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Abstract: In this study, a five-stage fourth-order Runge-Kutta typ¢hme for directly solving general third-order ordinaryfdifential
equations (ODEs) of the foryi” = f(x,y,y’,y’) which is denoted as RKTGG method is constructed. The ordetittons of RKTGG
method up to order four are derived. Based on the order donditleveloped, five-stage fourth-order explicit Runget&type method
is constructed. Zero-stability of the current method isnghdl he various type of general third-order ODEs has beeredalsing new
method and numerical comparisons are made when the saniemristreduced to the first-order system of equations whielsalved
using existing Runge-Kutta methods. The numerical study third-order ODE arising in thin film flow of viscous fluid in ysics is
also discussed. Numerical results show that the new meshoaie efficient in terms of accuracy and number of functicuations.

Keywords: Runge-Kutta type methods, General third-order ordinaffgidintial equations, Order conditions, Thin film flow

1 Introduction class of hybrid collocation methods for the direct solution
of higher-order ODEs. You and Ched][ constructed

In this paper, we are considering to the general third-ordeflirect integrations of RK type for special third-order

ordinary differential equations (ODES) of the form ODEs. Waeleh et al.4], proposed a new algorithm for
solving higher-order IVPs of ordinary differential
Y (x) = f(x, y(x),;/(x),;/’(x)), (1) equations. Jato®], constructed hybrid multi-step method
, , for solving second-order IVPs without predictors. Samat
Y(%0) = Yo, ¥ (o) = Yo. " (¥0) = g and Ismail p], developed a block multi-step method

, ds. d d ) which can directly solve general third-order equations.
whereyy,y" € R%f : R x R® — R is a continuous  pyrthermore, Ibrahim et al.7], found a way using
vector-valued function.  Specifically, third  order myyti-step method that can directly solve stiff third-orde
differential equations emerge in numerous physicalgifferential equations. Mechee et aB][ constructed a
problems, for example, thin film flow, gravity-driven (nree-stage fifth-order RK method for directly solving
flows and electromagnetic wave. The general solution Ofspecial third-order ODEs. Kasim et al9][ proposed
(1) is done by reducing it to an equivalent first-order jeqration for special third-order ODEs using improved
system which is three times e}nd can be using Sta”darﬁzunge-Kuttadirect method. Mechee et 4] suggested
Runge-Kutta method or multi-step method. A lot of 3 new four-stage sixth order Runge-Kutta method for
researches have being solved probleinlfy converting  gjrect integration of special third-order (ODES).
the problem to a system of first-order eq“at'O”S-Subsequently, Senu et all]] constructed embedded
Furthermore, there are several authors who study ORypicit Runge-Kutta methods for directly solving special

numerical methods which solve probled) @irectly, for  nirg-order differential equations. In this paper, the mai
instance Jatorl], Awoyemi and ldowu ], proposed a
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aim is to construct a one-step method of order four tothe RK method suggested by Dormarit?]] The new
solve third-order ODEs directly. The derivation of order method RKTGG can be expressed as follows:
conditions are given in Section 2. In Section 3, the

zero-stability of the new method is given. Five-stage Vi1 = Yn+h® (X0, Yn, Y, Vo),

fourth-order are constructed in Section 4. The efficiency _ / '

of the new method, when compared with existing method )/r:Jrl = )/r:+ h@//(xn,yn,y/n,)/nl),

is given in Section 5. The thin film flow problem is ni1 = Yn +h®" (Xa,Yn, Yn, Yo)- (7)

discussed in Section 6.
where the increment functions are

2 Derivation of the New Method D YV V) = Y+ 2>/n’+h2i£bih,

IR IS s S
yn+1=yn+hyn+h—22yn’+h3iibm, @) @" (%0, Yn, Yn: Vo) I;b” (8)
e L o L LA e

truncation errors of/(x), y'(x) andy”(x) can be obtained

m
yg+l:yg+hzib;'|q, (4) by substituting the accurate solution df) (into (8) as
i= follows:
where Thp1= h[(D o A],
Tr/1+1 = h[(D/ - A/]v
ki =f (X, Yn. Y Ya) T, =h[®" —A"]. 9)
h2 i—1
ki =f (Xn +cih, yn+-cihy, + > yn+h? Z aijk;, Definition 1.A RKTGG method?) - (4) has order p if for
= sufficiently smooth problen(s)
i—1
%+c|hv’+hzzajk1,%+hz aﬂﬂ) ®) Y0+ h) = Yo = O(PTY) Y (xa + h) — ¥iy =

