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Abstract: In clinical and epidemiological studies, very often, observations are collected on more than one correlated processes. For

example, in AIDS related studies, along with a longitudinal biomarker like CD4 cell count, data on time-to-death is also recorded.

Modelling them separately may give bias estimates. This necessitates the concept of joint modelling where two or more processes are

modelled together. To link these processes, the usual technique is to use the same or highly correlated subject-specific random-effects

for all the sub-models. In this work, structural correlation based on the conditional distribution of time-to-event given longitudinal

response is used. A computationally efficient two-stage method is used to find the estimates. At the first stage, longitudinal submodel is

fitted using nlme package in R. In the second stage, to avoid the complexity of second order differentiation, we have used an adaptive

gradient descent algorithm. The simulation study shows that this structural correlation is good enough to take care of the correlation

between these two simultaneous processes. A rapid convergence is also achieved. The proposed method is finally applied to a data set

related to AIDS studies.
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1 Introduction

Medical and epidemiological studies often involve instances where we have to analyze repeated evaluations of outcomes
of a particular characteristic of a patient along with event history data which may involve death, dropout or progress of
a disease. Two well-known areas which include vast applications of these kinds of studies are AIDS research and cancer
studies. A joint modelling approach is needed where we take into account two processes i.e., the longitudinal and the time-
to-event simultaneously. These two processes in their very nature are interlinked with each other and separate analysis
may give biased or inefficient estimates. A joint modelling approach thus comes into play. There are two types of joint
models available in the literature. In the first type of models, our primary interest lies on the event outcome and we wish
to examine the effect of longitudinal trajectories on it. In another type of models, we are interested in the effect of the
survival process on the longitudinal outcome.

The modelling framework for the former situation is known as selection models (Little and Rubin [1], Little and Rubin
[2]) and the latter is known as pattern-mixture models (Little [3]). Both of them signify the same joint distributions with
different statistical interpretations. Fitzmaurice et al. [4], Molenberghs et al. [5], Molenberghs and Verbeke [6] in their
works had studied in detail and compared the conclusions and interpretations based on these two types of models. Another
model i.e., the latent variable model (or a shared random-effects model) has also been considered by some authors (Xu and
Zeger [7], Henderson et al. [8], Verbeke et al. [9]) where the two processes are linked by means of shared random-effects.
These models can be distinguished by the method of factorization chosen in their resulting joint likelihood.

Hence, the primary focus of joint modelling lies in acquiring reliable estimates of the parameters in the model based
on where our interest is focused. For this purpose, both frequentist and Bayesian approach had been explored extensively
in literature where sometimes these two approaches have also been combined for the reason of taking the privileges
of strengths offered by both the situations. Unlike earlier researches on joint modelling involving univariate framework
(consideration of single longitudinal and time-to-event outcome), works in recent times focus extensively on multiple
longitudinal outcomes (Ibrahim et al. [10]) along with an event of interest or competing events of interest. Rizopoulos and
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Ghosh [11] in their work had developed multivariate joint model considering multiple longitudinal outcomes along with
a time-to-event based on data on 407 patients with chronic kidney disease who underwent a renal transplantation and had
three separate biomarker measurements recorded repeatedly. Here, a bayesian approach was adopted using a spline-based
semi-parametric setup with the latent terms being formulated with Dirichlet process allowing for general shapes of their
distribution.

Further, Andrinopoulou et al. [12] developed an extended joint model that handled one continuous and one ordinal
longitudinal outcome, as well as allowing for a competing risk setting. In recent times, Bayesian estimation has been
facilitated by the development of packages like JMbayes (Rizopoulos [13]) which can fit a wide range of joint models for
longitudinal outcomes in both continuous and ordinal form. Hickey et al. [14] considered a joint model with multivariate
linear mixed sub-model for longitudinal process and Cox proportional hazards regression model with time-varying
covariates for the survival process with a zero-mean multivariate latent Gaussian process introduced to bind the two
sub-models. A practical algorithm for fitting the models had been proposed and the method was demonstrated using
joineRML in R. JM package (Rizopoulos [15]) had also been developed for joint models to be implemented in a
frequentist perspective.

In this context, there is another important issue to be considered regarding the model assumptions for the longitudinal
growth trajectories which are usually fitted through linear mixed-effects models. These models though take into account
the inherent correlation introduced by the repeated measurements along with the covariates suffers from a drawback in
the cases where lack of linearity is observed in the data.

However, sometimes the likelihood function may depend on the parameters in a non-linear fashion where we are
compelled to use non-linear approach where there is much greater scope of obtaining a more interpretable model involving
a reduced number of parameters. Moreover, it is quite common in HIV studies that the CD4 cell trajectories of infected
patients display a pattern which exhibits skewness or a departure from linearity. Oncological studies also present with
some situations where longitudinal measurements of patients though found to be linear before the detection of cancer
started to show non-linear pattern nearer to the time point when the cancer was detected. Thus, it is clear that non-linear
mixed-effects models can be particularly useful in these instances as they are based on underlying causes or mechanisms
which generates such data. Li et al. [16] had used a quasi-likelihood type approximation for non-linear variables and
had transformed their model into a multivariate linear mixed model framework with an algorithm being developed via an
extension to EM approach.

However, the classical approach suffers from some serious drawbacks as current maximum likelihood methods for
joint modelling are only advantageous when the dimension of random-effects is not high. Further, for multivariate linear
mixed-effects models, the model fitting and analysis becomes intractable in cases where the dimension of variables are
greater than four due to the increase of parameters in the covariance matrix for random-effects. For the non-linear
framework, high-dimensional integration is more troublesome to handle in the presence of multiple random-effects
where Monte Carlo or Gauss-Hermite quadrature fails to serve the purpose (Fieuws et al. [17]).

