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Abstract: In this paper, we prove some inequalities of Copson and converses Copson’s type by using conformable calculus and obtain

some results of special cases of fractional orders. The main results will be proved by employing Hölder’s inequality for α-integrable

functions and the integration by parts rule for α-integrable functions.
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1 Introduction, motivation and preliminaries

In 1925 Hardy [1] proved the continuous inequality

∫ ∞

0

(

1

x

∫ x

0
f (t)dt

)p

dx ≤

(

p

p− 1

)p ∫ ∞

0
f p(x)dx, (1)

where f ≥ 0 and integrable over any finite interval (0,x), f p is integrable and convergent over (0,∞) and p > 1. The
constant (p/(p− 1))p

is the best possible constant. In 1927 Copson [2] proved that if f (x) > 0, p > 1 and that f p(x) is
integrable over (0,∞), then

∫

∞

0

(

∫

∞

x

f (t)

t
dt

)p

dx ≤ pp

∫

∞

0
f p(x)dx. (2)

In 1976 Copson [3, Theorems 1 , 3], proved that: if f is a nonnegative integrable function on (0,∞), p ≥ 1 and c > 1,
then

∫

∞

0

λ (x)

Λ c(x)

(

∫ x

0
λ (t) f (t)dt

)p

dx ≤

(

p

c− 1

)p∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dx, (3)

where Λ(x) =
∫ x

0 λ (t)dt, and if p > 1 and 0 ≤ c < 1, then

∫

∞

0

λ (x)

Λ c(x)

(

∫

∞

x
λ (t) f (t)dt

)p

dx ≤

(

p

1− c

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dx. (4)

Also Copson in [3] proved that if 0 < p ≤ 1 and c < 1, then

∫ ∞

0

λ (x)

Λ c(x)

(

∫ ∞

x
λ (t) f (t)dt

)p

dx ≥

(

p

1− c

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dx (5)

and if 0 < p ≤ 1, c > 1 and Λ(x)→ ∞, as x → ∞, then

∫ ∞

0

λ (x)

Λ c(x)

(

∫ x

0
λ (t) f (t)dt

)p

dx ≥

(

p

c− 1

)p∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dx. (6)
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In recent years, fractional inequalities using the fractional Riemann-Liouville calculus has been studied by some authors.
In particular Sarikaya et al in [4], proved the Hadamard type inequality for Riemann-Liouville fractional integrals

f

(

a+ b

2

)

≤
Γ (α + 1)

2(b− a)α

[

Jα

a+(b)+ Jα

b−(a)
]

≤
f (a)+ f (b)

2
,

where f : [a,b]→R, is convex and positive function with f ∈ L1[a,b] and Jα

a+
f , Jα

b−
f are the Riemann-Liouville integrals

of order α > 0 with 0 ≤ a < b.
In [5], Dahmani and Tabharit proved Grüss inequality by using Riemann-Liouville fractional integral. In particular,

they proved that if f and g are two integrable functions on [0,∞), then for all t > 0 and α > 0 we have
∣

∣

∣

∣

tα

Γ (α + 1)
Jα f g(t)− Jα f (t)Jα g(t)

∣

∣

∣

∣

≤
tα

2Γ (α + 1)
(M−m)(P− p) ,

where
m ≤ f (t) ≤ M, p ≤ g(t)≤ P, m, M, p, P ∈ R, t ∈ [0,∞),

and Jα is the Riemann-Liouville integral. For some recent results connected with fractional integral inequalities see [6],
[7], [8], [9], [10], and [11].

In [12] and [13] the authors introduced the conformable calculus. The interest of this new approach was born from the
notion that makes a dependency just on the basic limit definition of the derivative. In recent years conformable calculus
has been used in various fields, such as partial differential equations, numerical analysis and mathematical models (see
[14], [15], [16], [17] and [18] ). Very recently, some authors have applied this calculus and proved some of inequalities
such as Opial’s inequality (see [19] and [20]), Hermite-Hadamard’s inequality (see [21], [22] and [23]), Chebyshev’s
inequality (see [24]) and Steffensen’s inequality (see [25]).