O(hP), ¥ (% +h) =Yg, 1 = O(hP*Y).

fori =2,3,...,m. The parameters, b/, b, aj,&;,a; and _ _ _
¢ of the RKTGG method assumed to be real and used fol" the terms of elementary differentials, the expressions
i,j =1,2,....m This method is an explicit form ifj = (9) are best given and the Taylor series can be expressed as

aj = aj = Z0fori < j and it is an implicit one ifa;j; # follows:
0, ajj ;é 0 anda‘J # 0 fori < j. The new method can be 1 1
represented by Butcher tableau as follows: A=y + ih)/’ 4 5 h? |:1<3) il h3 |:1 44 O(h4)

A —y'+ e 4 Lhep® +—h3F1(5)+0(h4)7
- 2 6 24
c|Al|A|

1 1
©) 2" =F¥+ ShRY 4+ 2R o), (10)
bT | b/T | b//T
The first few elementary differentials for the scalar case
are

To determine the parameters of the new method given by O _ ¢
(2)-(5), the RKTGG method expression is expanded using "1 — *»

Taylor's series expansion. After performing a few |: 4 _ = fut fyyt Ty Yot fr

algebraic manipulations, this expansion is equated to the £

true solution that is given by Taylor's series expansion. Fi~ = fuct YTy + Ty Yooct Tuyr T+ Yaufyy + Yy f

The direct expansion of the local truncation error utilized 2
. . +f + fppr T+ f 4+ fn F9+ fu f
to derive the general order conditions for the new method. Wyzxx vy y vy yrx
This idea based on the derivation of order conditions for + fyrfyyx+ fyr fy Yt fyyr f (11)
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Substituting (1) into (8), the increment functiong, @’ Order conditions for y':
and®” for new method becomes

m m m Order 2 1
i;bm = iZib.fjti;b.cl(fﬁ fy¥x+ fy Yot fyr ) Shi=3 (16)
imo, Order 3
+ Z;bici (fxx+YXfxy+ fuy Ysox + fxyr f beci _ 27 zbfgu _ % 17)
+ Yty + iy f o+ fyyioct Ty Yot fyy f Order 4
+ By F o fyngr 24 fr fi+ Ty Zb{ci2 = %2 Zb{ciz?@j = %2 (18)
+ Ty Yot fynye £) B2 4 O(h3), 11 / L
ﬁib{h :iibi/f+i§ibf0i(fx+ fyyx + fy Yx+ fyr ) 253 =2 3 1 2 braa 1 22 19
Zbi/a_ijcj:ﬁazbi/a_ija_jk:ﬁ (20)

1 m
i=

Y2, Fyy + Yy T+ fyyt Ty Yoy + fyyn f
=+ fy/f =+ fy//y//f2+ fy// fy + fy// fyyx
Order 1
+ fr fy Yo+ fynr £) W24+ O(R®),
y' Ty Yoot fyry £) h* -+ O(h) T =1 (21)

m m m
I;blﬂk‘ = I;blﬁf + i;biﬁCi (fx+ fyyx+ fy’ yXX+ fy// f) h Ol’der 2

Order conditions for y”:

1 = 1
bei = 3. 3 blag = (22)
1m z ! 2 ! 2
+ > _Zlbi Ciz(fxx+YXfxy+ fxy Yiox+ Fuyr f Order 3 L
= /o2 1/ -
+y)2(xfyy+y><fy’y”f + fyyxx+ fy’y’y)z(x+ fylyr/f z b' 3 Z b G a” 3 (23)
4 fy o fyrgr 24 fr i+ fi f — 1
y' y'y' yl 2X y’3yy>< Zbi//aijcj:_a Zbll/ [ (24)
+ fyr fy Y+ fyryr f) h®+0O(h®). (12) 6 6
From (10) and (2), the local truncation error9f can be 1 b/ + S baga; = 1 b3 A — } 25
expressed as follows: 2 2018+ 3 baa 6’ 2 baia s @
m 1 1 Order 4
T =h | S bk — (ZF¥ + =hEY + )],
£ 6 24 e 1 == 1
= zbiaijcj:ﬂa Zbiaijajkck:ﬂa (26)
rn+1_hzlzlb’ ( + hF Y4 ) , L
Zb/’cla”cJ g Zb’/a”c - (27)
1 5)
T, = b’k ( +3 hF(>+—h2F< +)
n+ [Z\ 6 1 i Zb// = Zb//cI a” (28)
Substituting 12) into (13) and expanding as a Taylor Zb{’a_” c = :—é, Zb{’a_;j a=jk+ZbiNa:jj aj = %2 (29)
expansion using Maple package (seid]], the local
truncation errors or the order conditions forstage up to 1 1
order four for new method can be expressed as follows: > Z bl'c; a"f] + Z b’ ciakaj = 3 z bi/lé_zij G
. _ _ 1
Order conditions for y: + Z b{’ ai aij ck = 3 (30)
Order 3 1
b == 14 = = == _ 51 = = =
o 255 (14) > bi'aij cjaw+ Y bica aw = 55, 5 > bi'ai aj
rder - - _ 1
1 — 1 Ny X 5 _ =
> bici = 0 > biajj = 22 (15) 2 bi'aa aj 6 (31)
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1 __ 1
> blaj =57, Y blajaj =g (32)

1 = = = 1 = = = 1
g2 Plaiawaj =5, Y blajakaw =5, (33
All indexes are run from one tan. To obtain the

higher-order RKTGG method, the following simplifying

4 Construction of the RKTGG Methods

In this section, based on the order conditions which have
been derived in Section 2, we proceed to construct explicit
RKTGG methods. The global local truncation error for the
p order RKTGG method is defined as follows:

assumption is used in order to reduce the number of

equations to be solved:

zazij =i,
b =b{(1-a),
(1-c)

by =/ =

(34)

o, m.

3 Zero-Stability of the New Method

+1

Np
| _[(p+1) 2= -[.(p+1) 2+
g 2 |Zl ( i )

My+1
(Ti/<p+1>)2
if

1
n+1 3

K]

wheret(PtD /(P+1) and”(P+1) are the local truncation
error terms fory,y andy’ respectively,igP*Y is the
global local truncation error.

We then focus on the derivation of five-stage RKTGG

(35)

In this section, we discuss the concept of zero-stability ofMethod of order four and the algebraic conditions
new method to be convergent. Zero-stability is one of ((14—(15), (16)—(20), (21)~(33)) are used because of the
significant tool to prove the convergence of multi-step Nigh number of the resulting system of equations which

methods and stability (seel4,15]). Hairer et al. [L6],

consists of 37 nonlinear equations. Therefore, we use the

discussed zero-stability to determine an upper bound o$implifying assumption 34) reducing the system of
the order of convergence of linear multi-steps methods€guations to 25 equations with 34 unknowns and left with

Now, the first characteristic polynomial for the RKTGG
method @)-(5) is based on the following equation:

100| [ Y1 114] [ wn
010| | hy,y | = (021 |hy,],
001] [h?y! 00 1| [h?yp
100
wherel = |0 1 0| is the identity matrix coefficient of
001

Ynr1,hY,q andh?yp

113
andA= {011

001
h2y!’, respectively.

is matrix coefficient ofyn, hy,, and

Then, the first characteristic polynomial of new method is _

(-1 -1 -1
p({)=defl{-A]=) 0 (-1 -1
0 0 ¢-1
thus,
p(Q)=(¢-1)>

Hence, the method is zero stable since the raats; are
equal to one.