Hence, two-stage estimation has been explored in literature which guarantees to solve those problems to some extent.
Two-stage approaches have been investigated previously by Bycott and Taylor [18], Self and Pawitan [19], Tsiatis et al.
[20], and Dafni and Tsiatis [21]. In joint models, this approach had been considered by Albert and Shih [22] where they
addressed to the problem of accommodating a large number of longitudinal biomarkers and high dimensional random-
effects by proposing a two-stage regression calibration approach (also known as two-stage multilevel method). Sweeting
and Thompson [23] considered fitting the longitudinal process separately in the first stage and then utilized the maximum
likelihood estimates and best linear unbiased predictors of random-effects in the second stage to deal with the survival
process which was treated with standard survival analysis software. Ye and Wu [24] had compared the efficacy of joint
likelihood and two-step methods for various joint models. Sayers et al. [25] compared three two-stage approaches where
they summarized the information on the longitudinal observations for each of them in the first stage and considered a
simple approach, an individual regression approach and multilevel model for longitudinal trajectories in the second stage.
Donnelly et al. [26] constructed a two-stage approach where they used a Coxian phase-type distribution in the second
stage by considering random-effects (incorporated as covariates) as a proxy measure in the linear mixed-effects model in
the first stage. Huong et al. [27] proposed ordinary, full likelihood and modified two-stage approaches and had compared
their performances.

In this work, we have adopted a two-stage approach to our proposed joint model with (n+ 1) components. Here, the
first n components describe the longitudinal process which is viewed in the non-linear framework. The (n + 1)th

component describes the time-to-event and our main objective is to examine how the time-to-event depends on the
longitudinal process. The association between the two processes has been defined through Bartlett decomposition of the
covariance matrix. We had considered an accelerated failure time model under a selection model framework. We had
considered a linear mixed-effects model in the first stage for the longitudinal process and had used the information
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obtained from that stage to estimate the parameters in the survival process. This has been achieved by adopting a
gradient descent algorithm with an adaptive learning rate.

The article is organized as follows. In Section 2, we describe the two-stage approach for proposed joint model. We
have also considered frequentist approach to estimate parameters. In Section 3, we examine the performance of our two-
stage estimation approach on our proposed model with the help of a simulation study. Section 4 applies the two-stage
approach on a popular data set on AIDS study and some conclusions are discussed in Section 5.

2 Joint Models and Estimation

2.1 Model and Methodology

Here, we denote yi j as the jth ( j = 1,2, ..,ni) longitudinal trajectory for the ith (i = 1,2, ..,m) subject and Ti as the time-to-

event outcome for ith individual with δi as the censoring indicator. We model the joint distribution of the longitudinal and
time-to-event data with given subject-specific random-effects bbbi by the (ni + 1) variate normal distribution

(yyy′i, logTi)
′ ∼ N(ggg(xxxiβββ ,zzzibbbi),ΣΣΣ i),

VVV i =

(

yyyi

logTi

)

= ggg(xxxiβββ ,zzzibbbi)+ εεε i (1)

where ggg(·) depicts a vector of non-linear functions which is assumed to be monotonic, continuously differentiable and
whose first order derivative is uniformly bounded. Here, xxxi denotes the design matrix for the fixed-effects, zzzi denotes the
design matrix for the random-effects and βββ is the vector of regression parameters. Again,

εεε i ∼ N(000,ΣΣΣ i) with ΣΣΣ i =

(

ΣΣΣ yi
σσσ1i

σσσ ′
1i σ2

T

)

(2)

where the vector σσσ1i captures the structural association between yyyi and logTi. This association between two processes
in the joint model framework had been previously captured through the subject specific random-effects bbbi in literature.
In our proposed modelling structure we have captured mainly the longitudinal correlation by bbbi which indicates that the
dependency between the two processes can still be captured using the conditional distribution even if these two processes
do not share common bbbi.
Owing to difficulties due to positive definiteness constraints and high-dimensional complexites it is cumbersome to model
the entire covariance matrix for each subject. This issue can be addressed by factorization of the joint distribution of
(yyyi, logTi). In our proposed modelling framework, we factor the joint distribution of yyyi and logTi into two components:
a marginal non-linear model for yyyi and a correlated regression model for logTi given yyyi. Similar type of setting has been
used by Fitzmaurice and Laird [28] and Gueorguieva and Agresti [29] in this context. In presence of subject specific
random-effects bbbi, we let

xxxi =

(

xxxi1 000
000 xxxi2

)

,zzzi =

(

zzzi1 000
000 zzzi2

)

and βββ =

(

βββ 1

βββ 2

)

Then, by implementing the Bartlett decomposition of a covariance matrix, the new models can be expressed as:

yyyi|bbbi = ggg(xxxi1βββ 1,zzzi1bbbi)+ εεε i1 (3)

and
logTi|yyyi,bbbi = xxxi2βββ 2 + zzzi2bbbi +BBBi(yyyi − ggg(xxxi1βββ 1,zzzi1bbbi))+ εi2 (4)

where BBBi = σσσ ′
1iΣΣΣ yi

is the vector reflecting structural association between these two processes for the ith individual

where σσσ1i = σ2
cov111. Here we also capture the local dependency through non-zero zzzi1 and zzzi2. Further let us assume,

εεε i1 ∼ N(000,ΣΣΣ yi
) and εi2 ∼ N(0,σ2

T ). To capture longitudinal correlation, we have assumed bbbi to be a p component vector
following Np(000,ΣΣΣb). The covariance matrix ΣΣΣb is structured as the AR(1) process i.e

ΣΣΣ b = σ2
b











1 ρ . . ρ p−1

ρ 1 . . ρ p−2

. . . . .