In this paper, we present new Copson and conversed Copson’s type inequalities via conformable calculus using a
different approach. The paper is organized as follows: In Section 2, we present some preliminaries about the conformable
calculus which will be needed in the proofs of the main results. In Section 3, we prove Copson-type inequalities and some
of its generalizations (3) and (4). In Section 4, we prove converses of Copson-type inequalities (5) and (6). We derive the
classical inequalities as special cases from our results when α = 1.

2 Basic concepts and lemmas

In this section, we present some basic definitions concerning conformable calculus. For more details, we refer the reader
to [12] and [13].

Definition 1. Let f : [0,∞)→ R. The conformable derivative of order α of f is defined by

Dα f (t) = lim
ε→0

f (t + εt1−α)− f (t)

ε
,

for all t > 0 and 0 < α ≤ 1, and Dα f (0) = limt→0+ Dα f (t).

Let α ∈ (0,1] and f , g be α−differentiable at a point t. Then

Dα( f g)(t) = f (t)Dα g(t)+ g(t)Dα f (t). (7)

Further, let α ∈ (0,1] and f , g be α−differentiable at a point t, with g(t) 6= 0. Then

Dα

(

f

g

)

(t) =
g(t)Dα f (t)− f (t)Dα g(t)

g2(t)
. (8)

Remark. If f is a differentiable function, then

Dα f (t) = t1−α d f (t)

dt
.

Definition 2. Let f : [0,∞)→ R. The conformable integral of order α of f is defined by

Iα f (t) =
∫ t

0
f (x)dα x =

∫ t

0
xα−1 f (x)dx, (9)

for all t > 0 and 0 < α ≤ 1.
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Now, we state an integration by parts formula (see [12] and [13]) which will be used later.

Lemma 1. Assume that u, v : [0,∞)→ R are two functions such that u, v are α−differentiable and 0 < α ≤ 1. Then for

any b > 0, we have
∫ b

0
u(x)Dα v(x)dα x = u(x)v(x)|b0 −

∫ b

0
v(x)Dα u(x)dα x. (10)

Next, we state the Hölder type inequality that will be needed in the next sections (of course it is the usual Hölder

inequality for the functions considered (i.e. x
(α−1)

p f (x) and x
(α−1)

q g(x)).

Lemma 2. Let f , g : [0,∞)→ R and 0 < α ≤ 1. Then for any b > 0, we have

∫ b

0
| f (x)g(x)|dα x ≤

(

∫ b

0
| f (x)|p dαx

)
1
p
(

∫ b

0
|g(x)|q dαx

)
1
q

, (11)

where 1/p+ 1/q= 1 (provided the integrals exist (and are finite)).

Throughout the paper, we will assume that the functions are nonnegative locally α−integrable and the integrals
throughout are assumed to exist (and are finite i.e. convergent).

3 Inequalities of Copson’s type

In this section, we begin with the fractional version of the classical Copson type inequality.

Theorem 1. Let xα−1 f (x) is continuous on [0,∞), limt→∞ t2α−1 f (t) = 0 and
∫ ∞

0
f (s)

s
dαs < ∞. If p > 1, then

∫

∞

0

(

∫

∞

x

f (s)

s
dαs

)p

dα x ≤
( p

α

)p
∫

∞

0
(xα−1 f (x))pdα x, (12)

where

F(x) :=

∫

∞

x

f (s)

s
dα s.

Proof. Integrating the term
∫ t

0 F p(x)dα x by the parts formula (10) with

u(x) = F p(x), and v(x) =
xα

α
,

we get (with Dα v(x) = 1) that

∫ t

0
F p(x)dα x =

F p(x)xα

α

∣

∣

∣

∣

t

0

−

∫ t

0

xα

α
Dα F p(x)dα x

=
F p(x)xα

α

∣

∣

∣

∣

t

0

−
p

α

∫ t

0
xF p−1(x)F

′
(x)dα x.

