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ON FACTORIZATION OF MATRIX POLYNOMIAL WITH RESPECT TO

THE UNIT CIRCLE

FIKRET A. ALIEV1, VLADIMIR B. LARIN2

Abstract. The problem of factorization of the second order matrix polynomial with respect to

the unit circle is considered. It is shown, that in the case when the roots lay on the unit circle, the

solution for the factorization problem can be obtained using the Bass relation. To demonstrate

the possibility of non-uniqueness of the solution of factorization problem an example is included.
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1. Introduction

Algorithms for solution of various linear time invariant control systems synthesis problems

require factorization of matrix polynomials [1, 4]. In this context, various algorithms of factor-

ization were proposed, in particular, factorization algorithms with respect to the unit circle [2,

3, 6, 7, 10, 12, 13]. It can be stated that the development of algorithms for the factorization

of matrix polynomials remains relevant at the present time (see [9], where there are further

references). Thus, in [9] the problem of factorization of the matrix polynomial

φ(z) = z−1A−1 +A0 + zA1, (1)

with respect to the unit circle is considered without assumptions about the symmetric arrange-

ment of its roots. In (1), A−1, A0, A1 are the given matrices of the dimension n×n. It is shown

in [9] that the polynomial (1) can be factorized, i.e. presented in the form

φ(z) = (I − zR)K(I − z−1G). (2)

Hereinafter I is the unit matrix of corresponding dimension. The matrices G and R satisfy the

following unilateral quadratic matrix equations:

A1G
2 +A0G+A−1 = 0, (3)

R2A−1 +RA0 +A1 = 0. (4)

We note that, according to [9], the factorization (5) is called canonical if ρ(R) < 1, ρ(G) < 1

and it is called weakly canonical if ρ(R) ≤ 1, ρ(G) ≤ 1. Here ρ(·) denotes the spectral radius.

Comparing the coefficients of the corresponding degrees of z in (1), (2), we can obtain the

following relation:
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K +RKG = A0,−KG = A−1,−RK = A1. (5)

From these relations it follows that

K = A0 +A1G,K = A0 +RA−1, (6)

A1G = RA−1. (7)

Substituting (7) into (3), (4) we obtain

R(A1G+A0) +A1 = 0, (8)

RA−1G+A0G+A−1 = 0. (9)

Thus, determining the matrix G by solving (3), we can find the matrices K,R from the linear

relations (6), (8), (9). In the case when the matrices G,R,K are given (see example), the

relation (5) can be used to calculate the matrix coefficients A1, A0, A−1 of the polynomial φ(z).

Note that the factorization (2) is called the left factorization of the polynomial (1) (see [4]). To

find the right factorization of the polynomial (1), we can proceed as follows. Using the relation

(2), we find the factorization of the polynomial

φ̃(z) = z−1A′
−1 +A′

0 + zA′
1. (10)

In (10) and in what follows, (′) denotes transposition. We represent the polynomial φ̃(z) in the

form (2):

φ̃(z) = (I − zR̃)K̃(I − z−1G̃).

Taking into account that φ̃(z)′ = φ(z), we obtain the following relation:

φ(z) = φ̃′(z) = (I − z−1G̃′)K̃ ′(I − zR̃′), (11)

which determines the right factorization of the polynomial (1) (see, example).

We note that in [9] much attention is paid to the case when among the roots of a polynomial

there are roots lying on the unit circle. This can worsen the convergence of the computational

process of finding the solution of equations (3), (4). In this connection, in [9] the procedures

are considered which make it possible to transform the original equation in such a way that the

roots whose modulus is equal to one, are excluded.

Below we show the possibility of using the algorithm [5] to find the solution of equation (3)

and, as a consequence, the solution of the factorization problem of the polynomial (1), in the

case of roots whose modulus is one (see the example in the sequel).

2. Unilateral quadratic matrix equation [1]

It is known that various engineering problems are related to the theory of oscillations. Here

we should note the theory of strongly damped systems [11], in which the central place is occupied

by the questions of finding the roots of the matrix (or operator [11]) equation

A2X
2 +A1X +A0 = 0. (12)

In [8], the matrix equation (12) is called the unilateral quadratic matrix equation (UQME). It

is obvious that it coincides with (3) with the accuracy on the notations.

We rewrite equation (12) in the following form
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M1

[
I

X

]
= F1

[
I

X

]
B, (13)

M1 =

[
0 I

−A0 −A1

]
, F1 =

[
I 0

0 A2

]
, B = X.

