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Abstract: Kamps P] introduced the concept of generalized order statistea,@mmon approach to various ordered random schemes,
such as, order statistics, record values, sequential std#stics, progressively type Il censored order statistfeifers records etc.
The study of recurrence relations between moments has bespecial interest to researchers. In this paper, recuereglations for
single and product moments of generalized order statisties been derived for Power Lomax distribution, propose&Ragy 1].
Further, results are deduced for order statistics and decdt the end, some characterization theorems of thisildigion are also
presented.
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1 Introduction

The Power Lomax (POLO) distribution was proposed and stulie Rady P1], as a new extension of the Lomax
distribution. It provides a much more flexible model for lifane data as compared to its predecessor Lomax
distributions since it can accommodate both inverted bbths well as decreasing hazard rate function.

A random variableX is said to follow the Power Lomax (POLO) distribution if il f is of the form
f(x) = aBAXPYA +xf)"% 1 x>0,0a>0,8>0A>0. (1)
and the corresponding survival function is

FX)=A%A+x*)"% x>0,a>0,8>0A >0, )

where

F(x) =1—F(x).
In view of (1) and @), we have

— Byxi-B
R G

Letn > 2 be a given integer amd = (my,mp, ..., m,_1) € R"™1 k> 1 be the parameters, such that

3)

n—-1
y.:k+n—i+2mj20, for 1<i<n-1
IEll

* Corresponding author e-maflaseebathar@hotmail.com

(@© 2019 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jsapl/060104

30 NS 2 S. Zarrin et al.: Relations for moments of generalized osdtistics...

The random variableX(1,n,m k), X(2,n,m k), ..., X(n,n,M k) are said to be generalized order statistgss| from an
absolutely continuous distribution functlér() W|th the probablhty density functionpdf) f(), if their joint pdf is of the
form

n—-1
(]‘lw)(ﬂ [1=FO0))™ £06)) [1=F )] x0) (4)
on the cond1(0) < x3 <X < ... <Xy < F71(1).

Ifm=m=0;i=1...n—1,k= 1, we obtain the joinpdf of the order statistics and fon= —1, k € N, we get joint
pdf of K" record values.

Recurrence relations for momentsgufs for various distributions have been investigated by séarnors. For detailed
survey, one may refer to Athar and Islag@],[Anwar et al. [5], Khanet al. [14], Athar et al. [3], Keseling [L2], Kamps
and Cramer11], Khwajaet al. [17], Nayabuddin and Athar9], Singhet al. [22] and references therein.

The characterization of probability distributions, thgwdifferent approaches, has been considered in the literathe
method of characterization through recurrence relati@t@éen moments of order statistics was given by Kamgk [
For additional information on the topic, one may refer to Klaad Khan 15|, Athar and Nayabuddind], Khan and Zia

[16] among others. Several characterization results throwgitated moments can be seen in the works of Galambos and
Kotz [6], Kotz and ShanbhadlB], Glanzel [7], Ahsanullahet al. [1] and the references cited there.

2 Single Moments
Here we may consider two cases:
Casel.y#v.i,j=12,...,n=1i#].

In view of (4), thepd f of rt" gos X(r,n, M, k) is given as (Kamps and Cramdri])

rnmk( =G lf ziai 1; (5)

where n—1
C.1 = rlyl, Y= k+n—|+ZmJ>O

and r 1

arnNN=]1——, 1<i<r<n
=MW
J#i
Casell.m=mi=12..n—1
Thepdf of rt" gos X(r,n,m k) is given as (Kampsd])

G-1 =

fxrnmi(X) = (=] [FOOF(X) gf (F (X)), (6)
vhere G-1 = rvl Y=k+(n—i)(m+1),
M
m+1(1 )™M m#£ -1
hm(X) =
and Om(X) = hm(X) —hm(0) =/ox(1—t)mdt, x€1[0,1).
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Theorem 2.1. Let Case | be satisfied. For the Power Lomax distribution asergiin (1) and
neNMeRk>01<r<nj=12...

E[XI(r,n,m k)] — E[XI(r—1,n,m k)] = yéﬁ {E[Xj(r,n,rﬁ,k)]+/\E[Xj*3(r,n,m,k)] : (7)

Proof. We have, by Athar and Islanz],

E[E {X(rvnvmv k)}] - E[E {X(r_lvnvmv k)}] = CI’—Z/_(:EI(X)_ilai(r)[F(X)]wdx'
Let&(x) =x , then
EX)(r,n, k)] — EX!(r—1,n,mk)] = er_z/oo leila;(r)[F_(x)]V'dx.