Now by using the fact
∫

∞

0
f (s)

s
dαs < ∞, we get

∫ t

0
F p(x)dα x =

tα F p(t)

α
−

p

α

∫ t

0
xF p−1(x)F

′
(x)dα x.

Let t → ∞, and noting that

lim
t→∞

tα F(t) = lim
t→∞

∫

∞

t sα−2 f (s)ds

t−α
= lim

t→∞

−tα−2 f (t)

−αt−α−1

= lim
t→∞

(

1

α

)

t2α−1 f (t) = 0,
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then
∫ ∞

0
F p(x)dα x =−

p

α

∫ ∞

0
xF p−1(x)F

′
(x)dα x. (13)

From the definition of F , we see that

F
′
(x) =−xα−2 f (x).

Substituting into (13), we obtain
∫

∞

0
F p(x)dα x =

p

α

∫

∞

0
xα−1 f (x)F p−1(x)dα x. (14)

Applying Hölder’s inequality (2) on the term on the right hand side of (14) with indices p and p/(p− 1), we see that

∫

∞

0
F p(x)dα x ≤

p

α

(

∫

∞

0
F p(x)dα x

)
p−1

p
(

∫

∞

0

(

xα−1 f (x)
)p

dαx

) 1
p

,

then,
(

∫

∞

0
F p(x)dα x

) 1
p

≤
p

α

(

∫

∞

0

(

xα−1 f (x)
)p

dαx

) 1
p

.

So that
∫ ∞

0
F p(x)dα x ≤

( p

α

)p
∫ ∞

0

(

xα−1 f (x)
)p

dα x,

which is the desired inequality (12). The proof is complete.

Remark. In Theorem 1 when α = 1, then we obtain the classical Copson inequality (2).

Theorem 2. If p > 1 and
∫

∞

0
λ (s) f (s)

Λ(s)
dαs < ∞, then

∫ ∞

0
λ (x)

(

∫ ∞

x

λ (s) f (s)

Λ(s)
dα s

)p

dαx ≤ pp

∫ ∞

0
λ (x) f p(x)dα x, (15)

where

Λ(x) :=

∫ x

0
λ (s)dα s, and F(x) :=

∫

∞

x

λ (s) f (s)

Λ(s)
dαs.

Proof. Integrating the term
∫ ∞

0 λ (x)F p(x)dα x, by parts formula (10) with

u(x) = F p(x), and v(x) = Λ(x),

we get that

∫

∞

0
λ (x)F p(x)dα x = Λ(x)F p(x)|∞0 −

∫

∞

0
Λ(x)x1−α pF p−1(x)F

′
(x)dα x.

= −

∫ ∞

0
Λ(x)x1−α pF p−1(x)F

′
(x)dα x, (16)

where

Λ(0) = 0, Λ(∞) < ∞, F(0)< ∞, and F(∞) = 0.

From the definition of F, we see that

F
′
(x) =−xα−1 λ (x) f (x)

Λ(x)
.

Substituting into (16), we obtain

∫

∞

0
λ (x)F p(x)dα x = p

∫

∞

0

λ (x) f (x)

λ
p−1

p (x)
λ

p−1
p (x)F p−1(x)dα x. (17)
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Applying Hölder’s inequality (2) on the right hand side of (17) with indices p and p/(p− 1), we see that

∫

∞

0
λ (x)F p(x)dα x

≤ p

(

∫ ∞

0

(

λ (x) f (x)

λ
p−1

p (x)

)p

dα x

)
1
p (∫ ∞

0

(

λ
p−1

p (x)F p−1(x)
)

p
p−1

dα x

)

p−1
p

= p

(

∫ ∞

0
λ (x) f p(x)dα x

) 1
p
(

∫ ∞

0
λ (x)F p(x)dα x

)
p−1

p

.

