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Abstract: This paper probabilistically investigates the steady state performance of a two unit cold standby system. The system consists

of two identical units and a server who is meant for bringing the system back in to operation as early as possible after failure. The

server failure during working is possible. The server is treatable/ diagnosable but if its treatment time exceeds a specified limit it gets

replaced. The failure, repair, replacement and treatment times are assumed to be statistically independent. The semi-Markov process

and regenerative point technique are used to derive expressions for steady state performance measures. The simulation results are also

given for mean time to system failure, availability and profit.
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1 Introduction

The cold standby system models, consisting of two identical units and a server, are widely discussed by researchers in
the literature. Gopalan and Naidu [1], analyzed a two-unit repairable system considering two type of failures along with
the provision of inspection. Mahmoud et al [2] debated on the optimum preventive maintenance for a standby system
permitting the patience-time for repair. Agnihotri and Statsangi [3] introduced the concept of inter-change time in
describing a two-unit redundant system. Kumar et al [4] carried out probabilistic analysis of a two-unit cold standby
system with the provision of directives as needed. Chander and Bhardwaj [5] introduced a 2-out-of-3 cold stand by
priority system and derived the reliability and economic indices. Malik [6] highlighted the issue of maximum repair and
operation times for a computer system and obtained reliability measures. Bhardwaj et al [7,8] emphasized on the failure
of standby unit in a redundant system and evaluated the system performance by taking general probability distributions
for repair and replacement times.

A well-known fact in relation to the repairable cold standby systems is their characterization through the server
together with the standbys. Indeed, the server plays a significant role in bringing the system back into operation, at its
failure. The servers high availability can ensure better system functioning. But in practice, the failure of server while
doing job is a common event and such situations undesirably affect the system performance. Some studies have debated
on this issue of server failure. Such as Cao and Wu [9] debated on the reliability of a two-unit cold standby system with a
replaceable repair facility; Bhardwaj and Singh [10,11] proposed an inspection-repair-replacement model of a stochastic
standby system with server failure.

If the server fails during operation it must be given proper treatment or diagnosis timely so as to ensure system
rectification as well as its functioning. But the maximum treatment time limit i.e. the allowable time for server to return,
should be indicated so as to avoid the situation where the cost involve in treatment of server due to elapsed longer period
of time exceeds its replacement cost. Otherwise the system will run in huge loss. Though the concept of maximum
operation and repair time has been discussed by some researchers [12] but the issue of maximum treatment time for
server has not attracted much attention in previous studies. Keeping the practical significance in view, in this paper a two
unit cold standby system model is developed. The system consists of two identical units and a server. The server gets
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treatment at its failure during operation and it takes time for the server to recover. If the treatment time of the server
crosses a threshold limit, termed as maximum treatment time, it is replaced by an equally efficient one to ensure proper
system functioning without further delay. This replacement is termed as conditional because it is initiated only when the
treatment time reaches its maximum limit.The semi-Markov process and regenerative point technique are used to obtain
expressions for several performance measures, in steady state with general life time distributions, such as mean time
to system failure, availability, busy period, profit etc. The failure, repair, treatment and replacement times are assumed
statistically independent. The simulation results are also given for exponential distribution.

2 Notations

Ai(t) : P{the system is in up- state at instant t | the system entered regenerative state Si at t = 0.}
Bi(t) : P{the Server is busy in repair at instant t | the system entered regenerative state Si at t = 0.}
Di(t) : Expected number of repair of unit (0, t] given that the system entered regenerative state Si at t = 0.}
Ti(t) : Expected number of servers treatment in (0, t) given that the system entered regenerative state Si at t = 0
Mi(t) : P{ system is initially up in Si ∈ E is up at t without visiting other S j ∈ E }
z(t)/Z(t) : pdf/ cdf of failure time of the unit.
u(t)/U(t) : pdf / cdf of failure time of the server.
g(t)/G(t): pdf / cdf of repair time of the failed unit.
h(t)/H(t): pdf / cdf of the treatment time of the server.
s(t)/S(t) : pdf / cdf of replacement time of the failed server.
ω : Maximum treatment time of the failed server.
qi, j(t)/Qi, j(t): pdf / cdf of direct transition time from a regenerative state i to a regenerative state j without visiting any
other regenerative state.
qi, j.k(t)/Qi, j.k(t) : pdf / cdf of first passage time from a regenerative state i to a regenerative state j or to a failed state j
visiting state k once in (0,t].
qi, j.k,r(t)/Qi, j.k,r(t) : pdf / cdf of first passage time from regenerative state i to a regenerative state j or to a failed state j
visiting state k, r once in (0,t].
qi, j.k,r,s(t)/Qi, j.k,r,s(t) : pdf / cdf of first passage time from regenerative state i to a regenerative state j or to a failed state j
visiting state k, r and s once in (0,t].
Wi(t) : Probability that the server is busy in the state Si up to time t without making any transition to any other
regenerative state or returning to the same state via one or more non-regenerative states.
mi, j : Contribution to mean sojourn time (µi) in state Si when system transit directly to state j.
(s)/(c) : Stieltjes convolution / Laplace convolution.
∼ : Laplace Stieltjes Transform (LST)
∗ :Laplace Transform (LT).