. . . . .

ρ p−1 ρ p−2 . . 1
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Censoring information is incorporated through indicator variable δi such that δi = 1 if the ith individual is not censored
and zero otherwise. The time-to-event observation T ∗

i is min(logTi,Ci) where Ci denotes censored time point for the ith

individual and Ti denotes the time to event observations of the ith individual. Thus the contribution of the time-to-event
for the likelihood can be expressed as:

f (T ∗
i |yyyi,bbbi) = h(T ∗

i |bbbi)
δi S(T ∗

i |bbbi)

where h(T ∗
i |bbbi) is the conditional hazard and S(T ∗

i |bbbi) is the conditional survival function. Under the log-normal
assumption, we have

S(T ∗
i |yyyi,bbbi) = 1−Φ

(

T ∗
i −λ (yyyi,xxxi,bbbi)

σA

)

where

λ (yyyi,xxxi,bbbi) = xxxi2βββ 2 + zzzi2bbbi +BBBi(yyyi − ggg(xxxi1βββ 1,zzzi1bbbi))

denotes the conditional mean of T ∗
i structurally dependent on the longitudinal trajectory and the subject-specific random-

effects and

σ2
A = σ2

T −σσσ1i
′ΣΣΣ−1

yi
σσσ1i

denotes the conditioned variability.

It is a well-known fact that the AFT (accelerated failure time) structure in joint modelling is troublesome to deal with
compared to Cox model, since f (T ∗

i |yyyi,bbbi) is more complicated and unlike the Cox model the baseline function involves
unknown quantities. As a result, it is not possible to use the point mass function with masses assigned to all uncensored
survival times Ti for the baseline hazard function.
Hence, the complete data likelihood for the ith individual :

Li =

( ni

∏
j=1

f (yi j |bbbi)

)

f (T ∗
i |yyyi,bbbi) f (bbbi|σ

2
b ,ρ)

Assuming independence among subjects, we can take ΣΣΣ yi
= σ2

y III, where III is a ni×ni matrix. For notational simplicity, we

let DDD = {yi j}∪{T ∗
i }∪{δi} be the observed data and ΨΨΨ = (βββ ′

1,βββ
′
2,σ

2
y ,σ

2
b ,ρ ,σ

2
T ,σ

2
cov,ννν

′)′ be the parameter vector. Here
ννν denotes the coefficient vector of random-effects in the time-to-event trajectory.
Here, we have,

T ∗
i |yyyi,bbbi ∼ N(λ (yyyi,xxxi,bbbi),σ

2
A)

The contribution owing to the accelerated failure time structure is

fS = φ∗(W )δ (1−Φ(W ))1−δ

where

Wi =
T ∗

i −λ (yyyi,xxxi,bbbi)

σA

denotes the standard normal variate relating to the time-to-event contribution for the ith subject, φ∗(W ) denotes the
probability density function (pdf) and Φ(W ) denotes the cumulative distribution function (cdf) of the standard normal
variate W .

Combining all submodels, the likelihood for the ith individual is given by,

Li(ψψψ |DDD) ∝ (exp(−
(T ∗

i −λ (yyyi,xxxi,bbbi))
2

2σ2
A

))δi(1−

∫

exp(−
(T ∗

i −λ (yyyi,xxxi,bbbi))
2

2σ2
A

))1−δi

exp(−(yyyiii − ggg(xxxi1βββ 1,zzzi1bbbi))
′ΣΣΣ−1

yi
(yyyiii − ggg(xxxi1βββ 1,zzzi1bbbi)))exp(−bbb′iΣΣΣ

−1
b bbbi)
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2.2 Estimation

We need to estimate the parameters involved in the two models denoted by ΨΨΨ = (βββ ′
1,βββ

′
2,σ

2
y ,σ

2
b ,ρ ,σ

2
T ,σ

2
cov,ννν

′)′. Due to
limitations in existing classical approaches for the parametric estimation under non-linear framework, we have proposed
a two-stage approach where we fit the non-linear longitudinal submodel at the first stage. We use the estimates obtained
from this method and plug them in to the survival model. This estimation of the longitudinal process separately constitutes
the first stage of our two-stage estimation. The next stage involves using of the estimated longitudinal parameters and the
best linear unbiased estimators (BLUP) of the subject-specific random-effects in the survival process and then estimating
the survival parameters by gradient descent algorithm with adaptive learning rate.

Two-Stage Approach

Stage-I : A non-linear mixed-effects model has been considered for the longitudinal process where we model the
longitudinal trajectories as

∼
yyyNLi

|bbbi = ggg(xxxi11βββ 11,zzzi11bbbi)+ εεε i11

where xxxi11 and zzzi11 respectively are the covariate vectors of the fixed-effects parameter vector βββ 11 and the subject
specific random-effects bbbi constituting the components of non-linear vector functions ggg(·). Here bbbi ∼ N(000,ΣΣΣ b) with ΣΣΣ b

as a AR(1) process.

The model had been fitted through lme function in nlme() package (Pinheiro and Bates [30], Pinheiro et al. [31]) in R
and the corresponding output has been utilized for obtaining the estimated longitudinal submodel. It can be represented
as:

∼
yyyNLi

|bbbi = ggg(xxxi11βββ ∗
11,zzzi11bbb

∗
i )+ εεε i11

where βββ ∗
11 and bbb∗i correspond to the estimated fixed-effects parameters and best linear unbiased predictors respectively

obtained from the fitted model summary.

