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Abstract: The arithmetic nature of values of some functions such ag so%z, sinhz, coshg, €4, and Iz, is a relevant topic in number
theory. For instance, all those functions return transestal values for non-zero algebraic valueg (= 1 in the case of Ig). On the
other hand, not even an irrationality proof is known for samaebers like Int, 7+ e andrre, though it is well-known that at least one
of the last two numbers is irrational. In this note, we firstgmlize the last result, showing that at least one of theauproduct of
any two transcendental numbers is transcendental. We geethis to show that, given any non-null complex numbgr1/e, at least
two of the numbers I z+ e and ze are transcendental. It is also shown that apsinhz and tanlz return transcendental values for
all z=rlInt, r €Q, r #0, t being any transcendental number. The analogue for comrgamémetric functions is also proved.
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1 Introduction Sk o1/(2¢) converges to a transcendental number. From
the work of Cantor on set theory in 1874, one knows that
As usual, letQ denote the set of all rational numbers, the set.« is countable whereas the s& of all real
i.e. the numbers which can be written agq, p andq  numbers is uncountable, s&most all’ real numbers are
being integersq # 0. Also, let <7 denote the set of all transcendental However, it remained an important
algebraic numbers (oveéd), i.e. the complex numbers  unsolved problem to prove the transcendence of naturally
which are roots of some polynomial equationZifz]. Al occurring numbers, such agthe natural logarithm base)
other complex numbers — i.e ¢ &/ — are called andr (the Archimedes’ constant). Then, in 1873 Hermite
transcendental numbers: Though the existence of proved thate' is transcendental for all rationals 0 (in
irrational numbers such ag’2 remounts to the ancient particular,e is transcendental)s]. In 1882, Lindemann
Greeks, no example of a transcendental number waproved the following extension of Hermite’s resui.|
known at the beginning of the 19th century, which reflects
the difficulty of showing that a given number is Lemma 1 (Hermite-Lindemann) The number € is
transcendental. The existence of ‘non-algebraic’ numbersranscendental for all algebraicr # 0.
was conjectured by Euler in 1744, in histroductio in
analysin infinitorum where he claims, without a proof, This implies the transcendence of as follows from
that “the logarithms of (rational) numbers which are not Euler's identity &' = —1, which is equivalent to the
powers of the base are neither rational nor (algebraicjmpossibility of squaring the circle with only ruler and
irrational, so they should be calledanscendentdl A compass, a problem that remained open by more than two
such proof appeared only in 1844, when Liouville showedthousand years. Lemmal is equivalent to the
that any number that has a rapidly converging sequence dfanscendence of m for all a € &/, a # 0,1 Based
distinct rational approximations must be upon these first results, in 1885 Weierstrass succeeded in
transcendental 10]. In particular, he used his provingamuch more general result.
approximation theorem to show that the series

1 All rational numbers are roots afz— p = 0, thus algebraic. 2 \We are interpreting the complex functionzlas its principal
Hence all transcendental numbers are irrational. value, with the argument lying in the intervat 7, 11].
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Lemma 2 (Lindemann-Weierstrass) Given an integer 2 Further transcendence results

n > 0, whenever ayp,...,a, are distinct algebraic

numbers, the numbers %....e% are linearly Lemma3has alogarithmic version, namely
independent overs. That is, for anyfo,...,[By € &/ not

all zero Lemma 4 (Log version) logga = Ina/InB is a
' n transcendental number wheneverand 3 are non-zero
z Bk e #£0. algebraic numbers3 # 1, andlogg a £ Q.
K=0

This form appears, e.g., in Theorem 10.2 of R&8§||

For a proof, see, e.g., Theorem 1.4 of Ref] pr It has a consequence for tangent arcs, as noted by
Theorem 1.8 of Ref.q]. As an immediate consequence, Margolius in Ref. 1L1].

when one takesto = 0 andf # 0, one concludes that  cgrollary 3 (Margolius)  If x is rational and x# 0, 1,

hen th pedretanx dental
Corollary 1  Given an integer n> 0, being ay,...,a,  henthe number——is transcendental.
distinct non-zero algebraic numbers aifld, ..., By € &7

not all zero,5_, B« €% is a transcendental number. Proof. Write x=tan6, x € Q, x# 0,=1. Then
_ arctarx 6 1/i-In(z/|2])
From Euler’s formulee®'® = cosf + i sin®, it follows T m  1/i-In(-1)

that co® = (€9 4-e719)/2 and sirg = (9 —e19)/(2i).

Analogously, the basic hyperbolic functions are defined as |n(i1/\/ 14+x2+xi/vV1+ XZ)

coshd := (e +e9)/2 and sintd := (e’ —e%)/2. From = n(—D) ; 1)
Corollary1, it follows that

which follows by takingz= +1+xi in In(z/|z)) =i 6,
Corollary2 For any algebraic a # 0, all numbers  Which in turn comes from the exponential representation
cosa, sina, cosha, and sinha are transcendental. z=|z|€9. Clearly, the last expression in Ed)(s a ratio

of two logs with algebraic argumerfisso Lemma4

The relevance of investigating the transcendence ofpplies and 6/m has to be either rational or

powers and logarithms of algebraic numbers wastranscendental. However, it is irrational because, being
acknowledged by Hilbert in his famous lecture I € Q, X = tanf = tan(rm) is rational only when
“Mathematical Problems” in 1900, at the 2nd X=0,%1,as proved in Corollary 3.12 of RefLg.’