9 degree of freedom. Solving the system simultaneously
and the family of solution in term  of

a1, @31, 42, 443, As4, A42, As4, A32 AN C2 are given as
follows:

(—1—|—C2)

%2 T 12(6c2 + 1 4cy)

;au1=0,a51=0,a52=0,
1

18(663 + 1+ 4cp) (— 1+Cp) (— 1+4cy) (2+
15ag; — 12a47 — 12a43— 324a45C5 + 162a54C,
— 540a54C5 — 432a54C3 + 828as4C3 — 39C; + 33¢5
— 18as4+ 18¢5 + 648a43C3 — 3ap — 14c, — 648az;
C5 — 648a31C5 + 432a31C5 — 132a31C; + 324a31C5
+ 120a43C; — 432a43C5 — 324a43C5 + 12a71C;
+120a42C; — 432a45C3 + 648c3),

1

1

48(—1+ )’ (3c,— 1)°
— 3456a54C5 — 1566¢3 + 7488c; + 7488854C;
415123 — 5976a54C3 + 2376a54C5 — 771¢3
+ 144c5 8z, — 84C 81 + 196C; — 468a54C;
— 19+ 12371+ 368s4),

as3 =

ag1=0,az = =0,

(648c3
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_ 1
 48(9¢3— 60+ 1) (— 1+ ) 2(3c, — 1)
5+ 432C3 4 3456854C3 + 144¢5 4 216c3ap;
— 74884a54C; — 576C3 a1 + 5976854C3 — 552C3
+384c3ap; — 411c3 — 237685403 — 108321, — 124
C2 + 468854C; — 36as4+ 13+ 12a1),
as1=0,a52=0,

(324

1
T 36(—1+4cy) (—1+¢y) (663+1—4c,
a54C3 + 90C; + 1656a54C3 — 168c3 — 1080a54C5

+ 1233 + 36821C3 + 324a54C, — 54C, — 24851

— 36354+ 8+ 6a1), a1 = Cp, ag1 = 1 —agp, a1 =0,

253 )(—864

- 18c5— 16c,+ 3
2= (—1+c)(9c3—6c+1)’
— 1
M3 (17 ) (96, +1)
= —108c3 -+ 10833,C4 + 216¢3 — 216a32C3
ST 6(6C2+1—4)(—14¢p) (— 1+4c))
144ag, C% — 44ag,C) + 45¢; + 5agy
6(6c3+1—4)(—1+cp)(—1+4cy)’
= 216a37C4 + 54¢3 — 432a3,C3 — 58¢3 -+ 288a32C3
% 12(— 1+ 4cy) (663 + 1—4cy) (— 1+ ¢p)
+15¢, — 88agyC, + 1035, — 1
12(—1+44cy) (6c3+1—4c) (—1+¢p)’
= 72¢§—102¢3+50c5 — 11¢cp+ 1
BT T 12(6+1-4cy) (—1+46) (—1+4c)’
=  9%-6C+1 ., ., .,
a54—3(6C%+1_402)ab1_07b3_oab5—oa
b — 1 ;9560 +1
27663 +1-4c) ¢ 3(6C3+1-4c)’
. . . —14+2¢ .
cl_O,c3_1,04—72(302_1),05—11
-1+c
by =0,bp = — bs =0
LT T (6 +1-4c) o
15T+l
4_12(6c§+1—4c2)’b5_0’ 1=0,
by — !