In this work we have also considered a linear set up along with the non-linear set up as

∼
yyyLi

|bbbi = xxxi21βββ 21 + zzzi21bbbi + εεε i21

where xxxi21 is the covariate vector of the fixed-effects for the ith trajectory. Here, βββ 21 = (βI,βS), where βI and βS represents

the fixed effect intercept and the slope of the longitudinal profile for the ith patient. zzzi21 represents the covariate vector
incorporating both the random-effects intercept and slope for the ith longitudinal trajectory. The fitted longitudinal model
can be represented in the form:

∼
yyyLi

|bbbi = xxxi21βββ ∗
21 + zzzi21bbb∗i + εεε i21

where βββ ∗
21 and bbb

∗
i respectively correspond to the estimated parameter values of the fixed-effects and the best linear

unbiased predictors obtained from the submodel fit.

Stage-II: For the non-linear framework, the information from the first step of the procedure has thus been implemented
as plug-in estimates in the survival part of our model which can be expressed as:

T ∗
i |

∼
yyyNLi

,bbb∗i = xxxi12βββ 12 + zzzi12bbb∗i +BBBi1(
∼
yyyNLi

− ggg(xxxi11βββ ∗
11,zzzi11bbb∗i ))+ εi12

where BBBi1 = σσσ ′
1iΣΣΣ

∗
yNLi

For the linear extension, the fitted values of the parameters in the lme model and the empirical Bayes estimates of the
subject-specific parameters thus obtained are used as plug-in estimates in the survival part of our model where

T ∗
i |

∼
yyyLi

,bbb∗i = xxxi22βββ 22 + zzzi22bbb∗i +BBBi2(
∼
yyyLi

− xxxi21βββ ∗
21 − zzzi21bbb∗i )+ εi22
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where BBBi2 = σσσ ′
1iΣΣΣ

∗
yLi

.

Hence, we are left with the task of estimation of the parameters for the time-to-event process only which we estimate
by adopting a gradient-descent optimization algorithm with an adaptive learning rate G where the parameter vector at
(h+ 1)th step can be expressed as

ΘΘΘ (h+1) =ΘΘΘ (h)−G(h)(ΘΘΘ)∗UUU(ΘΘΘ (h))

where UUU(ΘΘΘ (h)) denotes the score vector of the parameter at the hth step.

The choice of the learning rate is very important as a large G can lead to skipping the optimal solution whereas a
small G may result in needing many iterations to converge to best values. So, we adapt our learning rate at each iteration
step depending on how closer or farther we are to the true solution. The first-order partial derivatives comprising the
elements of the score vectors under the non-linear framework can be expressed as:

∂ lnLi

∂βββ 12

=
ζ

σA

xxxi12

∂ lnLi

∂σ2
T

=
ζ

2σ3
A

(T ∗
i − xxxi12βββ 12 − zzzi12bbb∗i −BBBi1(

∼
yyyNLi

− ggg(xxxi11βββ ∗
11,zzzi11bbb∗i )))

∂ lnLi

∂σ2
cov

= ζ [
111(

∼
yyyNLi

− ggg(xxxi11βββ ∗
11,zzzi11bbb∗i ))

σA

−
niσ

2
cov

σ3
A

(T ∗
i − xxxi12βββ 12 − zzzi12bbb

∗
i −BBBi1(

∼
yyyNLi

− ggg(xxxi11βββ ∗
11,zzzi11bbb

∗
i )))]

∂ lnLi

∂νs

= ζ
bi(s)

σA

where ζ =

(

δiWi +(1− δi)
φ∗(Wi)

(1−Φi(Wi))

)

, (Wi defined in previous section)

zzzi12 = ννν = (ν1,ν2, ...,νs, ...)
′
,

G(h)(ΘΘΘ) =
(ΘΘΘ (h−1)−ΘΘΘ (h−2))(UUU(ΘΘΘ (h−1))−UUU(ΘΘΘ (h−2)))

(||UUU(ΘΘΘ (h−1))−UUU(ΘΘΘ (h−2))||)2
,

σσσ1 = σ2
cov111, ni = number of time points for the ith individual

with G(h) denoting the learning rate for the hth parameter step and U being the score function.

Apart from this, we have considered two separate joint models namely JM1 and JM2 under our proposed non-linear
mixed-effects model where the former has been modelled in a way that the processes would be linked with both
subject-specific random-effects and structural association i.e., σσσ1 and the latter links the two processes solely by
structural association. This approach has also been adopted under the linear framework and thus the performances of the
estimation procedure in the survival model can be examined. Further, it gives an interesting view about how the nature of
the association between the two processes affects their estimates.

3 Simulation Study

We attempt to investigate the efficiency of this two-stage estimation method by conducting a simulation study
considering 200 individuals each with varying number of longitudinal measurements generated from Uni f orm(4,10). A
non-linear model is considered for longitudinal data and subsequently, a linear model has been considered for the sake of
comparison. To examine importance of structural dependency between the two processes, we have considered two joint
models i.e., JM1 and JM2. The former has the two processes linked by means of both subject-specific random-effects and
structural dependency by means of conditional distribution and the latter has two processes linked solely by structural
dependency.

