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Abstract: In this paper, some ratio-type estimators for finite population variance have been proposed using known values of the

parameters of an auxiliary variable such as quartiles and their functions under simple random sampling. The suggested estimator has

been compared with the usual unbiased estimator of population variance under large sample approximation. An empirical study has

been also conducted to judge the merits of the proposed estimator over other existing ratio estimators for the population variance.
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1 Introduction

In sampling survey, the use of the suitable auxiliary variable always increases the efficiency of an estimator of the character
under study. The efficiency of the estimator can be increased at both stages selection as well as estimation. For estimating
the population parameters such as population mean Ȳ and population variance S2

y of the study variable y, several authors

have used information on different parameters such as population mean X̄ , coefficient of variation Cx , standard deviation
σx , coefficient of skewness β1(x) and coefficient of kurtosis β2(x) of the auxiliary variable x. However, the problem of
estimating the population variance S2

y using auxiliary information on a supplementary variable has attracted the attention of
survey statisticians. Estimating the finite population variance has played a prominent role in various fields such as industry,
agriculture, medical and biological sciences where we come across the populations which are likely to be skewed. Many
more situations can be brightening in practice where the estimation of population variance of the study variable y assumes
importance. For these reasons various authors like [1,2,6,7,8,9,13,14,15,16,17] have paid their attention towards the
estimation of population variance.
According to the property of quartiles and their functions, their values are unaffected by the extreme values or the presence
of outliers in the population values. For this reason, [4,10,11] and [12] have considered the problem of estimating the
population variance of the study variable y using information on quartiles, inter-quartile range, semi-quartile range and
semi-quartile average of an auxiliary variable x.

The usual unbiased estimator s2
y , the estimators of the population variance due to [1,2,4,10,11] and [12] are presented

in the Table 1 along with their biases and mean squared errors (MSEs).

Table 1: The Existing estimators of population variance S2
y

Estimator(.) Bias B(.) Mean Squared Error MSE(.)

t0 = S2
y - γS4

y(λ40 −1))

tR = s2
y

(

S2
x

s2
x

)

[1] Estimator γS2
y(λ04 −1)(1−c) γS4

y [(λ40 −1)+(λ04 −1)(1−2c)]

t1 = s2
y

(

S2
x−Cx

s2
x−Cx

)

[2] Estimator γS2
y(λ04 −1)θ1(θ1 −c) γS4

y [(λ40 −1)+θ1(λ04 −1)(θ1 −2c)]

∗ Corresponding author e-mail: rohiniyadav.ism@gmail.com

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/100207


364 R. Yadav: A generalized ratio-type estimator of finite population...

Table 2: The Existing estimators of population variance S2
y Conti...

Estimator(.) Bias B(.) Mean Squared Error MSE(.)

t2 = s2
y

(

S2
x−β2(x)

s2
x−β2(x)

)

[2] Estimator γS2
y(λ04 −1)θ2(θ2 −c) γS4

y [(λ40 −1)+θ2(λ04 −1)(θ2 −2c)]

t3 = s2
y

(

β2(x)S
2
x−Cx

β2(x)s2
x−Cx

)

[2] Estimator γS2
y(λ04 −1)θ3(θ3 −c) γS4

y [(λ40 −1)+θ3(λ04 −1)(θ3 −2c)]

t4 = s2
y

(

CxS2
x−β2(x)

Cxs2
x−β2(x)

)

[2] Estimator γS2
y(λ04 −1)θ4(θ4 −c) γS4

y [(λ40 −1)+θ4(λ04 −1)(θ4 −2c)]

t5 = s2
y

(

S2
x+Q2

s2
x+Q2

)

[10] Estimator γS2
y(λ04 −1)θ5(θ5 −c) γS4

y [(λ40 −1)+θ5(λ04 −1)(θ5 −2c)]

t6 = s2
y

(

S2
x+Q1

s2
x+Q1

)

[11] Estimator γS2
y(λ04 −1)θ6(θ6 −c) γS4

y [(λ40 −1)+θ6(λ04 −1)(θ6 −2c)]

t7 = s2
y

(

S2
x+Q3

s2
x+Q3

)