6(—1+cp)(6c5+1—4cy)’
182 — 24c,+ 5
6(—1+Cz)(—1—|—402)’
3
b// - 2(302 — 1) b//
4T 3(—1+4c) (663 +1—4c) °
2 2 2

//
b3:—

By letting az = 3,831 = §, 842 = 3,83 = 3,384 =
Fau = 384 = 3,85 = 3,co = L. Then, the
coefficients of five-stage fourth-order RKTGG method
denoted by RKTGG4 can be represented as follows (see
Table 1):

Table 1: The RKTGG4 Method

0|0 | 0 | 0
1)1 6 1
5|z O ta 0 | g O
3
ig o Joi o |33 o0
2 1 1 1 67 1 1
5108 § oo 3-8 ofo 3 § O
110 0 —3% 0/ 0 0 7 50| 0 ~1 50
5 1 1 1 2 9 1
0% 0 $%0[0 3 0 §0[0 § —f 31
5 Numerical Experiments
In this segment, all the problems including

y” = f(xyYy,y’) are tested upon. The numerical
outcomes are compared with the results obtained when
the same set of problems is reduced to a system of
first-order equations and is solved utilizing the existing
Runge-Kutta of the same order.

(i) RKTGG4: The new fourth-order five-stage RKTGG
method derived in this paper.

(i) RKS4: The four-stage fourth-order RK method as in
Butcher [L4].

(i) RKZ4: The five-stage fourth-order RK method given
in Hairer et al.

[16].

(iv) RKE4: The six-stage fourth-order RK method given
in Lambert [L5].

Problem 1(Homogeneous Linear Problem)

y" (%) =—6Y"(x),
y(0) =1y (0)=-1y'(0)=2,

Theoretical solution :

Problem 2(Inhomogeneous Linear Problem)

Y (X) =Y (X) + co(x) + sin(x) + 1,

(@© 2018 NSP
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Theoretical solution :
1 1 . 1 1]
y(x) = > cog2x) — 20 sin(2x) + > cogx) .
1 21 3, 3 21 £ 5|
+§sm(x)+ﬂ)e’<—é—1x 53X g :
Problem 3(Homogeneous Linear Problem) E ]
Y () = —y(x) +2y"(x), =7 1 RKTGG
y(0) =0,y'(0) = 1,y"(0) =0, N

T T T T T T T
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

log1o(Function Evaluations)

Theoretical solution :

1 1 \/5_,’_1 1 _1 \/?)_1
y(x) = g\/gez( - 5 VBe 2 (VX Fig. 1: Comparison for RKTGG4, RK4, RKZ4 and RKE4

Problem 1 with Xeng=3
Problem 4(Homogeneous Nonlinear Problem)

3y’(x -
y//(x):_ y( )2’
2(y(x)) s
1, 1
y(o) :1,)/(0):—7)/(0):——7 =
2 4 g —6 4
Theoretical solution : Zi
F
y(X) = Vx+ 1. <
—8 1 RKTGG4 —e—o
RK4 —eo—
Problem 5(Nonlinear System) Y o —
1 é 212 2‘.4 216 218 é 3‘.2 314
y{/ X) = _Z e4Xy3(X)y2/(X)’ log1o(Function Evaluations)
y1(0) =1,y1(0) = —1,¥7(0) =1, Fig. 2: Comparison for RKTGG4, RK4, RKZ4 and RKE4

Problem 2 with Xeng=2

=1,y5(0)=-2,y;(0) =4,

&
©
V() =~ 0 VYA,
©
&
©

log1o(MAXERR)
|
w
ot
‘

yi(x) =e7%, 4 1
yz(x) :e—ZX’ —4.5 4
-5 .
V() =e > A
0 RKZ4 —a—
RKE4 —=—o0o

2.2 2,‘4 2‘,6 218 :3 3‘.2 314 316 3.‘8
log1o(Function Evaluations

6 An Application to a Problem in Thin Film o )

Flow Fig. 3: Comparison for RKTGG4, RK4, RKZ4 and RKE4

Problem 3 with Xen=4

In this part, we use the suggested method to a well-known

problem in physics regarding the thin film flow of a

liquid. Several researchers have discussed this problem.