3 The Model Development

3.1 The State Transition Diagram

The following figure shows all the possible transitions between various states along with the regenerative points for
different states.
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Fig. 1: System’s State Transition

3.2 States Description

The system model comprises of regenerative and non-regenerative states. The states Si; i = 0,1,2 are regenerative
whereas Si; i = 3,4, . . . ,8,9 are non-regenerative states. The detailed description of all possible states is as follows:
The regenerative states (E) :
S0 : System up. One unit is operating and another in cold standby mode.
S1 : System up. One unit is operating and failed unit under repair.
S2: System up. One unit operating, another waiting for repair, failed server under treatment.
Non-regenerative states (Ē)
S3 : System up. One unit is operating, other waiting for repair continuously, server under treatment.
S4: System down. One unit is under repair, another unit waiting for repair.
S5: System down. One unit is waiting for repair, waiting for repair continuously, server under treatment.
S6: System down. Both units are waiting for repair/ continuously, server under treatment.
S7: System down. One unit is under repair, continuously waiting for repair.
S8: System down. One unit waiting for repair, waiting for repair continuously, server continuously under treatment.
S9: System down. One unit waiting for repair, waiting for repair continuously, server continuously under replacement.

3.3 State Transition Probabilities

Simple probabilistic considerations yields the following expressions for the non- zero elements

pi, j = Qi, j(∞) =

∞
∫

0

qi, j(t)dt (1)