[11] Estimator γS2
y(λ04 −1)θ7(θ7 −c) γS4

y [(λ40 −1)+θ7(λ04 −1)(θ7 −2c)]

t8 = s2
y

(

S2
x+Qr

s2
x+Qr

)

[11] Estimator γS2
y(λ04 −1)θ8(θ8 −c) γS4

y [(λ40 −1)+θ8(λ04 −1)(θ8 −2c)]

t9 = s2
y

(

S2
x+Qd

s2
x+Qd

)

[11] Estimator γS2
y(λ04 −1)θ9(θ9 −c) γS4

y [(λ40 −1)+θ9(λ04 −1)(θ9 −2c)]

t10 = s2
y

(

S2
x+Qa

s2
x+Qa

)

[11] Estimator γS2
y(λ04 −1)θ10(θ10 −c) γS4

y [(λ40 −1)+θ10(λ04 −1)(θ10 −2c)]

t11 = s2
y

(

CxS2
x+Q2

Cxs2
x+Q2

)

[12] Estimator γS2
y(λ04 −1)θ11(θ11 −c) γS4

y [(λ40 −1)+θ11(λ04 −1)(θ11 −2c)]

t12 = s2
y

(

ρS2
x+Q3

ρs2
x+Q3

)

[4] Estimator γS2
y(λ04 −1)θ12(θ12 −c) γS4

y [(λ40 −1)+θ12(λ04 −1)(θ12 −2c)]

Where Ȳ = 1
N ∑N

i=1 yi; (population mean of y), X̄ = 1
N ∑N

i=1 xi; (population mean of x), S2
y = 1

N−1 ∑N
i=1(yi − Ȳ )2;

(population variance of Y), S2
x = 1

N−1 ∑N
i=1(xi − X̄)2; (population variance of x), Sxy = 1

N−1 ∑N
i=1(xi − X̄)(yi − Ȳ );

(covariance between x and Y), ρ =
Sxy

SxSy
;(correlation coefficient between y and x), Cx =

Sx

X̄
; (coefficient of variation of

x), Cy =
Sy

Ȳ
; (coefficient of variation of y), s2

y = 1
n−1 ∑n

i=1(yi − ȳ)2 ; (sample variance of y), s2
x = 1

n−1 ∑n
i=1(xi − x̄)2 ;

(sample variance of x), Qi(i = 1,2,3) ; indicates the quartile, Qr = (Q3 −Q1) ; inter-quartile range, Qd = (Q3−Q1)
2

;

semi-quartile range, Qa = (Q3+Q1)
2

; semi-quartile average θ1 = S2
x

S2
x−Cx

θ2 = S2
x

S2
x−β2(x)

, θ3 = β2(x)S
2
x

β2(x)S2
x−Cx

,

θ4 = CxS2
x

CxS2
x−β2(x)

, θ5 = S2
x

S2
x+Q2

, θ6 = S2
x

S2
x+Q1

, θ7 = S2
x

S2
x+Q3

, θ8 = S2
x

S2
x+Qr

, θ9 = S2
x

S2
x+Qd

,

θ10 =
S2

x

S2
x+Qa

, θ11 =
CxS2

x

CxS2
x+Q2

, θ12 =
ρS2

x

ρS2
x+Q3

, γ = 1/n, C = (λ04 − 1)−1(λ22 − 1),

λrs = µrs(µ
s/2

02 µ
r/2

20 )−1, µrs =
1
N ∑N

i=1(yi − Ȳ)r(xi − X̄)s; (r,s being non-negative integers)
It is noticeable that the estimators tk(k = 5,6, · · ·11) due to [4,10,11] and [12] have used the quartiles (Qi : i = 1,2,3)
and their functions such as inter-quartile range Qr , semi-quartile range Qd and semi-quartile average Qa and in additive
form to sample and population variances s2

x and S2
x respectively of the auxiliary variable x. Moreover the unit of the

quartiles and their function as given above is of original variable x, while the unit of S2
x and s2

x is in the square of the unit
of the original variable x. This empowers authors to develop some alternative estimators for the population variance and
study their properties.