The problem is to construct a procedure that allows us to transform (13) to the form

Mp

[
I

X

]
= Fp

[
I

X

]
Π(B), (14)

where Π(B) is the some polynomial from the matrix B. Obviously, if Π(B) = 0 (for example,

Π(B) is the characteristic polynomial of the matrix B), then the relation (14) turns into the

following linear equation with respect to X:

Mp

[
I

X

]
= 0, (15)

which can be rewriten in the form

Mp2X = −Mp1,

if we split the matrix Mp into blocks: Mp =
[
Mp1 Mp2

]
. It is obvious that the relation (15)

determines the solution X only if the matrix Mp2 is a matrix of full rank. In other words, the

proposed algorithm ”works” only in cases when Mp2 is a matrix of full rank.

We note that if the matrix F1 is invertible, then transforming (13) to the form

Hf

[
I

X

]
=

[
I

X

]
B,Hf = F−1

1 M1, (16)

it is easy to obtain the relation (15), in which we have the matrix Mp = Π(Hf ). However, if the

matrix F1 is singular, we find another approach.

Without assuming the invertibility of the matrix A2, the transformation (13) to the form (14)

yields matrices M2, F2 in the relation

M2

[
I

X

]
= F2

[
I

X

]
B2. (17)

Multiplying (13) on the right by B we obtain

M1

[
I

X

]
B = F1

[
I

X

]
B2. (18)

Let us introduce the matrices D1, L1 which satisfy the following relation:

L1M1 = D1F1. (19)

Multiplying the equations (13), (18) on the left by the D1, L1, respectively, we obtain

D1M1

[
I

X

]
= L1F1

[
I

X

]
B2, (20)

i.e. as the matrices M2, F2, appearing in (17), we can take the following matrices:

M2 = D1M1, F2 = L1F1. (21)
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Taking into account that according to (19) the matrix
[
L1 D1

]′
is the kernel of the matrix[

M1

−F1

]′

, one can find matrices L1, D1 in (21) using the procedure null.m of the package

MATLAB.

A similar procedure can also be used to construct a relation in which higher degrees of the

matrix B appear.

Let (13) be transformed to the form

Mk

[
I

X

]
= Fk

[
I

X

]
Bk. (22)

We construct an analogous relation in which the matrix B has degree k + 1. Let us multiply

(22) from right by B and introduce the matrices Dk, Lk , which satisfy the relation

LkMk = DkF1. (23)

We then have

DkM1

[
I

X

]
= LkFk

[
I

X

]
Bk+1,

i.e. Mk+1 = DkM1, Fk+1 = LkFk.

According to (23), the matrix
[
Lk Dk

]′
is the kernel of the matrix

[
Mk

−F1

]′

and, therefore,

as already noted, can be used the null.m procedure of the MATLAB package to find the matrices

Dk, Lk.

Let us note that Fk+1 = LkFk and, therefore,

Fk = Lk−1 . . . L1F1. (24)

Thus, we described a procedure that allows one to construct the matrices Mk, Fk, appearing

in (22). We use it to determine Mp in (7), assuming that the polynomial Π(B) appearing in

(14) given by

Π(B) = β0B
m + β1B

m−1 + . . .+ βm−1B + βmI (25)

is the characteristic polynomial of the matrix B, where β0 = 1. For it as a first step, it is

necessary in (22) to make equal the matrix coefficients for Bk for k = 1, . . . ,m. For this purpose,

taking into account (24), we multiply on the left each of the relations (22) by LmLm−1 . . . Lk.

We replenish these relations by the identity

Fm

[
I

X

]
= Fm

[
I

X

]
. (26)

We multiply (26) by βm , and the relations which in Bk appears, by βm−k (the coefficients βi
are determined by (25)). Adding them, we get

(βmFm + βm−1Lm−1 . . . L1M1 + . . .+ β1Lm−1Mm−1 +Mm)

[
I

X

]
= Fm

[
I

X

]
Π(B) = 0.

Consequently, the matrix Mp, appearing in (15) has the form

Mp = βmFm + βm−1Lm−1 . . . L1M1 + . . .+ β1Lm−1Mm−1 +Mm. (27)

Thus, the solution of the equation (12) is determined by the relation (15), in which the matrix

Mp has the form (27). The coefficients βi are determined by the (25), and the matrices M1, F1

by the relation (13).
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Let us consider the procedure for determining the coefficients βi in (25) (the characteristic

polynomial of the matrix B ). Since, B = X, then, it is obvious that the use of standard

computational procedures, for example poly.m of the MATLAB package, is problematic for

finding the coefficients βi. Obviously, the eigenvalues of the matrix X belong to the spectrum

of the pencil

M1 − λF1, (28)

which allows us to find the coefficients βi by selecting the roots of (25) from the eigenvalues of

the pencil (28) (see the examples).

3. Examples

Example 1 (Example 4.4 [4]). Matrices appearing in (1) have the form

A−1 =

[
0 1

0 −1

]
, A0 =

[
1 −1

−1 5

]
, A1 = A′

−1.