p0,1 =
∞
∫

0

z(t)dt, p1,0 =
∞
∫

0

g(t)Z̄(t)Ū(t)dt, p1,2 =
∞
∫

0

u(t)Ḡ(t)Z̄(t)dt,

p1,4 =
∞
∫

0

z(t)Ḡ(t)Ū(t)dt, p1,1.4 = p1,4(c)p4,1,

p1,1.4,5,6(7,5)n = p1,4(c)p4,5(c)p5,6(c)p6,7(c)p7,5(c)p(5,7)n(c)p7,1,

p1,1.4,(5,7)n = p1,4(c)p4,5(c)p(5,7)n(c)p7,1, p2,1 =
∞
∫

0

h(t)Z̄(t)e−ωtdt,

p2,3 =
∞
∫

0

ωe−ωtH̄(t)Z̄(t)dt, p2,8 =
∞
∫

0

z(t)H̄(t)e−ωtdt, p2,1.3 = p2,3(c)p3,1,

p2,1.8,(7,5)n = p2,8(c)p8,7(c)p7,5(c)p(5,7)n(c)p7,1,

p2,1.8,6,(7,5)n = p2,8(c)p8,6(c)p6,7(c)p7,5(c)p(5,7)n(c)p7,1,

p2,1.3,9,(7,5)n = p2,3(c)p3,9(c)p9,7(c)p7,5(c)p(5,7)n(c)p7,1,

p3,1 =
∞
∫

0

s(t)Z̄(t)dt, p3,9 =
∞
∫

0

z(t)S̄(t)dt, p4,1 =
∞
∫

0

g(t)Ū(t)dt,
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p4,5 =
∞
∫

0

u(t)Ḡ(t)dt, p5,6 =
∞
∫

0

ωe−ωtH̄(t)dt, p5,7 =
∞
∫

0

h(t)e−ωtdt,

p6,7 =
∞
∫

0

s(t)dt, p7,1 =
∞
∫

0

g(t)Ū(t)dt, p7,5 =
∞
∫

0

u(t)Ḡ(t)dt,

p8,6 =
∞
∫

0

ωe−ωtH̄(t)dt, p8,7 =
∞
∫

0

h(t)e−ωtdt, p9,7 =
∞
∫

0

s(t)dt,

For these Transition Probabilities, it can be verified that
p0,1 = p1,0 + p1,2+ p1,4 = p1,0 + p1,2 + p1,1.4 + p1,1.4,5,6,(7,5)n + p1,1.4,(5,7)n =
p2,1 + p2,3 + p2,8 = p2,1 + p2,1.3 + p2,1.8,(7,5)n + p2,1.8,6,(7,5)n + p2,1.3,9,(7,5)n =
p3,1 + p3,9 = p4,1 + p4,5 = p5,6 + p5,7 = p6,7 = p7,1 + p7,5 = p8,6 + p8,7 = p9,7 = 1

3.4 Mean Sojourn Times

Let T be the time to system failure then the Mean sojourn time µi in state Si are given by:

µi = E(t) =

∞
∫

0

P(T > t)dt (2)

µ0 =
∞
∫

0

Z̄(t)dt, µ1 =
∞
∫

0

Z̄(t)Ū(t)Ḡ(t)dt, µ2 =
∞
∫

0

ωe−ωtH̄(t)Z̄(t)dt

The unconditional mean time taken by the system to transit from any state Si when time is counted from epoch at entrance
into state S j is stated as:

mi, j =
∫

tdQi, j(t) =−q∗′i, j(0)

i.e m0,1 = µ0, m1,0+m1,2+m1,4 = µ1,m1,0+m1,2+m1,1.4+m1,1.4,5,6,(7,5)n+m1,1.4,(5,7)n = µ ′
1, m2,1+m2,3+m2,8 =

µ2,m2,1 +m2,1.3+m2,1.8,(7,5)n +m2,1.8,6,(7,5)n +m2,1.3,9,(7,5)n = µ ′
2, m3,1 +m3,9 = µ3, m4,1 +m4,5 = µ4,m5,6 +m5,7 =

µ5, m6,7 = µ6, m7,1 +m7,5 = µ7,m8,6 +m8,7 = µ8, m9,7 = µ9

4 Stochastic Analysis

4.1 Reliability Measure

Let φi(t) be the c.d.f of the first passage time from regenerative state Si to a failed state. Regarding the failed state as
absorbing state, we have the following recursive relations for φi(t) :

φi(t) = ∑
j

{Qi, j(t)+Qi, j,k(t)+Qi, j,k,l(t)+ · · ·+Qi, j,k,l,m...(t)}(c)φ j(t)+∑
f

Qi, f (t); i = 0,1,2 (3)

Where S j is an un-failed regenerative state to which the given regenerative state Si can transit and Sk is failed state to
which the state Si can transit directly.
Taking Laplace Stieltjes transform of equation (3)and solving for φ̃0(s), we get MTSF as follow

MT SF = lim
s→0

R∗(s) = lim
s→0

[
{1− φ̃0(s)}

s
] =

µ0[1− p1,2(p2,1 + p2,1.3)]+ µ1 + µ
′

1 p1,2

1− p1,0− p1,2(p2,1 + p2,1.3)
(4)

The reliability R(t) is given by

R(t) = L−1{R∗(s)}= L−1[
{1− φ̃0(s)}

s
] (5)

4.2 Economic Measures

Let the system entered the regenerative state Si at t=0. Considering S j as a regenerative state to which the given
regenerative state Si transits. The recursive relations for various measures contributing for profit in (0, t] are given as
follows:
Availability:
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A0(t) = M0(t)+ q0,1(t)(c)A1(t)
A1(t) = M1(t)+ q1,0(t)(c)A0(t)+ [q1,1.4(t)+ q1,1.4,5,6,(7,5)n(t)+ q1,1.4,(5,7)n(t)](c)A1(t)+ q1,2(t)(c)A2(t)

A2(t) = M2(t)+ [q2,1(t)+ q2,1.3(t)+ q2,1.8,(7,5)n(t)+ q2,1.8,6,(7,5)n(t)+ q2,1.3,9,(7,5)n(t)](c)A1(t)
In compact form we can expressed these equations as follows.