Then
(

∫ ∞

0
λ (x)F p(x)dα x

) 1
p

≤ p

(

∫ ∞

0
λ (x) f p(x)dα x

) 1
p

,

and so that
∫ ∞

0
λ (x)F p(x)dα x ≤ pp

∫ ∞

0
λ (x) f p(x)dα x,

which is the desired inequality (15). The proof is complete.

Remark. In Theorem 2 when α = 1 and λ (x) = 1, we obtain the classical Copson inequality (2).

Theorem 3. If p, c > 1 and p > c− 1, then

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x ≤

(

p

c− 1

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dα x, (18)

where

Λ(x) :=

∫ x

0
λ (s)dα s, F(x) :=

∫ x

0
λ (s) f (s)dα s, F(∞)< ∞, and Λ(x)→ ∞ as x → ∞.

Proof. Integrating the term
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x,

by parts formula (10) with

u(x) = F p(x)Λ−c(x), and v(x) =Λ(x),

where

Dα u(x) = x1−α(pF
p−1

(x)F
′
(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ

′
(x)), and Dα v(x) = λ (x)

we obtain,

∫ t

0

λ (x)

Λ c(x)
F p(x)dα x = Λ

1−c(x)F p(x)
∣

∣

∞

0

−

∫ t

0
x1−α(pF

p−1
(x)F

′
(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ

′
(x))Λ(x)dα x.

By using

Λ(0) = 0, Λ(∞) = ∞, F(0) = 0, F(∞)< ∞, and c > 1,

and noting that

lim
x→0+

Λ
1−c

p (x)F(x) = lim
x→0+

∫ x
0 sα−1 λ (s) f (s)ds

(Λ(x))
c−1

p

= lim
x→0+

xα−1λ (x) f (x)

c−1
p

(Λ(x))
c−1

p −1
xα−1λ (x)

= lim
x→0+

p(Λ(x))
1− c−1

p
f (x)

c− 1
= 0
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we obtain
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x =

−
∫ ∞

0
x1−α(pF

p−1
(x)F ′(x)Λ 1−c(x)− cF p(x)Λ−c(x)Λ ′(x))dα x.

Since
F ′(x) = xα−1

λ (x) f (x), and Λ
′
(x) = xα−1

λ (x),

we have that
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x =

−p

∫ ∞

0
λ (x)Λ 1−c(x) f (x)F p−1(x)dα x+ c

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x,

and then
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = (19)

−

(

p

1− c

)

∫

∞

0

(

λ (x)

Λ c(x)

)

−
p−1

p

λ (x)Λ 1−c(x) f (x)

(

λ (x)

Λ c(x)

)

p−1
p

F p−1(x)dα x.

Applying Hölder’s inequality (2) on the right hand side of (19) with indices p and p/(p− 1), we see that

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x ≤

(

p

c− 1

)(

∫

∞

0
λ (x)Λ p−c(x) f p(x)dα x

) 1
p

×

(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

)
p−1

p

.

This implies that
(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

) 1
p

≤

(

p

c− 1

)(

∫

∞

0
λ (x)Λ p−c(x) f p(x)dα x

) 1
p

,

and so that
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x ≤

(

p

c− 1

)p ∫ ∞

0
λ (x)Λ p−c(x) f p(x)dα x,

which is the desired inequality (18). The proof is complete.

Remark. From Theorem 3, we see that if xα−1λ (x) f (x) and xα−1λ (x) are continuous on [0,∞) replaced by either

(i). xα−1λ (x) f (x), xα−1λ (x) continuous on (0,∞) and limx→0+ (Λ(x))
1− c−1

p
f (x) = 0,

or
(ii). limx→0+ Λ 1−c(x)F p(x) = 0,
then (18) is again true.

