

∑
i=1

[
θ
(

yi

α

)θ
[
−α2(θ − 1)

[
1+
(

yi

α

)θ]

[
α2
[
1+
(

yi
α

)θ]]2

−
2αyi(

yi

α )
−1
[
1+
(

yi

α

)θ]
+θy2

i

(
yi

α

)θ−2]

[
α2
[
1+
(

yi

α

)θ]]2

]
< 0,

(39)

∂ 2π∗
2 (θ )

∂θ 2
=
−(a2 + n− 1)

θ 2

−
[
1+ γ(φ + 1)

] n

∑
i=1

(
yi

α

)θ
ln
(

yi

α

)2

[
1+
(

yi

α

)θ]2
< 0.

(40)
Metropolis-Hastings algorithm :

1.Take some initial guess of α , θ , γ and φ , say α(0), θ (0),

γ(0) and φ (0) respectively, M = burn-in.
2.Set j = 1.

3.Generate γ(i) from gamma(
n+ a3, b3 +(φ + 1)∑n

i=1 ln
[
1+
(

yi

α

)θ ])
.

4.Generate φ (i) from gamma(
n+ a4, b4 + γ ∑n

i=1 ln
[
1+
(

yi

α

)θ ])
.

5.Using Metropolis-Hastings, generate α( j) and θ ( j)

from π∗
1 (α|θ ,γ,φ ,(y,d)) and π∗

2 (θ |α,γ,φ ,(y,d))

with normal proposal distribution N(α( j−1),var(α))

and N(θ ( j−1),var(θ )) where var(α) and var(θ ) can
be obtained from the main diagonal in the inverse of
the Fisher information matrix (15).
(i) Calculate the acceptance probability

r1 = min

[
1,

π∗
1 (α

∗|θ j−1,γ j,φ j ,(y,d))

π∗
1 (α

j−1|θ j−1,γ j,φ j ,(y,d))

]
, (41)

r2 = min

[
1,

π∗
2 (θ

∗|α j,γ j,φ j ,(y,d))

π∗
2 (θ

j−1|α j ,γ j,φ j ,(y,d))

]
. (42)
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(ii) Generate u1 and u2 from a Uniform (0,1)
distribution.
(iii) If u1 ≤ r1, accept the proposal and set α i = α∗,
else set α i = α i−1.
(iv) If u2 ≤ r2, accept the proposal and set θ i = θ ∗,
else set θ i = θ i−1.

6.Set j = j+ 1.
7.Repeat Steps 3 − 6 N times to obtain

(α( j),θ ( j),γ( j),φ ( j))), j = M+ 1, ...,N.
8.To compute the CRIs of α,θ ,γ and φ , order

α( j),θ ( j),γ( j) and φ ( j), j = M + 1, ...,N, as(
α(1) < .. . ,< α(N−M)

)
,
(
θ (1) < .. . ,< θ (N−M)

)
,(

γ(1) < .. . ,< γ(N−M)
)

and
(
φ (1) < .. . ,< φ (N−M)

)
.

Then the 100(1 − η)% CRIs of α, θ , γ and φ is(
ζ(N−M)η/2

,ζ(N−M)(1−η/2)

)
. Then, the Bayes estimates

of ζ = (α, θ , γ, φ), under SE loss function are given
by

ζ̂BS =
1

N −M

N

∑
i=M+1

ζ (i), (43)

and the Bayes estimates of ζ = (α, θ , γ, φ), under
GE loss function are given by

ζ̂BG =

[
1

N −M

N

∑
i=M+1

[ζ (i)]−a

]−1
a

. (44)

6 Data Analysis and Simulation Study

6.1 Data Analysis

we analyze two examples of real-data sets to illustrate the
estimation methods developed in this paper and also deals
with.
Example 1 In this example, a real data set is used to
illustrate the proposed methods. The data set is obtained
from Lawless [38]. The data given here arose in tests on
endurance of deep groove ball bearings. The data are the
numbers of million revolution before failure for each of
the 23 ball bearings in the life test and they are:

17.88∗ 28.92 33.00 41.52∗ 42.12 45.60∗

48.40∗ 51.84∗ 51.96∗ 54.12 55.56∗ 67.90
68.64∗ 68.64∗ 68.88 84.12∗ 93.12 98.64∗

105.12 105.84∗ 127.92 127.04 173.40.