In view of (3) , we have

Jyrcraﬁl ow(A +xB)xtB xi-1 .Za@(r)[F_ ()4 £ (x)dx,

E[X)(r,n,mk)] — EX)(r—1,n,mKk)] =

which after simplification yields?).

Remark 2.1. Letmy =m,i =1,2,....n— 1, then the recurrence relation for single momentgasffor Case I is given by

EX(rnm k] - EXI(r—Lnmk] = erB [EDX(rnm K]+ AEXI A (r,n,m k)] . (8)

Remark 2.2. Letm, =0,i =1,2,...,n— 1 andk = 1, then the recurrence relation for single moments of or@gissics is
j

E(Xn) —E(X 1) = n_r+1ap {E(er:n) +A E(erzﬁﬁ)} :

Remark 2.3. Formy = —1,i = 1,2,...,n— 1, the recurrence relation for single moment&8frecord values will be

B!~ ECX(p 1)) = ﬁ (B0 +AEO) ).

3 Product M oments
Casel.yi#vy; i,j=12,...n=11i#]j.

The jointpdf of X(r,n,mM k) andX(s,n,M k), 1 <r < s<n, is given as (Kamps and Cramdr])

S

— Yi|r _
fX(r,n,m,k),X(sn,m,k)(X7Y) =GCs1 z ai(r)(s) <§%> l_zlai(r)“:(x)]yl‘|

i=r+1

f(x) f(y)

Xx——= 2L x <y, 9)
F(x) F(y)

where
N > 1
g\’ (s) = , r+1<i<s<n.
©) j:lll(Vj—Vl)
j#i
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Casell.m=mi=12,..n—1

The jointpd f of X(r,n,m k) andX(s,n,m k), 1 <r < s<n, is given as (Pawlas and Syzna0))

o xisnmo (6Y) = T ey =g PO ()

*[n(F (y)) = hm(F(x)]* " Fy)* ) f(y), —o<x<y<m, (10)

Theorem 3.1. Let Case | be satisfied. For the Power Lomax distribution asergiin () and
neNmMeRk>01<r <s<nij=12..

E[XI (r7 n, mv k)XJ (Sa n, ma k)] - E[XI (ra n, ma k)xj (S— 17 n, m7 k)]

i

=B E[X'(r,n,m, k)X (s,n,m,K)] + AE[X'(r,n,m k)X ~# (s, n,m k)] |. (11)

Proof. We have by Athar and Islan2],

E[& {X(r,n,MmK),X(s,n,M K)}] — E[§ {X(r,n,MK),X(s—1,n,MK)}]

—c, [ (L S a0(s [EW]" < 4 oEoom L)
Gz [ e 3 9 [F2]" 5 amF Eayax
Let & (x,y) = &1(X)&2(y) = X'yl. Then in view of 8), we get

E[X'(r,n, m k)X (s,n,m,k)] — E[X(r,n,m k)X) (s— 1,n, M, k)]
G F(y)
ysaB// (A +yy PRy Z 4" { (X)}

i=r+1
<5 AOFOM R

Remark 3.1. Letmy =m, i =1,2,....n— 1, then the recurrence relation for product momenigosffor Case Il is given
by

\5

dy dx,

Tn

(y)

which upon simplification leads td ).

E[X'(r,n,m k)X!(s,n,m,k)] — E[X(r,n,m,k)X) (s— 1,n,m,k)]

]
- yap

E[XI(r,n,m k)X (s.n,m.K)] + AE[X\(r,n,m k)X1 (s n,m, k)]] (12)

Remark 3.2. Letm, =0,i=1,2,....n— 1 andk = 1, then the recurrence relation for product moments of astigistics
is )
E[Xflinxt‘{n] - E[Xflinxsjfl:n] = m [E[Xrl:nxsj:n] +A E[Xrl:nxénﬁ]} :

Remark 3.3.Form = —1,i = 1,2,...,n— 1, the recurrence relation for product moment&'®fecord values will be

- B YO, A o 1)

Remark 3.4. Ati = 0in (11), we get the relation for single moment as obtained/jn (
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4 Characterizations

This section contains characterization results for theemidistribution through recurrence relations for singl@ an
product moments ajos as well as through conditional expectation.