Remark. In Theorem 3 when α = 1 and λ (x) = 1, we have the Hardy - Littelwood inequality

∫

∞

0

1

xc
F p(x)dx ≤

(

p

c− 1

)p ∫ ∞

0
xp−c f p(x)dx, (20)

which is Theorem 330 in [26] where F(∞)< ∞, with c > 1.

Remark. In Theorem 3 when α = 1, λ (x) = 1, and c = p, we have the classical Hardy inequality

∫

∞

0

(

F(x)

x

)p

dx ≤

(

p

p− 1

)p ∫ ∞

0
f p(x)dx, (21)

where F(∞)< ∞.
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Theorem 4. If 0 ≤ c < 1 and p > 1, then

∫

∞

0

λ (x)

Λ c(x)

(

∫

∞

x
λ (s) f (s)dα s

)p

dα x ≤

(

p

1− c

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dα x, (22)

where

Λ(x) :=

∫ x

0
λ (s)dα s, and F(x) :=

∫

∞

x
λ (s) f (s)dα s.

Proof. Integrating the term
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x,

by parts formula (10) with

u(x) = F p(x)Λ−c(x), and v(x) =Λ(x),

where

Dα u(x) = x1−α(pF
p−1

(x)F ′(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ ′(x)), and Dα v(x) = λ (x),

and we obtain,

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = Λ

1−c(x)F p(x)
∣

∣

∞

0

−

∫

∞

0
x1−α(pF

p−1

(x)F ′(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ ′(x))Λ(x)dα x.

By using

Λ(0) = 0, F(0)< ∞, F(∞) = 0, and Λ(∞) < ∞,

then we have

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x =−

∫

∞

0
x1−α(pF

p−1

(x)F ′(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ ′(x))Λ(x)dα x.

Since

F ′(x) = xα−1
λ (x) f (x) and Λ

′(x) = xα−1
λ (x),

we obtain
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = p

∫

∞

0
λ (x)Λ 1−c(x) f (x)F p−1(x)dα x

+ c

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x,

and then

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x (23)

=

(

p

1− c

)

∫

∞

0

λ (x)Λ 1−c(x) f (x)

(

λ (x)
Λ c(x)

)

p−1
p

(

λ (x)

Λ c(x)

)

p−1
p

F p−1(x)dα x.

Applying Hölder’s inequality (2) on the right hand side of (23) with indices p and p/(p− 1), we have

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

≤

(

p

1− c

)(

∫

∞

0
λ (x)Λ p−c(x) f p(x)dα x

) 1
p
(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

)
p−1

p

,
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and so
(

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x

) 1
p

≤

(

p

1− c

)(

∫ ∞

0
λ (x)Λ p−c(x) f p(x)dα x

) 1
p

.

Hence
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x ≤

(

p

1− c

)p ∫ ∞

0
λ (x)Λ p−c(x) f p(x)dα x,

which is the desired inequality (22). The proof is complete.

Remark. In Theorem 4 when α = 1 and λ (x) = 1, we have the Hardy - Littelwood inequality

∫

∞

0

1

xc
F p(x)dx ≤

(

p

1− c

)p(∫ ∞

0
xp−c f p(x)dx

)

. (24)

which is Theorem 330 in [26] with c < 1.

Remark. In Theorem 4 when α = 1, λ (x) = 1 and c = p, we have the classical Hardy inequality

∫

∞

0

(

F(x)

x

)p

dx ≤

(

p

1− p

)p(∫ ∞

0
f p(x)dx

)

. (25)

4 Reversed inequalities of Copson type

In this section, we prove the fractional version of the reversed Copson type inequalities (5) and (6) by using conformable
calculus.

Theorem 5. If p ≤ 1 and c < 1, then

∫

∞

0

λ (x)

Λ c(x)

(

∫

∞

x
λ (s) f (s)dα t

)p

dα x ≥

(

p

1− c

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dα x, (26)

where

Λ(x) :=

∫ x

0
λ (s)dα s and F(x) :=

∫

∞

x
λ (s) f (s)dα s.