We had thus generated 100 datasets under the non-linear framework for each of the joint models with the following
model assumptions. Continuous covariates for fixed and random-effects in the longitudinal submodel were generated from
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normal distributions. The subject-specific random-effects for each individual, in this case, has been assumed to follow a
bivariate normal distribution with bbbi ∼ N(000,ΣΣΣb), where ΣΣΣb follows the AR(1) structure with ρ being the longitudinal
correlation. Again, the longitudinal trajectories are assumed to follow ni variate normal distribution where yi j = α +

β xi j+β1x2
i j+bi1+bi2ti j+εi j denotes the ith patient’s longitudinal profile at the jth time point where εεε

′
s are generated from

N(000,σ2
y III). For the sake of identifiability we assume σ2

y = 1. Here, (α,β ,β1) denotes the fixed-effects parameter vector for
the non-linear longitudinal trajectory, xi j and ti j respectively being the covariate vector for the fixed-effects and random-

effects respectively. x
′

i js are generated from N(3, 0.5) and ti j represents the time point of the jth longitudinal observation

for the ith patient. The inclusion of ti j ensures that the effect of time is considered as covariate in the longitudinal trajectory.

Time-to-event observations i.e logT
′s

i are generated from N(µT1i
,σTC

) where

µT1i
= β0 + ν1bi1 + ν2bi2 + σ2

cov ∑
ni

j=1(yi j − α − β xi j − β1x2
i j − bi1 − bi2ti j) and σTC

= (σ2
T − niσ

4
cov). β0 denotes the

intercept of the time-to-event trajectory where (ν1,ν2) is the coefficient vector for the subject-specific random-effects.
Here, σ2

cov111 =Cov(logTi,yyyi) reflects the structural correlation between the two submodels.

The censoring time associated with the ith individual i.e., Ci ∼ exp(0.5) where we compute T ∗
i = min(logTi,Ci) and

δi = 1 if logTi ≤ Ci and 0 otherwise. Thus (T ∗
i ,δi) contains the censoring information with the censoring percentage

observed to be around 35%-40%. We also considered a setup with 20% censoring and found no remarkable difference in
the results. We assumed the true parameter values to be α = 1.85, β0 = 1, β = 1.3, β1 = 0.5, σ2

cov = 0.1, σ2
T = 0.8,

σ2
b = 0.8, ρ = 0.3, ν1 =−0.2, ν2 = 0.8.

Further, as discussed previously in Section 1, for the sake of establishing the importance of the structural dependency in
our proposed model we have carved out two joint models. JM1 with two kinds of association between the two processes
(structural and through subject-specific random-effects) and JM2 or the joint model with local independence (structural
association only) where ν1 = ν2 = 0.

We have simultaneously considered a linear mixed-effects model for longitudinal data using similar set up.

Here, the longitudinal observation for the ith patient at the jth time point can be expressed as

yi j = α + β xi j + bi1 + bi2ti j + εi j. Time to event observations i.e logT
′s

i have been generated from N(µT2i
,σTC

) where

µT2i
= β0 + ν1bi1 + ν2bi2 + σ2

cov ∑
ni
j=1(yi j −α − β xi j − bi1 − bi2ti j) and σTC

= (σ2
T − niσ

4
cov) expresses the conditional

mean of the survival observations directly dependent on both the longitudinal trajectories and the subject-specific
random-effects.

Under this model segments the parameter space can be defined as:

ΘΘΘ1 = (α, β0, β , β1, σ2
T , σ2

cov, σ2
b , ρ , ν1, ν2 )

ΘΘΘ2 = (α, β0, β , β1, σ2
T , σ2

cov, σ2
b , ρ )

ΘΘΘ3 = (α, β0, β , σ2
T , σ2

cov, σ2
b , ρ , ν1, ν2 )

ΘΘΘ4 = (α, β0, β , σ2
T , σ2

cov, σ2
b , ρ )

where ΘΘΘ 1 and ΘΘΘ 2 are the parameter space for JM1 and JM2 for non-linear framework and ΘΘΘ3 and ΘΘΘ 4 respectively are the
parameter space JM1 and JM2 under the linear framework.

Hence we obtain (xxxi,yyyi,T
∗

i ,δi) as our dataset for the purpose of the simulation study and model comparison. In
the non-linear framework, we fit the data thus obtained in the form of a quadratic mixed-effects model through lme()
function available under nlme package. The corresponding bias, Standard Error (SE), Mean Square Error (MSE) and
coverage probabilities (CP) for 95% equal tailed confidence intervals for all the parameters under the sub-models has
been displayed in Table 1. Estimates for the intercept, linear effect parameter and quadratic effect parameter under the
two sub-models have been found to be α̂ = 1.5096 with Standard error (se)=0.1152 for JM1, α̂ = 1.5100 with se=0.1111

for JM2, β̂ = 1.2934 with se=0.0766 for JM1, β̂ = 1.2948 with se=0.0800 for JM2, β̂1 = 0.4887 with se=0.0127 for JM1,

β̂1 = 0.4999 with se=0.0122 for JM2. The longitudinal correlation ρ has been estimated to be ρ̂ = 0.7131 with se=0.1364
for JM1 and ρ̂ = 0.7120 with se=0.2961 for JM2. The estimated variability of the longitudinal component for both JM1

and JM2 is σ̂2
b = 0.6201 with se=0.0001.