The present paper aims to estimate the unknown population variance of study variable y by improving the estimators
suggested by [4,10,11] and [12] using same information on an auxiliary variable x. The remaining part of the paper is
organized as follows: In Section 2, the generalized family of the estimators for the population variance has been
suggested along with the expressions of asymptotic biases and mean squared errors. In addition, some new members of
the proposed family of the estimators have been generated with their respective properties. Section 3 is dedicated to
efficiency comparison of the suggested estimator with respect to the usual unbiased estimator of the population variance
and other stated estimators. Section 4 is devoted to an empirical study of the proposed ratio-type estimators for the real
data sets. Conclusion is presented in Section 6.

2 The proposed family of estimators

Using the known values of quartiles (Qi; i = 1,2,3) of an auxiliary variable x, a generalized family of the estimators has
been proposed to estimate the population variance S2

y of the study variable y as follows:

t∗ = s2
y

[

α +(1−α)

(

δS2
x +L2

δ s2
x +L2

)]

(1)
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where (δS2
x +L2)> 0,(δ s2

x +L2)> 0 and (δ ,L) are either real constants or function of known parameters of an auxiliary
variable x with 0 ≤ α ≤ 1 .
To obtain the biases and mean squared errors (MSEs) of the estimators t∗ , we write s2

y = S2
y(1+e0) , s2

x = S2
x(1+e1) such

that E(e0) = E(e1) = 0 and to the first degree of approximation ignoring finite population correction (f.p.c.) term, we have

E(e2
0) = (λ40−1)

n

E(e2
1) = (λ04−1)

n

E(e0e1) =
(λ22−1)

n

Now expressing (1) in terms of e’s, we have

t∗ = S2
y(1+ e0)

[

α +(1−α)

(

δS2
x +L2

δS2
x(1+ e1)+L2

)]

= S2
y(1+ e0)

[

α +(1−α)(1+θ ∗e1)
−1
]

(2)

where θ ∗ =
δS2

x

δS2
x+L2

We assume that |θ ∗e1|< 1,so (1+θ ∗e1)
−1 is expandable in terms of power series. Now, we have

t∗ = S2
y(1+ e0)[α +(1−α)(1−θ ∗e1 +θ ∗2e2

1 −·· · ]

= S2
y [(1+ e0−θ ∗e1 +θ ∗2e2

1 −θ ∗e1e0 + · · ·)+α(θ ∗e1 −θ ∗2e2
1 +θ ∗e1e0 −·· ·)]

Neglecting terms of e’s that have power greater than the two, we have

t∗ ∼= S2
y [(1+ e0 −θ ∗e1 +θ ∗2e2

1 −θ ∗e1e0)+α(θ ∗e1 −θ ∗2e2
1 +θ ∗e1e0)]

(t∗− S2
y)

∼= S2
y [(e0 −θ ∗e1 +θ ∗2e2

1 −θ ∗e1e0)+α(θ ∗e1 −θ ∗2e2
1 +θ ∗e1e0)] (3)

Taking expectation of both sides of (3), we get the biases of t∗ to the first degree of approximation as

B(t∗) =
S2

y

n
[θ (1−α)β ∗

2 (x)(θ −C)] (4)

Squaring both sides of (3) and neglecting terms of e’s having power greater than two, we have

(t∗− S2
y)

2 ∼= S4
y [e0 −θ ∗e1 +αθ ∗e1]

2 (5)

Taking expectation of both sides of (5), we get the MSEs of t∗ to the first degree of approximation as

MSE(t∗) =
S4

y

n
[β ∗

2 (y)+θ ∗(1−α)β ∗
2 (x){θ ∗(1−α)− 2C}] (6)

The MSE of t∗ given by (6) is minimized for

αopt. =

(

1−
C

θ

)

and the minimum MSE of t∗ is given by

minMSE(t∗) =
S4

y

n
[β ∗

2 (y)−C2β ∗
2 (x)] (7)

Several new estimators of the population variance can be generated for different choices of the scalars (α ,δ ,L) from the
proposed family of estimators t∗ given in (1) which are presented in the Table-2.
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Table 3: Some new estimators generated from t∗ for different combinations of (α ,δ ,L)

Estimators (.) α δ L

t∗1 = s2
y

(

ρS2
x+Q2

1

ρs2
x+Q2

1

)