Proof. Integrating by parts formula (10) the term

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x,

with

u(x) = F p(x)Λ−c(x), and v(x) = Λ(x),

where

Dα u(x) = x1−α(pF
p−1

(x)F
′
(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ

′
(x)), and Dα v(x) = λ (x)

we obtain

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = Λ

1−c(x)F p(x)
∣

∣

∞

0

−

∫

∞

0
x1−α

(

pF p−1(x)F
′
(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ

′
(x)
)

Λ(x)dα x.

By using

Λ(0) = 0, F(0)< ∞, F(∞) = 0, and Λ(∞) < ∞,

and

F
′
(x) =−xα−1

λ (x) f (x), and Λ
′
(x) = xα−1

λ (x),
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we get that
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = p

∫

∞

0
λ (x)Λ 1−c(x) f (x)F p−1(x)dα x

+ c

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x.

Then
∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x =

(

p

1− c

)

∫

∞

0
λ (x)Λ 1−c f (x)F p−1(x)dα x,

which can be rewritten in the form

(

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x

)p

=

(

p

1− c

)p





∫ ∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dα x





p

. (27)

Applying Hölder’s inequality

∫

∞

0
Φ(x)Ψ (x)dα x ≤

(

∫

∞

0
Φ

u(x)dα x

) 1
u
(

∫

∞

0
Ψ

v(x)dα x

) 1
v

, (28)

with indices u = 1/p and v = 1/(1− p), where

Φ(x) =
(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)
, and Ψ (x) =

(

λ (x)

Λ c(x)

)1−p

F
p(1−p)

(x),

we get that

(

∫

∞

0
Φ

1
p (x)dα x

)p

=





∫

∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dαx





p

≥

∫ ∞

0 Φ(x)Ψ (x)dα x
(

∫

∞

0 Ψ
1

1−p (x)dα x
)1−p

=

∫

∞

0
(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

(

λ (x)
Λ c(x)

)1−p

F
p(1−p)

(x)dα x

(

∫

∞

0

(

(

λ (x)
Λ c(x)

)1−p

F
p(1−p)

(x)

) 1
1−p

dαx

)1−p
.

This implies that




∫

∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dα x





p

≥

(

∫

∞

0

λ (x) f p(x)

Λ c−p(x)
dα x

)

× (29)

(

∫

∞

0

(

λ (x)

Λ c(x)

)

F p(x)dα x

)p−1

.

Substituting (29) into (27), we get
(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

)p

≥

(

p

1− c

)p(∫ ∞

0

λ (x) f p(x)

Λ c−p(x)
dαx

)

×

(

∫ ∞

0

(

λ (x)

Λ c(x)

)

F p(x)dα x

)p−1

.

Hence
(

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x

)

≥

(

p

1− c

)p ∫ ∞

0

λ (x) f p(x)

Λ c−p(x)
dα x,

which is the desired inequality (31). The proof is complete.
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Remark. In Theorem 5 when α = 1 and λ (x) = 1, we have the inequality

∫

∞

0
x−cF p(x)dx ≥

(

p

1− c

)p ∫ ∞

0
xp−c f p(x)dx, (30)

which is Theorem 347 in [26] with c < 1.

Theorem 6. If p ≤ 1, c > 1and p < c− 1, then

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x ≥

(

p

c− 1

)p ∫ ∞

0

λ (x)

Λ c−p(x)
f p(x)dα x, (31)

where

Λ(x) :=
∫ x

0
λ (s)dα s, F(x) :=

∫ x

0
λ (s) f (s)dα s and F(x)→ 0 as x → ∞.

