
J. Stat. Appl. Pro. 10, No. 2, 369-376 (2021) 369

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/100208

Bayesian Estimation and Prediction for the Inverse

Weibull Distribution Based on Lower Record Values

Mohammad Faizan∗ and Sana Sana

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, 202-002, India

Received: 24 Sep. 2019, Revised: 12 Feb. 2020, Accepted: 29 Feb. 2020

Published online: 1 Jul. 2021

Abstract: In this paper, the author have attempted to obtained Bayes and maximum likelihood estimators for the two unknown

parameters of the inverse Weibull distribution using lower record values. Also, Bayes estimators under the squared error loss with a

bivariate prior distribution have been derived. Prediction for future lower record values is presented from a Bayesian view point, as

well. Numerical computations are presented using R software to illustrate the results.
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1 Introduction

Chandler [1] was the first to study record theory and define a mathematical model for record values. Record values arise
naturally in many applications involving data related to weather, sports, economics and life testing studies. Interested
readers may refer to [2,3] and [4] for a review of various developments concerning record values.

Let X1,X2, ... be a sequence of independent and identically distributed (iid) random variables (rv’s) with a cumulative
distribution function (cdf ) F(x) and a probability density function (pdf ) f (x). Let Yn = min{X1,X2, ...,Xn} for n ≥ 1. The
value X j is said to be a lower record value of {Xn,n ≥ 1} if Yj < Yj−1, j > 1. The sequence

{

L(n),n ≥ 1
}

is called the

lower record times where L(n) = 1 and L(n) = min
{

j| j > L(n−1),X j < XL(n−1),n ≥ 1
}

. We will denote L(n) as the indices
where the lower record values occur. The n− th lower record value will be denoted by XL(n)

.

If FL(n)
(x) is the cdf of XL(n)

for n ≥ 1, then we have,

FL(n)
(x) =

∫ x

−∞

[H(u)]n−1

Γ n
dF(u), −∞ < x < ∞. (1)

The pdf of XL(n)
is given by

fL(n)
(x) =

[H(x)]n−1

Γ n
f (x), −∞ < x < ∞. (2)

The conditional pdf of XL(s)
given XL(m)

= xm, 1 ≤ m < s , is

f (y|xm) =
[H(y)−H(xm)]

s−m−1

Γ (s−m)

f (y)

F(xm)
, 0 < y < xm < ∞, (3)

where H(x) =−lnF(x).
The likelihood function associated with record data is given by [4]

L(µ ,σ |x) = f (xm; µ ,σ)
m−1

∏
i=1

h(xi; µ ,σ) (4)
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where x = (x1,x2, ...,xm) and h(xi; µ ,σ) = f (xi;µ,σ)
F(xi;µ,σ) .

The two-parameter inverse Weibull(IW) distribution was first introduced in literature by [5] as a reasonable model
to describe degradation phenomena of mechanical components of diesel engines. [6] showed that the IW distribution
provides a good fit to several real data sets.

The cdf and pdf of the inverse Weibull distribution, IW (µ ,σ), respectively, are given by

F(x,µ ,σ) = exp(−µx−σ ), x > 0 (5)

and

f (x,µ ,σ) = µσx−(σ+1)exp(−µx−σ ), x > 0, (6)

where µ > 0 is the scale parameter and σ > 0 is the shape parameter.
The IW distribution can be used to model a variety of failure characteristics, such as infant mortality, useful life

and wear-out periods. It can be also used to determine the cost effectiveness, maintenance periods of reliability centered
maintenance activities and applications in medicine, reliability and ecology. The IW distribution has initiated a large
volume of research. [7] have discussed the maximum likelihood and least square estimations of its parameters and [8]
have considered Bayes 2-sample prediction of the distribution. Some work has been done on statistical inference based
on record values, for instance [9,10,11,12,13,14,15,16,17].

Predicting the future observations on the basis of the known information is an important aspect in statistics. Bayesian
approach is useful in predicting the future observations using the predictive distribution. Also, prediction of future
observations is treated as an important problem in clinical, industrial and agricultural experiments. Several researchers
have studied Bayesian prediction, among others [18,19,20,21,22,23].

In this paper, we have obtained the Bayesian estimators and maximum likelihood estimators (MLE’s) of the parameters
of IW distribution based on lower record values. Bayesian prediction of the s−th lower record is also presented. Numerical
computations using R software are provided to illustrate the results.

2 Estimation of the Parameter

In this section, we focus on the estimation of the two unknown parameters µ and σ of the IW distribution given in equation
(5) based on record data. We have obtained the MLE’s and the Bayes estimators for the two unknown parameters under
squared error loss (SEL) function.