Theorem 4.1. Fix a positive integek and letj be a non-negative integer. A necessary and sufficient dondibr a
random variabl& to be distributed withpd f given by @) is that
j | | A e
1— EX!(r,n,mKk)] =E[XI(r—1,n,mKk)] + ——E[X!"B(r,n,m,k)]. 13
(1- 45 ) Exienmi) = e )+ e enm) 13)

Proof. The necessary part follows fror)( On the other hand, if the relation i&3) is satisfied, then
E[XJ (ra n,m, k)] - E[XJ (r - 17 n,m, k)]
_ ]
yap

[E[xj (r,n,mK)] + AE[XI B (r,n,m, k)]} .

Now on using Athar and Islan®] for & (x) = xI, we have

% (rcfll)! /0°° X HF ()] ghy 1(F (x))dx
= yrﬂ,ﬁ (rci‘f)! /jx"*ﬂF?x)]folga;%F(x)) {xF09+ 2% P1(x) } dx
or ) . ) .
ij (rcfll)!/o XJ_l[F(X)]WflgF"_l(F(X)){O’BF(X)—Xf(X)—)\xl‘Bf(x)}dxzo. 14)

Applying the extension dfllintz— Szasz theorem (see, for example, Hwang and L8} fio (14), we get

B-1 _
19 = g F 00,

which proves the theorem.

Theorem 4.2. Fix a positive integek and leti and j be non-negative integers. A necessary and sufficient dondar a
random variabl& to be distributed withpd f given by @) is

_ J i i _ i e
(1 VSOIB) E[X'(r,n,m,k)X!(s,n,m,k)] = E[X'(r,n,m k)X'(s—1,n,m k)]

i

i i—B
VeaB E[X'(r,n,m K)XI=P(r,n,m Kk)]. (15)

+

Proof. The necessary part follows frorhZ). Now, suppose that the relation ib5) is satisfied, then

E[XI (r7 n,m, k)XJ (Sa n,m, k)] - E[XI (ra n,m, k)xj (S— 17 n,m, k)]

J
ysa B

[E[Xi (r,n,m k)X (s,n,m, k)] + AE[X'(r,n,m k)X =P (s n,m k)] |.

Now by using Athar and Islan®], for & (x,y) = X'y!, we have

i = 1>!<Css__1 1)l /o / Xy HF (0] f () gy *(F (x))

X [n(F (¥)) — hm(F (x))]>"*[F ()] *dyclx
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:vsgrﬁ(r— s—r—1 //ijlFX f(x)gh *(F (%)

% (P (¥)) — P F <x>>]s+l[F<y>] Ly (y)+ Ay P(y) } dydx

which implies

yijﬁ (r—1) |S—r— // Xy HF (0™ ()9 () [i(F (¥)) — hm(F (x)))°7"

<[F){ aBF(y) ~yf(y) - Ay P1(y) } dydx = 0. (16)
Applying the extension dfilintz— Szasz theorem (see, for example, Hwang and L&) ffo (16), we get
apy? ! -
f(y)= F(y).
v) A+ vP) v)

Hence the theorem.

Theorem 4.3. LetX(r,n,m k), r =1,2,...n be the the'" gosbased on continuouwsf F () andE(X) exists. Then for two
consecutive valuesandr +1, suchthat Kr <r+1<n,

a1 B 1 A

E[XP(r+1,n,mKk)[X(r,n,mKk) =x = 17
[XP( )[X( ) =X ay1—1 ayp1—1 17)
if and only if

— A a

Fo = (575g) - x> 0i@.p.A >0 (18)
Proof. Khan and Alzaid 13] have shown that

E[h(X(s,n,mk))[X(r,n,m k) = x| =a"h(x) + b* (19)
if and only if

F(x) = [ah(x) +b]° (20)

with a* = 1,1 (152; ) andb" = —5(1-a).

Comparing 18) with (20), we get
a=3,b=1c=-a,h(x)=x.
Thus, the theorem can be proved in view b3)(

Corollary 4.1. For thert" order statistic¥.n, r = 1,2,...n and under the condition as stated under Theorem 4.3

B _a_ a(n—r)xB+A
E[XrJrl:n|Xf-n_X] - a(n—r)—l ’ (21)
and consequently
A
EIXB IX. 1 =x] = E[XBIX > x| = By 2 22
XnlXin =X =E[XPIX >x] = =¥ + - (22)
if and only if
— A a
Fo = (7o) - x> 0iaB.A>0. (23)
It may be noted that similar characterization result cao bésseen for adjacent records as
B o B A
E[XU(n)|XU<n—1> =X =E[XP|X >x] = o 1X’3 Tao1 (24)
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