Proof. Integrating by parts formula (10) the term

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x,

with

u(x) = F p(x)Λ−c(x), and v(x) = Λ(x),

where

Dα u(x) = x1−α(pF
p−1

(x)F
′
(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ

′
(x)),

and Dα v(x) = λ (x),

we have

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x = Λ

1−c(x)F p(x)
∣

∣

∞

0

−

∫

∞

0
x1−α

(

pF p−1(x)F ′(x)Λ−c(x)− cF p(x)Λ−c−1(x)Λ ′(x)
)

Λ(x)dα x.

By using

Λ(0) = 0, Λ(∞) < ∞, F(0) = 0, and F(∞) = 0,

and

F
′
(x) = xα−1

λ (x) f (x) and Λ
′
(x) = xα−1

λ (x),

and noting that

lim
x→0+

Λ(x)F
p

1−c (x) = lim
x→0+

∫ x
0 sα−1 λ (s)ds

(F(x))
p

c−1

= lim
x→0+

xα−1λ (x)
p

c−1
(F(x))

p
c−1−1

xα−1λ (x) f (x)

= lim
x→0+

(c− 1)(F(x))
1−

p
c−1

p f (x)
= 0,

we get

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x

=−p

∫

∞

0
λ (x)Λ 1−c(x) f (x)F p−1(x)dα x+ c

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x,

and then
∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x =

(

−p

1− c

)

∫ ∞

0
λ (x)Λ 1−c(x) f (x)F p−1dα x,
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which can be rewritten in the form

(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

)p

=

(

p

c− 1

)p





∫

∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dα x





p

. (32)

Applying the Hölder’s inequality (28) with indices 1/p and 1/(1− p) where

Φ(x) =
(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)
, and Ψ(x) =

(

λ (x)

Λ c(x)

)1−p

F
p(1−p)

(x),

we see that

(

∫ ∞

0
Φ

1
p
(x)dα x

)p

=





∫ ∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dαx





p

≥

∫

∞

0 Φ(x)Ψ (x)dα x
(

∫

∞

0 Ψ

1
1−p (x)dα x

)1−p

=

(

∫ ∞

0

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

(

λ (x)

Λ c(x)

)1−p

F p(1−p)(x)dα x

)

×





∫

∞

0

(

(

λ (x)

Λ c(x)

)1−p

F p(1−p)(x)

) 1
1−p

dα x





p−1

.

Then,




∫

∞

0

(

(λ (x) f (x))p

Λ p(c−1)(x)F
p(1−p)

(x)

) 1
p

dα x





p

≥

(

∫

∞

0

λ (x) f p(x)

Λ c−p(x)
dα x

)

× (33)

(

∫ ∞

0

(

λ (x)

(Λ(x))c

)

F p(x)dα x

)p−1

.

Substituting (33) into (32), we get
(

∫

∞

0

λ (x)

Λ c(x)
F p(x)dα x

)p

≥

(

p

c− 1

)p(∫ ∞

0

λ (x) f p(x)

Λ c−p(x)
dαx

)

×

(

∫

∞

0

(

λ (x)

Λ c(x)

)

F p(x)dα x

)p−1

.

Hence
(

∫ ∞

0

λ (x)

Λ c(x)
F p(x)dα x

)

≥

(

p

c− 1

)p ∫ ∞

0

λ (x) f p(x)

Λ c−p(x)
dα x,

which is the desired inequality (31). The proof is complete.

Remark. From Theorem 6 we see that if xα−1λ (x) f (x) and xα−1λ (x) are continuous on [0,∞) replaced by either

(i). xα−1λ (x) f (x), xα−1λ (x) is continuous on (0,∞) and limx→0+
(F(x))

1−
p

c−1

f (x) = 0,
or
(ii). limx→0+ Λ 1−c(x)F p(x) = 0,
then (31) is again true.

Remark. In Theorem 6 when α = 1 and λ (x) = 1, we have the inequality

∫ ∞

0
x−cF p(x)dx ≥

(

p

c− 1

)p ∫ ∞

0
xp−c f p(x)dx, (34)

which is Theorem 347 in [26] where F(x)→ 0 as x → ∞ with c > 1.
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