The observations with asterisks indicate censored times.
We have used Kolmogorov-Smirnov (K-S) test to fit
whether the data distribution as TPBXIID or not. The
calculated value of the K-S test is 0.111643 for the
TPBXIID and this value is smaller than their
corresponding values expected at 5% significance level,
which is 0.274905 at n = 23 and P-value equal 0.9064.
So, it can be seen that the TPBXIID fits the data very well
and also we have just plotted the empirical S(t) and the
fitted S(t) in Fig 3. Observe that the TPBXIID can be a
good model fitting this data.

Fig. 3: Empirical and fitted survival functions.

Table 1: Different point estimates of (α,θ ,γ ,φ) for Example 1.

Parameters MLE MCMC

SE GE

a =−1 a = 1

α 86.1800 86.1898 86.1898 86.1898

θ 2.82503 2.81088 2.81088 2.81074

γ 1.03204 1.31504 1.31504 1.24072

φ 0.769231 0.406602 0.406602 0.346482

Table 2: 95% confidence intervals of (α,θ ,γ ,φ) for Example 1.

Parameters ACIs

Lower Upper Length

α -39.8294 212.189 252.0184

θ 0.783224 4.86683 4.08360

γ -1.836190 3.90026 5.73645

φ 0.135073 1.40339 1.268317

Parameters CRIs

Lower Upper Length

α 86.18500 86.1951 0.01010

θ 2.785160 2.83809 0.05293

γ 0.778654 1.99176 1.21311

φ 0.168291 0.796284 0.62799

Example 2 In this example, we analyze a real data set
obtained from Egyptain Meteorological Authority. This
data represents the wind speed measured by knots of 84
days. We have taken the maximum wind speed per day in
the period from December, 21, 2014 to March, 14, 2015
for Alexandria city as follows:
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11 18∗ 15 8.0∗ 9.0∗ 6.0∗ 11∗ 16∗

11∗ 13∗ 9.0∗ 17∗ 12∗ 15∗ 11∗ 20∗

32 28 20∗ 23∗ 21∗ 15∗ 17∗ 14∗

16 11∗ 14 13 8.0 9.0 9.0∗ 8.0∗

6.0∗ 9.0 11∗ 9.0∗ 8.0∗ 9.0∗ 14 14
18∗ 14 8.0 15∗ 12 6.0 8.0 8.0
14∗ 12 13 32∗ 28∗ 20 14 8.0∗

8.0 10 9.0∗ 14 22 22 15 8.0
8.0 14∗ 10 13 16 10 9.0∗ 4.0
14∗ 14∗ 10 10 7.0 11∗ 12 10
12 16 7.0 13∗.

The observations with asterisks indicate censored times.
Also, we have used (K-S). The calculated value of the
K-S test is 0.09266 for the TPBXIID and this value is
smaller than their corresponding values expected at 5%
significance level, which is 0.14605 at n = 84 and P-value
equal 0.44. So, it can be seen that the TPBXIID fits the
data very well and also we have just plotted the empirical
S(t) and the fitted S(t) in Fig 4. Observe that the
TPBXIID can be a good model fitting this data.

Fig. 4: Empirical and fitted survival functions.

Table 3: Different point estimates of (α,θ ,γ ,φ) for Example 2.

Parameters MLE MCMC

SE GE

a =−1 a = 1

α 10.71440 8.15489 8.09984 7.99008

θ 5.03672 4.37489 4.34005 4.26800

γ 0.36435 0.21598 0.21257 0.20356

φ 1.00000 2.44937 1.40025 1.21819

6.2 Simulation study

In this section, we present some simulation results to
compare the performances of the different methods

Table 4: 95% confidence intervals of (α,θ ,γ ,φ) for Example 2.

Parameters ACIs

Lower Upper Length

α 7.76024 13.6685 5.90826

θ 3.00934 7.06409 4.05466

γ 0.04461 0.68409 0.63948

φ 0.57230 1.42770 0.85539

Parameters CRIs

Lower Upper Length

α 5.46735 10.5960 5.12865

θ 2.92674 5.90872 2.98198

γ 0.12609 0.31897 0.19288

φ 0.69873 3.34892 2.65019

proposed in this paper. We mainly compare the
performances of the average values and absolute relative
bias (ARB) of ML estimates and Bayes estimates of the
unknown parameters of TPBXIID under two different
loss functions, in terms of average interval length (AIL)
of ACIs and CIs, and their coverage percentages.

1.For given hyperparameters a1,b1,a2,b2,a3,b3,a4 and
b4 generate random values of α , θ , γ and φ from (35),
(36), (37) and (38).