Moreover, for each of the joint models the best linear unbiased predictors (BLUP) for the subject-specific random-

effects i.e., b̂i1 and b̂i2 have also been obtained and thus the estimated parameters along with the BLUPs are plugged in
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the survival process of the model where we estimate the parameters by adopting gradient-descent optimization algorithm.
As for the parameters in the survival process, the intercept for the time-to-event trajectory has been estimated to be

β̂0 = 0.9001 with se=0.0009 for JM1 and β̂0 = 1.1000 with se=0.0001 for JM2. The structural association parameter
between the two processes has been estimated to be σ̂2

cov = 0.0302 with se=0.2382 for JM1 and σ̂2
cov = 0.0040 with

se=0.0007 for JM2. The unconditional variability for the time-to-event observations is estimated to be σ̂2
T = 0.7000 with

se=0.0010 for JM1 and σ̂2
T = 0.9005 with se=0.1000 for JM2. The estimated coefficients of the components of the subject-

specific random-effects in the time-to-event process have been found to be ν̂1 =−0.1900 with se=0.0011 and ν̂2 = 0.7000
with se=0.0008 for JM1. Both the joint models in non-linear framework performed equally well with comparable Bias,
low standard error and mean square errors and the findings has been displayed in Table 1.

As for the linear model for longitudinal observations we fit it with a linear mixed-effects by lme() function available in
the nlme package in R. For the JM1 and JM2 sub-models, the summary provides us with the estimate of the intercept and

slope of the fixed-effects i.e., α̂ = 1.8021 with se=0.0265 for JM1 and α̂ = 1.8342 with se=0.0287 for JM2, β̂ = 1.3126

with se=0.0077 for JM1 and β̂ = 1.2936 with se=0.1847 for JM2. σ2
b has been estimated to be σ̂2

b = 0.6287 with se=0.1446

for JM1 and σ̂2
b = 0.6389 with se=0.1226 for JM2.

The longitudinal correlation for JM1 and JM2 are respectively ρ̂ = 0.4457 with se=0.1183 and ρ̂ = 0.3510 with
se=0.1334. Further, the best linear unbiased estimates (BLUP) of the slope and intercept components of the

subject-specific random-effects i.e., b̂i1 and b̂i2 for each of the submodels are obtained and these along with these
estimates are utilized as plug-in estimates in the survival part of the model. Hence we are only left with the task of
estimation of the time-to-event parameters which we have achieved by adopting the gradient-descent optimization
algorithm with an adaptive learning rate as done with our proposed non-linear framework.

The estimated intercept of the time-to-event trajectory is β̂0 = 1.0836 with se=0.0163 for JM1 and β̂0 = 1.0999 with
se=0.0001 for JM2. The structural association between the two components of the joint models i.e σ2

cov is σ̂2
cov = 0.2002

with se=0.0001 for JM1 and σ̂2
cov = 0.0003 with se=0.0001 for JM2. The unconditional variability for for the

time-to-event is σ̂2
T = 0.9716 with se=0.0008 for JM1 and σ̂2

T = 0.7568 with se=0.0001 for JM2. The coefficients for the
intercept and slope for the subject-specific random-effects in the time-to-event trajectory were estimated to be
ν̂1 =−0.1997 with se=0.0016 and ν̂2 = 0.6378 with se=0.0018 and it is seen that JM1 and JM2 perform reasonably well
with small bias, standard error (se) and mean square error (MSE) with satisfactory coverage probabilities for all the
parameters.

It can be easily seen from Table 1 that structural correlation alone (JM2) can give almost similar kind of results
compared to JM1 in terms of biases. Moreover, it can be noted that the estimates for linear and non-linear under JM1 and
JM2, in most cases, are found to be close enough. This shows that the two-stage method performs well in a different setup.

3.1 Robustness study

It must be noted that we have adopted a fully parametric model for our analysis and have modelled the survival process
by parametric accelerated failure time model with a lognormal distributional assumption. To examine the robustness of
our model under model misspecification, we specify the survival distribution as generalized logistic distribution with

probability density function f (x; µ ,ς) = e
−

x−µ
ς

ς(1+e
−

x−µ
ς )2

where −∞ < x,µ < ∞ and ς > 0. The results are summarized in

Table 2. It displays the results under both the linear and non-linear framework and the subsequent joint models under
each of them with bias, standard error, mean square error and the coverage probabilities of the 95% confidence intervals.
The results are satisfactory with low bias, SE, MSE and desirable coverage probabilities for both the linear and
non-linear approaches.

In terms of absolute bias, both the models JM1 and JM2 under linear framework performs better for longitudinal
parameters than the non-linear framework, whereas the coverage probabilities for α , σ2

b and ρ under non-linear framework

are found to be on the slightly higher side. Again, the time-to-event parameters β0, σ2
cov amd σ2

T under JM1 reveals sightly
lower absolute bias for the non-linear framework and the coverage probabilities for the time-to-event submodel parameters
are observed to have better performance under the non-linear framework. JM2 exhibits comparable performance in terms
of absolute bias for the time-to-event submodel parameters with better coverage probability of β0 and σ2

T for non-linear
framework.
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4 DATA Analysis

4.1 AIDS Data

In an multicenter open-label trial 467 patients each of whom had either previously received zidovudine (ZDV) and had
300 or fewer CD4 cells per cubic millimetre of blood or were diagnosed with acquired immunodeficiency syndrome
(AIDS) were being randomly assigned for being treated with either (ddI) didanosine (500mg per day) or (ddC) zalcitabine
(2.25 mg per day). CD4 blood cells are a part of the infection-fighting system of the body produced in the spleen, lymph
nodes and thymus gland. Thus the absolute number of CD4 lymphocyte cells per cubic millimetre of blood is an effective
indicator for progression of AIDS and so it has been measured repeatedly over intervals of 2, 6, 12 and 18 months. CD4
cell count over time serves as a biomarker and is an indication of enhanced risk to infection. Both of the drugs didanosine
and zalcitabine are commonly used to treat patients infected by human immunodeficiency virus (HIV) who were either
unable to tolerate zidovudine treatment or were showing signs of disease progression despite it.