Ai(t) = Mi(t)+∑
j

{qi, j(t)+ δi, j,k,l...{qi, j,k(t)+ qi, j,k,l(t)+ . . .}}(c)A j(t); i = 0,1,2 (6)

Similarly the compact form recursive relations for remaining measures are as follows
Busy Period due to Repair:

Br
i (t) =W r

i (t)+∑
j

{qi, j(t)+ δi, j,k,l...{qi, j,k(t)+ qi, j,k,l(t)+ . . .}}(c)Br
j(t); i = 0,1,2 (7)

Di(t) = ∑
j

{Qi, j(t)+ δi, j,k,l...{Qi, j,k(t)+Qi, j,k,l(t)+ . . .}}(s){δ j +D j(t)}; i = 0,1,2 (8)

Ti(t) = ∑
j

{Qi, j(t)+ δi, j,k,l...{Qi, j,k(t)+Qi, j,k,l(t)+ . . .}}(s){δ j +Tj(t)}; i = 0,1,2 (9)

Rs
i (t) = ∑

j

{Qi, j(t)+ δi, j,k,l...{Qi, j,k(t)+Qi, j,k,l(t)+ . . .}}(s){δ j +Rs
j(t)}; i = 0,1,2 (10)

Here δ j =

{

1, if there is a repair/treatment from Si to S j

0,Otherwise

and δi, j,k,l... =

{

1, if there is a transition from Si to S j via Sk,l...

0,Otherwise

Using LT/ LST, of equations (9-10) and solving we get the results in steady state as below:

A0(∞) = lim
s→0

sA∗
0(s) =

µ0 p1,0 + µ1 + µ2 p1,2

µ0 p1,0 + µ ′
1 + µ ′

2 p1,2
(11)

Br
0 = lim

s→0
sBr∼

0 (s) =
W1

r∗(0)

µ0 p1,0 + µ ′
1 + µ ′

2 p1,2
(12)

D0 = lim
s→0

sD∼
0 (s) =

1− p1,2(p2,1 + p1,1.3)

µ0 p1,0 + µ ′
1 + µ ′

2p1,2
(13)

T0 = lim
s→0

sT∼
0 (s) =

p1,2 p2,1

µ0 p1,0 + µ ′
1 + µ ′

2 p1,2
(14)

Rs
0 = lim

s→0
sRs∼

0 (s) =
p1,2 p2,1

µ0 p1,0 + µ ′
1 + µ ′

2 p1,2
(15)

Further, using the values of above performance measures, the profit incurred to the system model in steady state is given
as below.

p0 = (K0A0)− (C1B0
r +C2D0 +C3T0 +C4R0

s) (16)

K0=Revenue per unit up time of the system.
C1=Cost per unit time for which server is busy due to repair.
C2=Cost per unit time for repair of the unit.
C3=Cost per unit time for server treatment.
C4=Cost per unit time for replacement of the server.
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5 Illustration

5.1 Numerical Example ( Exponential Distribution)

In the following the values of different performance measures are obtained assuming all the random variables as
exponentially distributed with following density functions:

z(t) = λ e−λ t , g(t) = αe−αt , u(t) = γe−γt , s(t) = Ωe−Ωt , h(t) = β e−β t

Further we choose the following values for different parameters:
Failure rate of server (γ) = 0.02 per unit time,
Failure rate of unit (λ ) = 0.008 per unit time,
Repair rate of unit (α) = 0.3 per unit time,
Treatment rate of server (β ) = 0.07 per unit time,
Maximum repair time (ω) = 0.08 unit time.
Replacement time of the server (Ω) = 2.0
K0 = 20000, C1 = 100, C2 = 700, C3 = 600, C4 = 200
MTSF =4388.807 unit time,
Availability = 0.998837
Busy period of server for repair = 0.026264
Expected number of repairs = 0.007992
Expected number of replacements of server =0.000261
Expected number of treatments =0.000229129
System profit =19968.33 Unit

6 Tables

In this section we have constructed tables which are as follows:

Table 1: The behaviour of mean time to system failure

MTSF (λ = 0.008, γ = 0.02, α = 0.3, Ω = 2.0, ω = 0.08)