2.For given values of n with the initial values of α , θ , γ
and φ given in Step (1), we generate random samples
from the inverse CDF of TPBXIID and then ordered
them.

3.The ML estimates of α , θ , γ and φ are then obtained
by solving the four non-linear Equations (9), (10),
(13) and (14) numerically and also computed the
95% confidence intervals using the observed Fisher
information matrix.

4.The Bayes estimates of α , θ , γ and φ are computed
and also computed the 95% HPD CRIs by applying the
MCMC method with using 10000 MCMC samples and
discard the first 1000 values as ‘burn-in’ under SE loss
function, given by (43) and GE loss function, given by
(44).

5.Steps 1-5 are repeated 1000 times and generated a
sample from a TPBXIID with α = 7.8921,
θ = 22.2303, γ = 0.0683, φ = 0.8074 and
n = 20,30,40,50,60,70,80,90. The ARB of the
estimates are estimated by

ARB(ψ̂) =
|

∑1000
i=1 ψ̂i

1000
−ψ |

ψ
. (45)

The main results of the simulation study are displayed
in Tables 5,6, 7, 8, 9 and 10.

7 Conclusion

In this paper, based on randomly-censored data the MLEs
and Bayesian estimates of the unknown parameters for
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Table 5: The average and ARB (in parentheses) of estimates for

the parameter α .

n MLE MCMC

SE GE

a =−1 a = 1

20 8.1603 7.5859 7.5859 7.2938

(0.0398) (0.0388) (0.0389) (0.0758)

30 8.0881 8.0421 8.0421 8.0227

(0.0248) (0.019) (0.019) (0.0165)

40 8.0316 7.5154 7.5154 7.5031

(0.0577) (0.0477) (0.0477) (0.0463)

50 7.9711 7.9388 7.9388 7.9295

(0.060) (0.0059) (0.0059) (0.0047)

60 8.0595 8.0361 8.0361 8.0273

(0.0212) (0.0182) (0.0182) (0.0171)

70 8.0220 7.9977 7.9977 7.9914

(0.0565) (0.0434) (0.043) ( 0.0126)

80 7.9558 7.938 7.938 7.9326

(0.0081) (0.0058) (0.0058) (0.0051)

90 7.9145 7.8979 7.8979 7.8942

(0.0028) (0.0007) (0.0007) (0.0003)

Table 6: The average and ARB (in parentheses) of estimates for

the parameter θ .

n MLE MCMC

SE GE

a =−1 a = 1

20 20.9229 21.0678 21.0678 21.0343

(0.0588) (0.0523) (0.0523) (0.0518)

30 21.4172 21.4156 21.4156 21.4156

(0.0376) (0.0365) (0.0366) (0.0364)

40 22.2584 22.3427 22.3427 22.3342

(0.0063) (0.0051) (0.0052) (0.0047)

50 23.1579 23.1557 23.1557 23.1557

(0.0417) (0.0416) (0.0416) (0.0415)

60 20.9806 20.9804 20.9804 20.9804

(0.0564) (0.0562) (0.0562) (0.0560)

70 21.2733 21.2736 21.2736 21.2736

(0.044) (0.043) (0.043) (0.041)

80 22.3809 22.3812 22.3812 22.3812

(0.0069) (0.0066) (0.0068) (0.0065)

90 23.2819 23.282 23.282 23.282

(0.0483) (0.0473) (0.0475) (0.0472)

the TPBXIID has been obtained. It is observed that the
Bayes estimators cannot be obtained in explicit forms. So,
we have used MCMC technique to compute the Bayes
estimates under SE and GE loss functions. We have
applied the developed techniques on two real data sets. A
simulation study is conducted to examine and compare
the performance of the proposed methods. We observe the
following from the tables.

1.It can be seen that, from Tables 5, 6, 7 and 8, the
performance of the Bayes estimates for the
parameters α , θ , γ and φ are better than the MLEs in
the sense of having smaller ARB

Table 7: The average and ARB (in parentheses) of estimates for

the parameter γ .

n MLE MCMC

SE GE

a =−1 a = 1

20 0.1152 0.1111 0.1111 0.0757

(0.6872) (0.6268) (0.6268) (0.1077)

30 0.1048 0.0945 0.0945 0.0799

(0.5348) (0.3834) (0.3834) (0.170)

40 0.1001 0.0899 0.0899 0.0793

(0.4654) (0.3166) (0.3166) (0.1614)