2.1 Maximum Likelihood Estimator

Suppose we observe m lower record values XL(1)
= x1,XL(2)

= x2, ...,XL(m)
= xm, from the IW (µ ,σ) distribution. Using

equation (4), (5) and (6), the likelihood function is given by

L(µ ,σ |x) = µmσmexp(−µx−σ
m )

m

∏
i=1

x−σ−1
i . (7)

The log-likelihood function is

logL(µ ,σ |x) = m logµ +m logσ − µx−σ
m − (σ + 1)

m

∑
i=1

logxi. (8)

Taking derivatives with respect to µ and σ of equation (8) and equating them to zero, we obtain the likelihood equations
for µ and σ as

∂

∂ µ
logL(µ ,σ |x) =

m

µ
− x−σ

m = 0 (9)

and
∂

∂σ
logL(µ ,σ |x) =

m

σ
+ µx−σ

m logxm −
m

∑
i=1

logxi = 0. (10)

Equation (9) yields the MLE of µ to be

µ̂ = mxσ
m. (11)
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Substituting equation (11) into equation (10), the MLE of σ can be obtained by solving the equation

m

σ
+m logxm −

m

∑
i=1

logxi = 0

σ̂ =
m

∑m
i=1 logxi −m logxm

. (12)

MLE’s of the parameters of IW distribution may be obtained using R Software.

2.2 Bayes Estimator under Squared Error Loss Function

In this subsection, we use the bivariate prior distribution of µ and σ in the form [24]

g(µ ,σ) =
dcba

Γ cΓ a
µc+a−1σa−1exp[−µ(d+ bσ)], (13)

where a, b, c and d are positive real numbers.

The posterior density function of (µ ,σ) using Bayes Theorem is given by

π(µ ,σ |x) =CL(µ ,σ |x)g(µ ,σ), (14)

where C is normalizing constant.

Using equation (7), (13) and (14), we have

π(µ ,σ |x) =
1

Γ m+ c+ a

µm+c+a−1σm+a−1

φ1(a,b,c,xm)

m

∏
i=1

x−σ−1
i exp[−µ(d+ bσ + x−σ

m )], (15)

where φ1(a,b,c,xm) =
∫ ∞

0

σ m+a−1 ∏m
i=1 x−σ−1

i

(d+bσ+x−σ
m )m+c+a dσ .

The Bayes estimator of µ under SEL function is the mean of the posterior density of µ |x and is given by

E(µ |x) =

∫ ∞

0

∫ ∞

0
µπ(µ ,σ |x)dµdσ

=
∫ ∞

0

∫ ∞

0

1

Γ (m+ c+ a)

µm+c+aσm+a−1

φ1(a,b,c,xm)

m

∏
i=1

x−σ−1
i exp[−µ(d+ bσ + x−σ

m )]dµdσ .

Thus,

E(µ |x) = µ̂B =
φ1(a,b,c+ 1,xm)

φ1(a,b,c,xm)

Γ (m+ c+ a+ 1)

Γ (m+ c+ a)
. (16)

Also, Bayes estimator for σ is

E(σ |x) =
∫ ∞

0

∫ ∞

0
σπ(µ ,σ |x)dµdσ

=

∫ ∞

0

∫ ∞

0

1

Γ (m+ c+ a)

µm+c+a−1σm+a

φ1(a,b,c,xm)

m

∏
i=1

x−σ−1
i exp[−µ(d+ bσ + x−σ

m )]dµdσ .

Thus,

E(σ |x) = σ̂B =
φ1(a+ 1,b,c− 1,xm)

φ1(a,b,c,xm)
. (17)

Since these Bayes estimators involve integral function φ1(a,b,c,xm), we may use numerical integration technique in R
Software.
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3 Bayesian Prediction of Future Records

Based on such a sample, prediction, either point or interval, is needed for the s− th lower records, 1 ≤ m < s.
The Bayes predictive density function of Y given x is

q(y|x) =

∫

Θ
f (y|xm,θ )π(θ |x)dθ . (18)

Using equations (3), (5) and (6), we have

f (y|xm,µ ,σ) =
µ s−m

Γ (s−m)
[y−σ − x−σ

m ]s−m−1σy−σ−1

exp[−µ(y−σ − x−σ
m )], y < xm. (19)

Combining the posterior density, given in equation (15), the conditional density, given in equation (19), and integrating
out the parameters µ and σ , we may get the Bayesian predictive density function of XL(s)

, given the past m records, in the

form

q(y|x) =

∫ ∞

0

∫ ∞

0
f (y|xm,µ ,σ)π(µ ,σ |x)dµdσ

=
φ2(xm,y)

B(m+ c+ a,s−m) φ1(a,b,c,xm)
, 0 < y < xm < ∞ (20)

and

φ2(xm,y) =
∫ ∞

0

∏m
i=1 x−σ−1

i σm+a[y−σ − x−σ
m ]s−m−1y−σ−1

(d+ bσ + y−σ )s+c+a
dσ , y ≤ xm.