Treatment Rate (β ) 0.01 0.02 0.03 0.04 0.05

λ = 0.008 4114.956 4178.083 4232.230 4279.182 4320.280

λ = 0.009 3281.182 3330.218 3372.338 3408.906 3440.949

λ = 0.01 2681.862 2720.917 2754.511 2783.712 2809.326

γ = 0.02 4114.956 4178.083 4232.230 4279.182 4320.280

γ = 0.04 3537.500 3629.818 3710.769 3782.319 3846.008

γ = 0.06 3109.793 3215.389 3309.544 3394.003 3470.177

α = 0.3 4114.956 4178.083 4232.230 4279.182 4320.28

α = 0.4 5403.922 5488.287 5560.611 5623.296 5678.148

α = 0.5 6692.887 6798.490 6888.991 6967.411 7036.015

Ω = 2.0 4114.956 4178.083 4232.230 4279.182 4320.28

Ω = 2.2 4117.131 4180.059 4234.040 4280.853 4321.833

Ω = 2.4 4118.947 4181.708 4235.551 4282.247 4323.128

ω = 0.08 4114.956 4178.083 4232.230 4279.182 4320.28

ω = 0.09 4175.950 4230.140 4277.145 4318.301 4354.635

ω = 0.1 4228.053 4275.111 4316.325 4352.718 4385.088
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Table 2: The behaviour of system availability

Availability (λ = 0.008, γ = 0.02, α = 0.3, Ω = 2.0, ω = 0.08)

Treatment Rate (β ) 0.01 0.02 0.03 0.04 0.05

λ = 0.008 0.998401 0.998517 0.998608 0.998682 0.998743

λ = 0.009 0.998024 0.998165 0.998276 0.998366 0.99844

λ = 0.01 0.99761 0.997778 0.997911 0.998019 0.998108

γ = 0.02 0.998401 0.998517 0.998608 0.998682 0.998743

γ = 0.04 0.997662 0.997855 0.998011 0.998139 0.998246

γ = 0.06 0.997057 0.997298 0.997497 0.997665 0.997806

α = 0.3 0.998401 0.998517 0.998608 0.998682 0.998743

α = 0.4 0.998955 0.999042 0.999110 0.999165 0.99921

α = 0.5 0.999241 0.99931 0.999365 0.999408 0.999443

Ω = 2.0 0.998401 0.998517 0.998608 0.998682 0.998743

Ω = 2.2 0.998423 0.998536 0.998626 0.998698 0.998758

Ω = 2.4 0.998441 0.998552 0.998641 0.998712 0.998771

Table 3: The behaviour of system profit

Profit (λ = 0.008, γ = 0.02, α = 0.3, Ω = 2.0, ω = 0.08)

Treatment Rate (β ) 0.01 0.02 0.03 0.04 0.05

λ = 0.008 19959.69 19961.98 19963.80 19965.26 19966.47

λ = 0.009 19951.12 19953.91 19956.12 19957.91 19959.38

λ = 0.01 19941.81 19945.15 19947.79 19949.92 19951.68

γ = 0.02 19959.69 19961.98 19963.80 19965.26 19966.47

γ = 0.04 19944.81 19948.62 19951.71 19954.25 19956.37

γ = 0.06 19932.59 19937.35 19941.30 19944.61 19947.41

α = 0.3 19959.69 19961.98 19963.80 19965.26 19966.47

α = 0.4 19971.44 19973.17 19974.52 19975.61 19976.50

α = 0.5 19977.57 19978.94 19980.02 19980.88 19981.58

Ω = 2.0 19959.69 19961.98 19963.80 19965.26 19966.47

Ω = 2.2 19960.13 19962.37 19964.15 19965.59 19966.77

Ω = 2.4 19960.49 19962.70 19964.45 19965.86 19967.02

Table 4: Maximum treatment time threshold

Effect of ω on economic measures (threshold limits) with λ = 0.008, γ = 0.02, α = 0.3, Ω = 0.1, β = 0.02

(ω) 0.01 0.02 0.03 0.04 0.05

Availability 19959.69 19961.98 19963.80 19965.26 19966.47

Profit 19951.12 19953.91 19956.12 19957.91 19959.38

7 Concluding Remarks

In the current study a new stochastic model for a two unit cold standby system, with the possibility of server failure
subjected to maximum treatment time, is developed. The semi-Markov process and regenerative point technique are used
derive expressions for various indices of system performance. The numerical simulation of the results is given for a
particular case of exponential distributions. The simulation results indicate that the maximum treatment time limit affects
both the reliability as well profit of the system. All the performance indices shows rising trends with higher limit. The
system performance is better with higher values of the treatment time threshold it may be because of the replacement cost
involved. So the analysis infers that a system with specified value of server maximum treatment time threshold is more
reliable and profitable to use. Further, a threshold limit is also provided, under the given setup. The study may find its
applicability for systems in diverse areas such as communication systems, transportation systems, automobile industry,
defense manufacturing, remote sensing etc. it may be a guiding document for reliability practitioners in deciding time
limits for server rectification.
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