50 0.0857 0.0799 0.0799 0.0735

(0.2544) (0.1693) (0.1693) (0.0768)

60 0.0973 0.0913 0.0913 0.0834

(0.4251) (0.3364) (0.3364) (0.2205)

70 0.0899 0.0843 0.0843 0.0805

(0.3163) (0.2345) (0.2345) (0.1787)

80 0.0799 0.0755 0.0755 0.0721

(0.1703) (0.1057) (0.1057) (0.055)

90 0.076 0.0733 0.0733 0.0716

(0.1132) (0.0737) (0.0737) (0.0476)

Table 8: The average and ARB (in parentheses) of estimates for

the parameter φ .

n MLE MCMC

SE GE

a =−1 a = 1

20 0.7974 2.9028 2.9028 0.8068

(2.7124) (2.5952) (2.5952) (0.0008)

30 0.7935 2.1166 2.1166 0.8258

(1.8172) (1.6215) (1.6215) (0.0228)

40 0.8078 1.9583 1.9583 0.8567

(1.5213) (1.4254) (1.4254) (0.061)

50 0.8311 1.4569 1.4569 0.8565

(0.9294) (0.8044) (0.8044) (0.0608)

60 0.8449 1.6674 1.6674 0.8902

(1.1465) (1.0651) (1.0651) (0.1025)

70 0.8485 1.2471 1.2471 0.9031

(0.6509) (0.5446) (0.5446) (0.1186)

80 0.8843 1.5335 1.5335 0.9284

(0.9953) (0.8993) (0.8993) (0.1498)

90 0.8721 0.9483 0.9483 0.9033

(0.1802) (0.1745) (0.1745) (0.1188)

2.It is clear from Tables 5, 6, 7 and 8 that the Bayes
estimates under SE loss function is equal the Bayes
estimates under GE loss function when a =−1.

3.It is clear from Table 6 that the Bayes estimates under
SE loss function is equal the Bayes estimates under
GE loss function and both are relatively close to the
estimates under MLE.

4.It is clear from Table 5 that the Bayes estimates under
SE loss function is equal the Bayes estimates under
GE loss function and it also has the same ARB when
a = −1 and both are relatively close to the estimates
under MLE.
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Table 9: 95% confidence / credible intervals and the

corresponding coverage percentages for α and θ .

n α α
AIL (ACIs) Coverage AIL (CRIs) Coverage

20 35.6631 0.911 2.3409 0.94

30 1.9561 0.874 1.4457 0.922

40 21.6145 0.855 1.1437 0.911

50 1.3362 0.865 0.9758 0.923

60 1.2476 0.853 0.9382 0.895

70 1.1139 0.854 0.8499 0.923

80 1.0198 0.832 0.7657 0.944

90 0.8990 0.857 0.6628 0.925

n θ θ
AIL (ACIs) Coverage AIL (CRIs) Coverage

20 35.6500 0.802 0.6353 0.932

30 41.7900 0.881 0.0330 0.901

40 40.3230 0.834 0.3094 0.887

50 41.7858 0.872 0.0290 0.934

60 30.2230 0.842 0.0191 0.911

70 28.7684 0.862 0.0179 0.932

80 29.5663 0.821 0.0195 0.942

90 29.4496 0.871 0.0193 0.895

Table 10: 95% confidence / credible intervals and the

corresponding coverage percentages for γ and φ .

n γ γ
AIL (ACIs) Coverage AIL (CRIs) Coverage

20 3.5012 0.842 0.2352 0.933

30 0.2779 0.840 0.1189 0.914

40 2.0355 0.821 0.1007 0.858

50 0.1791 0.862 0.0752 0.936

60 0.1742 0.844 0.0838 0.895

70 0.1461 0.857 0.0603 0.887

80 0.1276 0.843 0.0512 0.895

90 0.1134 0.823 0.0448 0.887

n φ φ
AIL (ACIs) Coverage AIL (CRIs) Coverage

20 2.6213 0.845 8.9495 0.895

30 1.1471 0.865 6.5543 0.921

40 2.7420 0.874 6.4066 0.925

50 0.9278 0.872 3.4532 0.942

60 0.8600 0.874 4.0255 0.942

70 0.7990 0.835 1.6889 0.929

80 0.7773 0.827 3.7569 0.941

90 0.7232 0.814 0.8250 0.936

5.It is evident that from Tables 9 and 10 the performance
of the Bayes estimates for parameters α , θ , γ and φ is
better than the ML estimates in terms of AIL and CP.
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