Momoniat and Mahomed1[7], constructed symmetry the flow of a thin film of viscous fluid over a solid

reduction and numerical solution of a third-order ODE surface. Tension and gravity, as well as viscosity, are

from thin film flow. Tuck and Schwartz1f], discussed taken into account. The problem was formulated using

(@© 2018 NSP
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€3]
"
2
=
=
)
2

RKTGG4 —e—

—9.5 RK4 —o—

RKZ4 —a—

10 RKE4 —a—

1.8 2 2.2 2.4 2.6 2.8 3 3.2

log1o(Function Evaluations)

Fig. 4: Comparison for RKTGG4, RK4, RKZ4 and RKE4
Problem 4 with Xgng=1

logio(MAXERR)

| RKTGG4

2.4 2.6 2.8 3 3.2 3.4

log1o(Function Evaluations)

Fig. 5: Comparison for RKTGG4, RK4, RKZ4 and RKE4
Problem 5 with Xgng=2

third-order ODE as follows:

ddy
e f(y)

for the film profiley(x) in a coordinate frame moving with
the fluid. The form off (y) varies according to the physical
context. Different forms of the functiof are studied in
[18]. For drainage down a dry surface, the formfgf) is
given as:

(36)

d3y 1
When the surface is pre-wetted by a thin film with
thickness > 0 (whereé > 0 is very small), the function
f is given by

(37)

148482 &+4¢&°
y2 y

Problems concerning the flow of thin films of viscous

fly)=-1+ (38)

play a role typically lead to third-order ordinary
differential equations governing the shape of the free
surface of the fluidy = y(x). According to [L8], one such

equation is

y// :y’k, X > Xo

(39)

Table 2: Table comparing values of the numerical solution, a
fourth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method ate [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.1 andk = 2 with the initial conditionsy(0) = y'(0) =

y'(0) = 1.

x  Exact solution

RK4

RKE4

RKTGG4

0.0
0.2
0.4
0.6
0.8
1.0

1.000000000
1.221211030
1.488834893
1.807361404
2.179819234
2.608275822

1.0000000000
1.2212105060
1.4888356990
1.8073626884
2.1798208831
2.6082768844

1.0000000000
1.2212107764
1.4888512316
1.8074900091
2.1803395852
2.6097383193

1.0000000000
1.2212093404
1.4888322182
1.8073559531
2.1798100221
2.6082610510

Table 3: Table comparing values of the numerical solution, a
fourth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method ate [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.01 andk = 2 with the initial conditionsy(0) = y'(0) =

y'(0) = 1.

x  Exact solution

RK4

RKE4

RKTGG4

1.000000000
1.221211030
1.488834893
1.807361404
2.179819234
2.608275822

1.0000000000
1.2212100046
1.4888347800
1.8073613978
2.1798192341
2.6082748678

1.0000000000
1.2212103652
1.4888507105
1.8074895517
2.1803393119
2.6097383271

1.0000000000
1.2212100045
1.4888347796
1.8073613971
2.1798192330
2.6082748662

Table 4: Table comparing values of the numerical solution, a
fifth-order Runge-Kutta method (RK4, RKE4), and our new
method (RKTGG4) method ate [0,0.2,0.4,0.6,0.8,1.0] taking
h= 0.1 andk = 3 with the initial conditionsy(0) = y'(0) =

y'(0) = 1.

X RK4 RKE4 RKTGG4

0.0 1.0000000000  1.0000000000  1.0000000000
0.2 1.2211559590 1.2211564251  1.2211541652
04 14881067401 1.4881307936 1.4881016329
0.6 1.8042645823 1.8044430234 1.8042548878
0.8 21715254210 2.1721919823 2.1715098965
1.0 25909615178 2.5927033256  2.5909389202

fluid with a free surface in which surface tension effects

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

782

N SS ¥

F. A. Fawzi et al.: A new integrator of Runge-Kutta type for..

Table 5: Table comparing values of the numerical solution, a
fifth-order Runge-Kutta method (RK4, RKE4), and our new 94 |
method (RKTGG4) method ate [0,0.2,0.4,0.6,0.8,1.0] taking
h = 0.01 andk = 3 with the initial conditionsy(0) = y'(0) = 22 1
y'(0)=1. 2 |
X RK4 RKE4 RKTGG4 =
0.0 1.0000000000  1.0000000000 1.0000000000 10
0.2 1.2211551425  1.2211557726 1.2211551423 14 1
0.4 14881052844  1.4881300313 1.4881052839 L2 ]
0.6 1.8042625484  1.8044424292 1.8042625474 P
0.8 2.1715227984  2.1721917529 2.1715227969 1 ‘ ‘ ‘ —
1.0 259095825948 2.5927036287 25909582573 0 2 o o s '