The Bayesian predictive bounds of Y = XL(s)
are obtained by evaluating P(Y > z|x) for some given value of z. It follows

from equation (20) that

P(Ys > z|x) =

∫ ∞

z
φ2(xm,y)dy/

∫ ∞

xm

φ2(xm,y)dy. (21)

It can be shown that the two-sided (1− γ)100% prediction interval for XL(s)
is given by (L,U), where γ is the level of

significance. The lower bound L and the upper bound U can be obtained by solving the following two equations:

1−
γ

2
= P(Ys > L)|x) and

γ

2
= P(Ys >U)|x). (22)

Thus, one may obtaine L and U by equating equation (21) to 1− γ
2

and
γ
2

respectively, and solving the resulting equations
numerically.

In the special case, s = m+ 1, it can be shown that

P(Ym+1 > z|x) =
φ1(a,b,c,z)

φ1(a,b,c,xm)
. (23)

4 Numerical Computations

To illustrate the usefulness of the inference procedures discussed in the previous sections, we generate ten sets of record
values of sizes 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 from the IW distribution with parameter µ and σ . Taking prior
parameters a = 6,b = 3,c = 8 and d = 3, the Bayes estimators of µ and σ are shown in the Table 1. The MLE’s are also
discussed in the same Table.

Moreover, using equation (23), the lower and upper 95% predictive bounds for Ym+1 (next lower record in the Xn

sequence) are shown in the Table 2.
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Table 1: MLE’s and Bayes estimates based on generated record values, when the population
parameters are µ = 2 and σ = 1.
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Sample
size

n

Number
of

Records
m

Generated
Records

MLE’s
µ̂M σ̂M

Bayes
µ̂B σ̂B

10 5 3.3667322
2.5709933
2.2193163
0.8072700
0.7166880

2.1607484 0.884659 1.803357 0.9075674

20 6 10.595643
2.2662882
2.2416308
1.1903109
0.5979334
0.4858962

1.893992 1.268584 1.95686 0.7722093

30 6 2.1545767
1.7801679
1.1939821
0.8219102
0.5661028
0.4353150

1.834601 1.056860 1.730483 0.9360437

40 6 2.2731377
2.2386806
1.6887778
0.7277338
0.6860213
0.4476006

1.897458 1.074409 1.788978 0.8917656

50 6 5.7638814
3.9447318
1.8545482
0.7157506
0.6359043
0.5224726

2.1819959 0.995663 1.900031 0.8412047

60 6 25.713076
2.2597584
1.2191980
0.7062222
0.5166571
0.5036550

1.8470613 0.995521 1.925742 0.8080487

70 7 1.5328037
1.2326753
1.1785315
0.8804217
0.7984276
0.7304637
0.4358077

2.1958698 0.975241 1.738258 1.032918

80 7 2.8661752
1.4836633
1.3316177
0.7892711
0.7129092
0.5421006
0.3306418

2.013341 1.265962 1.859524 0.8264226

90 7 2.7874043
1.5686737
1.5074763
0.8919501
0.7990347
0.5670401
0.4571294

2.1614329 0.953109 1.811742 0.9827156

100 7 5.2221720
4.0800484
1.7230905
1.1425363
1.0291326
0.7503817

2.132089 1.042323 2.027445 0.8075958
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Table 2: Lower and Upper 95% prediction bounds for Ym+1.

Number
of

Records
m

Interval prediction for
the next record (Ym+1)

L U

Length

5 0.704807 0.242647 0.462160

7 0.613979 0.233207 0.380772

9 0.755965 0.330072 0.425893

11 0.498799 0.232336 0.266463

5 Conclusion

In this paper, theoretical results of the study are explained numerically in section 4. We have explored the Bayesian
estimator under squared error loss function and maximum likelihood estimation as well as prediction for the two parameter
IW distribution based on generated lower record values. It might be noted that as sample size and number of record values
increase, the MLE’s and Bayes estimators of µ and σ increase and decrease in an irregular fashion.
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