The polynomial (1) must be represented in the form (11). The corresponding matrices M1, F1

in (13) have the form

M1 =


0 0 1 0

0 0 0 1

0 0 −1 1

−1 1 1 −5

 , F1 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 −1

 .

Note that these matrices do not have inverses. The problem consists in finding the matrix G̃,

defined by (3), i.e. in finding the solution of equation (12), in which the matrices are determined

by the coefficients of the polynomial (10). In order to use the relations (15), the matrix Mp, in

which (27) is defined, it is necessary, according to (21), to find the matrices M2, F2 . In turn,

this requires finding the matrix N , which is the kernel of the matrix

[
M1

F1

]′

. So, we have

N =



0.6492 −0.0940 −0.0157 0.0157

−0.0494 0.9065 0.1845 −0.1845

0.6971 0.1292 −0.1824 0.1824

0.0480 0.2232 −0.1667 0.1667

−0.0480 −0.2232 0.1667 −0.1667

0.0480 0.2232 −0.1667 0.1667

0.2040 −0.0401 0.9178 0.0822

−0.2040 0.0401 0.0822 0.9178


,

M2 =


0.2040 −0.2040 −0.4559 1.2717

−0.0401 0.0401 −0.1430 −0.0940

−0.0822 0.0822 −0.6689 0.3401

−0.9178 0.9178 0.6689 −4.3401

 , F2 =


0.6492 −0.0494 0 0.6492

−0.0940 −0.9065 0 −0.0940

−0.0157 0.1845 0 −0.0157

0.0157 −0.1845 0 0.0157

 .

Appearing in (25) polynomial Π(B) has the form Π(B) = B2, i.e. β0 = 1, and other coefficients

β1, β2 are equal to zero. Therefore, according to (27), Mp = M2 and, using (15) we obtain

G̃ = X =
1

4

[
−1 −1

1 1

]
.
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Thus, according to (6), (8) we have

K̃ =

[
0.75 −0.75

−0.75 4.75

]
, R̃ = G̃′.

Decomposing the matrix K̃ ′ to Cholesky factors,

K̃ ′ = Ċ ′
kCk,

we obtain, according to (11), the following expression for φ(z):

φ(z) = Π′(z−1)Π(z),

where

Π(z) = Ck(1− zR′) =

[
0.866 −0.866

0 2

]
+

[
0 0

1/2 −1/2

]
z.

This expression coincides with accuracy ≈ 1016 with the exact value given in [4].

Example 2. Let us show that the polynomial (1), generally speaking, can have more than one

representation in the form (2). In (2), set

G =

[
−1 0

5 0

]
, R =

[
1 4

0 0.8

]
,K =

1

100

[
3 4

0 1

]
. (29)

To these initial data, according to (5), correspond the following matrices appearing in (1):

A−1 =

[
−0.17 0

−0.05 0

]
, A0 =

[
0.4 0.04

0.04 0.01

]
, A1 =

[
−0.03 −0.08

0 −0.008

]
, (30)

and, according to (2), one of the possible factorizations of the polynomial (1):

φ(z) = (I − zR)K(I − z−1G). (31)

In (31) the matrices R,K,G are determined by (29).

Using the results of p. 2, we construct another factorization of the polynomial (1), different

from (31), the matrices in which is defined by (30). With these initial data, the matricesM1, F1

in (13) have the form:

M1 =

[
0 I

−A−1 −A0

]
, F1 =

[
I 0

0 A1

]
.

In this example, the matrix F1 has an inverse. Therefore, to solve the factorization problem, we

can use (16). The matrix Hf = F−1
1 M1 has the following eigenvalues: 0; −1; 1; 1.25. Thus, as

a matrix Π(Hf ) , the following matrices can be chosen:

H1 = H2
f +Hf ,H2 = H2

f −Hf .

If in (15) as the matrix Mp we choose the matrix H1 (Mp = H1), and as X the matrix G,

which is determined by (29), then for such choice of these matrices the relation (15) will be

satisfied. If we take matrix H2 as the matrix Mp, then in the result of the solution of system

(15) we obtain that G2 = X =

[
1 0

5 0

]
and, respectively, according to (6), (8), we obtain

K2 = 1
100

[
−3 4

0 1

]
, R2 =

[
−1 12

0 0.8

]
. The found values G2,K2, R2 according to (2), is

determining another factorization of the polynomial (1) different from (31):

φ(z) = (I − zR2)K2(I − z−1G2).
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This fact is related to the fact that the determinant of the polynomial (1) has two roots, modulus

of which is 1.

4. Conclusion

The factorization problem with respect to the unit circle of the second-order matrix polynomial

is considered in [9]. It is shown that in the case of roots lying on a unit circle, the algorithm

[5] for solving of the unilateral second-order matrix equation based on the Bass relation can be

used to solve the factorization problem. On example, the possibility of non-uniqueness of the

solution of the factorization problem is shown.
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