This data was collected from the experiment carried out by the Terry Beirn Community Programs for Clinical Research
on AIDS. A detailed overview can be found in Abrams et al. [32]. The goal of this study was to compare and judge the
safety and relative efficacy of these two alternative antiretroviral drugs in curing patients suffering from the HIV. The
study revealed that about 66% (309) patients had experienced disease progression or death, and nearly about 40% (188)
had died after a median follow-up of 15.6 months. About 35% (164) had become study drug intolerant, and about 57%
(143) of the still living and monitored had been discontinued permanently from the original study drug. Only 1% (4)
patients’ vital status could not be known and about 7% (31) patients were not participating in the study anymore.

In this two-step method, in the first stage, we have incorporated the covariate Observation time (Obstime) which
constitutes follow up periods of the patients under study. The square root of the CD4 cell counts (square root
transformation adopted to reduce the right skewness in the CD4 data) serves as the repeated longitudinal observations.

According to our non-linear framework the CD4 cell counts in the data may be expressed in the form:

yi j = α +β Obstimei j +β1Obstime2
i j +Obstimei jDrugi + bi1 +Obstimei jbi2 + ε11i j,

where α , β and β1 are respectively the intercept, linear effect parameter and the quadratic effect parameter for the CD4
cell trajectory with the subject-specific random-effects distribution assumed to follow a bivariate normal with zero mean

vector and ΣΣΣ b = σ2
b

(

1 ρ
ρ 1

)

as the dispersion matrix.

We obtain the estimates of the parameters using lme() function available in nlme package in R. These estimates and
the best linear unbiased predictors of the subject-specific random-effects thus obtained from the first step are utilized as
plug-in estimates in the survival part of the model. Thus the time-to-event outcome variable i.e., death due to acquired
immunodeficiency syndrome can be expressed as:

logTi = β0 +ν1b̂i1 +ν2b̂i2 +σ2
cov

ni

∑
j=1

(yi j −α −β Obstimei j

− β1Obstime2
i j −Obstimei jDrugi − bi1 −Obstimei jbi2)+ ε12i j

where β0 is the intercept, ν1 and ν2 respectively are the coefficients of the subject-specific random-effects of the
time-to-event trajectory i.e., logTi. Time-to-event observations indicate the time up to which ith patient has lived with this
disease (in case of death) or time at which the censoring took place (the patient if alive till the end of the study). σ2

cov

captures the structural association prevalent between the CD4 cell count observations of the affected patient and the time
to death or disease progression. We carry out the estimation procedure by adopting a gradient-descent optimization
procedure for estimating the parameters of the survival process. We have also compared two submodels under the linear
framework namely JM1 and JM2 (ν1 = ν2 = 0) where, in the former, the two processes are associated by both
subject-specific random-effects and structural association and the latter has solely structural association binding the two
processes.

For the linear set up the following model is used:

yi j = α +β Obstimei j +Obstimei jDrugi + bi1 + bi2Obstimei j + ε21i j,

where α and β denotes the intercept and slope component of the CD4 cell trajectory with bbbi = (bi1,bi2) following a

bivariate normal distribution with 000 mean and σ2
b

(

1 ρ
ρ 1

)

as the dispersion matrix. The time-to-event outcome variable
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can be expressed as:

logTi = β0 +ν1b̂i1 +ν2b̂i2 +σ2
cov

ni

∑
j=1

(yi j −α −β Obstimei j

− Obstimei jDrugi − bi1 −Obstimei jbi2)+ ε22i j

The results for both the approaches have been summarized in Table 3 with estimated longitudinal intercept for linear
and non-linear set-up being α̂ = 2.5118 and α̂ = 2.5204 respectively. The slope parameters for linear and non-linear

models were estimated to be β̂ =−0.0375 and β̂ =−0.0456 respectively for linear effect and β̂1 = 0.0007 for quadratic
effect. The estimated longitudinal correlation is ρ̂ = 0.0007 for linear model and ρ̂ = 0.1058 in the case of non-linear

counterpart. The longitudinal variability is estimated to be σ̂2
b = −0.1500 for linear and σ̂2

b = 0.1058 for non-linear
framework. The estimated survival parameters by gradient-descent algorithm for linear and non-linear models respectively

are β̂0 = 1.0990 and β̂0 = 0.6999 (intercept), σ̂2
cov = 0.0012 and σ̂2

cov = 0.0013 (structural association between the two
processes), σ̂2

T = 1.7000 and σ̂2
T = 1.5096 (unconditional variability for the time-to-event observations), ν̂1 = −0.1999

and ν̂1 = 0.1000 (coefficient of bi1), ν̂2 =−0.7999 and ν̂2 = 0.6000 (coefficient of bi2).
Four models are comparable in this data set. However, JM1 under linear mixed-effects model gives the best fit in terms

of AIC value as displayed in Table 4. It may be noted that from this data linear mixed-effects model be it JM1 or JM2 fits
better compared to quadratic mixed-effects model. All models converged rapidly within 10 iterations (Table 5).