Fig. 6: Plot of the solutiony; for problem (39) for k=2h=

. . 0.01
with initial conditions

(%) =8,Y (%) =Z.Y'(x0) =,

where 6, ¢, and A are constants, is of particular 2449
importance because it describes the dynamic balance .- |
between surface and viscous forces in a thin fluid layer in
the neglect of gravity. For comparison purposes, we use
Runge-Kutta methods which are fourth-order (RK4 and = 181
RKE4) methods, respectively. To use Runge-Kutta 16 1
methods we write ) as a system of three first-order
equations. Following 19], we can write 89) as the

following system: 12 4

(40) 26

dy, dys 06 08 1
—y3(X), dx =Y (X)7

dys _ dy
dx

dx

where

Y2 (X)7 (41)

Fig. 7: Plot of the solutiony; for problem (39) for k=3, h =
0.01
¥1(0) =1,¥2(0) = 1,y3(x) =1,

we have takerxg = 0 andd = { = A=1. Unfortunately, 5.5
for general k, (39) cannot be solved analytically. 5 1
However, we can use these reductions to determine an the
efficient way to solveX) numerically.

(42)

We focus on the casds= 2 andk= 3. The results are
displayed in Tables 2 and 3 for the cdse2 and Tables 4
and 5 for the cask= 3.

log1o(Function Evaluations)

RKTGG4 ——

] RK4 —s—

RKE4 —e—
T

7 Discussion and Conclusion 2

T T
—-2.5 -2
logio(h)

T
-3.5 -3

In this study, a five-stage fourth-order explicit RKTGG

method denoted RKTGG4 for directly solving general Fig. 8: Plot of graph for function evaluations against step ize,
third-order differential equations of the form hfor k=3h=1/10,i=1.4.

y" = f(x,y,y,y’) has been derived and the comparison

are made with existing RK methods that have the same

algebraic order which are found ir4,15 and [16].

Furthermore, numerical comparison is based on theabsolute errors of the actual and computed solutions. In
computation of the maximum global error of the solution general, the numerical results show graphically as
(max] y(xn) — ¥n |)) which is equal to the maximum displayed in Figures 1-5 show that the global error of the
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new method. In Figures 6 and 7, we plot the numerical[12]J. R. Dormand, Numerical Methods for Differential
solution, y; for k = 2 and k = 3, respectively, with Equations, A Computational Approach, CRC Press, Boca
h = 0.01. Figure 8 shows that the new RKTGG4 method  Raton, Fla, USA, (1996).

requires less function evaluations than the RK4 and[13] W. Gander and D. Gruntz, Derivation of numerical method
RKE4 methods. This is because when probled8) (is using computer algebra, SIAM Review, Vol.41, No. 3, pp.
solved using RK4 and RKE4 method, it needs to be 577-593(1999). _ o
reduced to a system of first-order equations which is thred14] J- C. Butcher, Numerical Methods for Ordinary Diffetiai
times the dimension. From numerical results, we notice ~Eduations, John Wiley & Sons, Chichester, UK, 2nd edition,
that the new RKTGG4 method is more efficient compared (2008). . ) I

with existing RK methods and it has been shown that the[15] J.D. Lambert, N!J.me”cal Methads for Ordmary Diffetiz
new method is more accurate and competent when Systems, The Initial Value Problem, John Wiley & Sons,

. , London, UK, (1991).
solving general third-order ODEs. [16] E. Hairer, S. P. Ngrsett, G. Wanner, Solving Ordinary

Differential Equations I: Nonstiff Problem, Vol. 8, Sprieg
Berlin, Germany, 2nd edition, (1993).
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