0 ρ Q1

t∗2 = s2
y

(

CxS2
x+Q2

1

Cxs2
x+Q2

1

)

0 Cx Q1

t∗3 = s2
y

(

β2(x)S
2
x+Q2

2

β2(x)s2
x+Q2

2

)

0 β2(x) Q2

t∗4 = s2
y

(

β2(x)S
2
x+Q2

r

β2(x)s2
x+Q2

r

)

0 β2(x) Qr

t∗5 = s2
y

(

ρS2
x+Q2

d

ρs2
x+Q2

d

)

0 ρ Qd

t∗6 = s2
y

(

CxS2
x+Q2

d

Cxs2
x+Q2

d

)

0 Cx Qd

t∗7 = s2
y

(

β2(x)S
2
x+Q2

a

β2(x)s2
x+Q2

a

)

0 β2(x) Qa

Similarly one can identify many other estimators from the proposed family of ratio-type estimators t∗ for different
combinations of (α ,δ ,L) . To the first degree of approximation the bias and MSE of the estimators t∗i (i = 1,2, · · · ,7) are
respectively given by

B(t∗i ) = γS2
y(λ04 − 1)θ ∗

i (θ
∗
i − c); (i = 1,2, · · · ,7)

MSE(t∗i ) = γS4
y [(λ40 − 1)+θ ∗

i (λ04 − 1)(θ ∗
i − 2c]; (i = 1,2, · · · ,7)

where θ ∗
1 =

(

ρS2
x

ρS2
x+Q2

1

)

, θ ∗
2 =

(

CxS2
x

CxS2
x+Q2

1

)

, , θ ∗
3 =

(

β2(x)S
2
x

β2(x)S2
x+Q2

2

)

, θ ∗
4 =

(

β2(x)S
2
x

β2(x)S2
x+Q2

r

)

, θ ∗
5 =

(

ρS2
x

ρS2
x+Q2

d

)

, θ ∗
6 =

(

CxS2
x

CxS2
x+Q2

d

)

, θ ∗
7 =

(

β2(x)S
2
x

β2(x)S2
x+Q2

a

)

,

3 Efficiency Comparison

We have derived the conditions under which the proposed family of estimators t∗ are more efficient than the usual unbiased
estimator s2

y , [1,2,4,10,11] and [12] tk(k = 1,2, · · · ,12) estimator. Table 1 and (6) shows that

i

MSE(t∗)< MSE(s2
y) Ifc >

θ ∗(1−α)

2
(8)

ii MSE(t∗)< MSE(tR) If

min

[(

1

1−α

)

,

(

2c− 1

1−α

)]

< θ ∗ < max

[(

1

1−α

)

,

(

2c− 1

1−α

)]

(9)

iii MSE(t∗)< MSE(tK);k = 1,2, · · · ,12 If

min

[(

θk

1−α

)

,

(

2c−θk

1−α

)]

< θ ∗ < max

[(

θk

1−α

)

,

(

2c−θk

1−α

)]

;k = 1,2, · · · ,12 (10)

4 Empirical Study

To see the performance of the proposed estimator t∗ of the population variance over the usual unbiased estimator s2
y , [1,2,

4,10,11] and [12] estimator tk(k = 1,2, · · · ,12) , the description of the considered population data sets are as follows:

Population-I[5]

Y: Output for 80 factories in a region
X: Fixed capital
N = 80, n = 20, Ȳ =51.8264, X̄=11.2646, ρ=0.9413, Sy =18.3549, Cy

=0.3542, Sx = 8.4563, Cx=0.7507, λ04= 2.8664, λ40= 2.2667, λ22=2.2209, Q1

= 5.1500, Q2 =10.300, Q3=16.975, Qr= 11.825, Qd = 5.9125, Qa=11.0625
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Population-II[3]

N =70, n =25, Ȳ =96.7000, X̄=175.2671, ρ =0.7293, Sy=60.7140, Cy

=0.6254, Sx=140.85, Cx=0.8037, λ04 =7.0952, λ40=4.7596, λ22 =4.6038,
Q1=80.1500, Q2 =160.30, Q3=225.025, Qr = 144.8750, Qd=72.4375, Qa =152.5875
Furthermore, for the purpose of efficiency comparison of the estimators t∗i (i = 1,2, · · · ,7) , the relative efficiencies of the

estimator tk(k = 1,2, · · · ,12) and t∗i (i = 1,2, · · · ,7) w.r.t. s2
y have been computed using the formula:

PRE(tk,s
2
y) =

MSE(s2
y)

MSE(tk)
X100 for(k = 1,2, · · · ,12)

PRE(t∗i ,s
2
y) =

MSE(s2
y)

MSE(t∗i )
X100 for(i = 1,2, · · · ,7)

Findings are presented in Table-3

Table 4: PRE of the estimators tk(k = 1,2, · · · ,12), t∗i (i = 1,2, · · · ,7) w.r.t. s2
y

Estimators (.) Population I Population II

tR = s2
y

(

S2
x

s2
x

)

183.2345 142.0218

t1 = s2
y

(

S2
x−Cx

s2
x−Cx

)

179.6210813 142.01093

t2 = s2
y

(

S2
x−β2(x)

s2
x−β2(x)

)

169.2398 141.9261

t3 = s2
y

(

β2(x)S
2
x−Cx

β2(x)s2
x−Cx

)

181.9786 142.0202

t4 = s2
y

(

CxS2
x−β2(x)

Cxs2
x−β2(x)

)

164.4934 141.9028

t5 = s2
y

(

S2
x+Q2

s2
x+Q2

)

226.8671 144.1754

t6 = s2
y

(

S2
x+Q1

s2
x+Q1

)

206.6417 143.1002

t7 = s2
y

(

S2
x+Q3

s2
x+Q3

)

247.2471 145.0414

t8 = s2
y

(

S2
x+Qr

s2
x+Qr

)

232.1285 143.9687

t9 = s2
y

(

S2
x+Qd

s2
x+Qd

)

209.8595 142.9965

t10 = s2
y

(

S2
x+Qa

s2
x+Qa

)

229.5416 144.0721

t11 = s2
y

(

CxS2
x+Q2

Cxs2
x+Q2

)

238.1734 144.6995

t12 = s2
y

(

ρS2
x+Q3

ρs2
x+Q3

)

249.8426 146.1556

t∗i = s2
y

[

α +(1−α)
(

δ S2
x+L2

δ s2
x+L2

)]

270.6324 230.8138

t∗1 = s2
y

(

ρS2
x+Q2

1

ρs2
x+Q2

1

)

266.3895 222.2802

t∗2 = s2
y

(

CxS2
x+Q2

1

Cxs2
x+Q2

1

)

270.3844 218.7164

t∗3 = s2
y

(

β2(x)S
2
x+Q2

2

β2(x)s2
x+Q2

2

)

270.6075 185.8162

t∗4 = s2
y

(

β2(x)S
2
x+Q2

r

β2(x)s2
x+Q2

r

)

266.8421 178.7482

t∗5 = s2
y

(

ρS2
x+Q2

d

ρs2
x+Q2

d

)

270.6148 214.4873

t∗6 = s2
y

(

CxS2
x+Q2

d

Cxs2
x+Q2

d

)

268.1147 210.3682

t∗7 = s2
y

(

β2(x)S
2
x+Q2

a

β2(x)s2
x+Q2

a

)

269.7894 182.2565

Table 3 indicates that the performance of the proposed estimator and the new estimators generated from the proposed
family of the estimators t∗i (i = 1,2, · · · ,7) are better than the usual unbiased estimator s2

y , [1], [2], [4], [10], [11] and [12]

tk(k = 1,2, · · · ,12) estimator.
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5 Conclusion

In this paper, the family of ratio-type estimator for finite population variance S2
y using known values of the parameters

of an auxiliary variable such as quartiles and their functions has been proposed under simple random sampling. The
bias and mean squared error of the proposed family of estimators have been obtained under large sample approximation.
Furthermore, the condition has been derived under which the proposed estimator t∗i (i = 1,2, · · · ,7) performs better than

the usual unbiased estimator s2
y , [1,2,4,10,11] and [12] tk(k = 1,2, · · · ,12) estimator. The performance of the suggested

family of estimators has been assessed. It was detected that it is more efficient than the other considered estimators for
known natural population data sets under certain conditions.
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