Table 1: Summary statistics for parameter estimation of the simulated data for the models
Parameter True Linear mixed-effects Quadratic mixed-effects

JM1 JM2 JM1 JM2

Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP

longitudinal

α 1.8500 0.0479 0.0265 0.0029 1.0000 0.0158 0.0287 0.0011 1.0000 0.3404 0.1152 0.1291 0.9700 0.3400 0.1111 0.1236 0.9700

β 1.3000 0.0126 0.0077 0.0002 0.9900 0.0064 0.1847 0.0034 1.0000 0.0066 0.0766 0.0059 0.9900 0.0052 0.0800 0.0059 0.9900

β1 0.5000 - - - - - - - - 0.0113 0.0127 0.0003 1.0000 0.0001 0.0122 0.0003 1.0000

σ2
b 0.8000 0.1713 0.1446 0.0502 0.9900 0.1611 0.1226 0.0409 0.9900 0.1799 0.0001 0.6282 0.9700 0.1799 0.0001 0.6282 0.9700

ρ 0.3000 0.0580 0.1183 0.0174 1.0000 0.0510 0.1334 0.0204 1.0000 0.4131 0.1364 0.1893 0.9800 0.4120 0.2961 0.2134 0.9800

time-to-event

β0 1.0000 0.0836 0.0163 0.0072 0.9600 0.0999 0.0001 0.0099 0.9600 0.0999 0.0009 0.0099 1.0000 0.1000 0.0001 0.0100 1.0000

σ2
cov 0.1000 0.1002 0.0001 0.0100 0.9800 0.1003 0.0001 0.0101 0.9800 0.0698 0.2382 0.0616 0.9600 0.0960 0.0007 0.0092 0.9700

σ2
T 0.8000 0.1716 0.0008 0.0294 0.9900 0.0432 0.0001 0.0018 0.9900 0.1000 0.0010 0.0100 0.9900 0.1005 0.1000 0.0201 0.9900

ν1 -0.2000 0.0003 0.0016 0.0001 0.9900 - - - - 0.0100 0.0011 0.0001 1.0000 - - - -

ν2 0.8000 0.1622 0.0018 0.0263 0.9900 - - - - 0.1000 0.0008 0.0100 0.9700 - - - -

5 Discussion

To avoid complexity in joint models where the longitudinal submodel is subject to non-linear mixed-effects model, a
computationally more efficient two-stage process has been considered. It may be noted that the proposed method performs

Table 2: Results of fitting lognormal AFT model when data are simulated from generalized logistic distribution
Parameter True Linear mixed-effects Quadratic mixed-effects

JM1 JM2 JM1 JM2

Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP Abs. BIAS SE MSE CP

longitudinal

α 1.8500 0.0475 0.2345 0.0561 0.9700 0.0177 0.2043 0.0404 0.9700 0.3781 0.9935 1.1299 0.9800 0.1225 0.5283 0.2941 0.9900

β 1.3000 0.0195 0.0749 0.0059 0.9900 0.0116 0.0687 0.0049 0.9900 0.8435 0.4081 0.8780 0.9600 0.1525 0.2728 0.0977 0.9700

β1 0.5000 - - - - - - - - 0.0563 0.0442 0.0051 1.0000 0.0826 0.0606 0.0105 1.0000

σ2
b 0.8000 0.1882 0.1688 0.0633 0.9600 0.2169 0.1145 0.0602 0.9600 0.7900 0.0006 0.6241 0.9700 0.7778 0.0134 0.6051 0.9700

ρ 0.3000 0.0327 0.1085 0.0126 0.9700 0.0248 0.1121 0.0138 0.9700 0.5131 0.0364 0.2643 0.9800 0.4120 0.2961 0.2134 0.9800

time to event

β0 1.0000 0.0999 0.0001 0.0099 0.9700 0.0999 0.0001 0.0099 0.9700 0.0999 0.0001 0.0099 0.9900 0.0980 0.0001 0.0096 0.9900

σ2
cov 0.1000 0.0988 0.0056 0.0098 0.9600 0.0994 0.0027 0.0099 0.9600 0.0098 0.0001 0.0001 0.9800 0.2144 0.0459 0.0481 0.9700

σ2
T 0.8000 0.1000 0.0242 0.0106 0.9800 0.1000 0.0013 0.0100 0.9800 0.0644 0.0205 0.0046 0.9900 0.0048 0.0502 0.0024 0.9900

ν1 -0.2000 0.0001 0.0001 0.0001 0.9700 - - - - 0.3981 0.0801 0.1649 0.9700 - - - -

ν2 0.8000 0.0001 0.0001 0.0001 0.9700 - - - - 0.1976 0.0007 0.0390 0.9700 - - - -
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Table 3: AIDS data study

Parameter Linear mixed-effects Quadratic mixed-effects

EstJM1
EstJM2

EstJM1
EstJM2

longitudinal

α 2.5118 2.5118 2.5204 2.5204

β -0.0375 -0.0375 -0.0456 -0.0456

β1 - - 0.0007 0.0007

σ2
b 0.0298 0.0298 0.0004 0.0004

ρ -0.1500 -0.1500 0.1058 0.1058

time-to-event

β0 1.0990 1.0999 0.6999 0.6999

σ2
cov 0.0012 0.0013 0.0013 0.0013

σ2
T 1.7000 1.7000 1.5096 1.5096

ν1 -0.1999 - 0.1000 -

ν2 -0.7999 - 0.6000 -

Table 4: Model comparison

Model

AIC Linear mixed-effects Quadratic mixed-effects

JM1 JM2 JM1 JM2

Aids Data Study 2728.330 2731.654 2737.666 2744.343

Table 5: Number of iterations needed for achieving convergence

Model

Linear mixed-effects Quadratic mixed-effects

JM1 JM2 JM1 JM2

6-7 5-7 5-6 7-8

well in both linear and non-linear setup. From simulation studies, it may be noted that structural association alone, can
take care of the association between these two processes. The proposed method is found to be robust against time-to-event
model misspecification. Effect of influential observations both in response and covariates are out of the scope of this paper.
This will be addressed in our future work for which work has already been started. Sensitivity analysis may be carried out
with different structures of the variance-covariance matrix of bbbi. A bayesian analogous to this two-stage method may be
of future interest.
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