International Congress of Mathematiciai@, [being the 0
content of his 7th problem, in which he questioned the
arithmetic nature o€ for z € <7 .3 Of course, forz=r In particular, it follows that the Plouffe's constant

a rational it was already known that both ¢ps) and arctar(%)/ T is transcendental 1ff]. Let us extend
sin(rm) are algebraic, s@™ is algebraic} but the case  Margolius’ result to all basic trigonometric arcs.
of irrational algebraic values ofz remained unsolved Hereafter, the word ‘trig’ will stand for any of
until 1934, when Gelfond and Schneider, working {cos sin,tan cot seccsc.

independently, showed that, , ) )
P y = Theorem 1 (Extension of Margolius’ result) If x is a

Lemma 3 (Gelfond-Schneider) If a #0,1andB ZQ  real algebraic number, theM is either a rational
are algebraic numbers, then any value @’ is | tanscendental number
transcendental. '
Proof. The proof is similar to the previous one, being
For a proof, see e.g. Theorem 2.1 of ReZ] pr  enough to takex = trig (8), x € & R, and write
Theorem 10.1 (and Sec. 4 of Chap. 10) of R&8][ This
arctrigx) 6 In(z/|7)

lemma promptly implies the transcendence of2 2and — 2 = U (2)
€™ =i"?, two real numbers mentioned by Hilbef]] It U m  In(-1)

also follows that €™ — (em)ﬁ = (—1).‘3 IS a 6 Since « is afield, then, given anya,B € 7, all the
transcendental number for eveye <7 \Q, which solves  numbersa + B, a B, anda/B (B # 0) are also algebraic (see,
Hilbert's 7th problen® e.g., Sec. 6.6 and Theorem 6.12 of Ré&)[More generally,
givenr e Q anda € &7, a # 0, if z is any complex algebraic
3 Hilbert himself remarked that he expected this problem to be(respectively, transcendental) number then all numbers, az,

harder than showing the Riemann hypothesis! z/a, andZ are also algebraic (respectively, transcendental), the
4 It was proved by Lehmer in 1933 that, for ratiomak k/n, only exception being® = 1 for z¢ 7.
n > 2, the numbers 2cdg@mr) and 2sir(2mr) are algebraic 7 The irrationality of 8/ is also nicely proved by Margolius
integers(i.e., roots of monic polynomial equationsZiix| ) [7]. in Theorem 3 of Ref. 11] by exploring the properties of
5 Indeed, givena,b € &/ NR, if eithera=0 andb & Q or sequences of primitive Pythagorean triples formed on mgiti
a+ 0, thenel@tb)m_ glb-ia)im _ (_1)b-ia j5 transcendental. ~ x=a/b, aandb being distinct non-zero integers.
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z+# 0. The choice ofz now changes accordingly to the For a proof, see Corollary 2 of Refg8][ Note that
function represented by ‘trig’. For arccos choose e+ s transcendental evendf =0, as long asf ¢ Q

Z = X £ V1% . For  arcseg, choose (see Footnot&). Note also that Corollary implies the
z = +£1 £ V¥2—-1 i. For arcsirx, choose transcendence of(a + InB)/m for any non-zero
z = +V1-x2 + Xi. For  arccsg, choose «a,Bc«.

z= 4v/x2 — 14£i. For arctax, choosez = 1+ xi, as in

the previous proof. For arccatchoosez = x+1. In all All this said, it is embarrassing that the numbersrin

these cases, the ratii/|Z] is an algebraic function ox, T+ e and e are still not known to be transcendental. In
so it is an algebraic number for al € &7 (R. The last  fact, not even an irrationality proof is known, though it is
expression in Eq.2) is then a ratio of two logs with easy to show that at least one mf e and e must be
algebraic arguments, so Lemrapplies. O irrational. This is proved, e.g., in a nice survey on
irrational numbers by Ross in Refl4], but let us present
Conversely, ifx € R then it will be transcendental g short proof for completeness. Let us calladratic any
whenever arctrigx)/mm € <7\ Q. This implies, e.g., the algebraic number which is a root of a 2nd-order
transcendence of any t,@/ﬁ n). polynomial equation with rational coefficiertdzrom the
fact that r7 is not a quadratic number (since it is not even

The following extension of Lemmawas conjectured ~an algebraic number), it follows that
by Gelfond and proved by Baker in 1966, becoming the

definitive result in this area. Lemma 6 (Harmless irrationality) At least one of the

numbersrt+ e and e is irrational.
Lemma 5 (Baker) Given non-zero algebraic numbers
ai,...,an, such that Inai,...,Inan are linearly  Proof. Consider the quadratic equation
independent ovef), then the numberd,Inay,...,Inay (x—m) - (x—e) = 0, whose roots arerr and e. By

are linearly independent overz. That is, for any expanding the product, one has— (1+ €)x+ e = 0.
Bo,-..,Bn € </ not all zero, we have Assume, towards a contradiction, that both coefficients

T+ e and rre are rational numbers. Then, our quadratic
n equation would have rational coefficients and both roots
Po+ z BcInay # 0. would be quadratic numbers. Howeverr is not a
k=1 quadratic number.

For a proof, see Theorem 2.1 of Ref].f This lemma 0
has several interesting consequences.

Since this proof does not make use of any property of

Corollary4 Given non-zero algebraic numbers e, itis clear that Lemma can be generalized.

ai,...,0n, for any Bi,...,Gn € &/ the number
Buinai+...+ BnInan is either null or transcendental. It | emma 7 (General irrationality) ~ Given any irrational

is transcendental wheninay,...,Inan are linearly  nymper u which is not quadratic and any complex number
independent ove® and f, ..., B are not all zero. v, at least one of the numberstw and uv is irrational.

For a proof, see Theorem 2.2 of Ref] [ Proof. The proof is identical to the previous one, being

Corollary5 Let a,...,an, Bo,B1,..., By be non-zero €nough to substituter by u ande by v.
algebraic numbers. Then the producfoe?r ... a,f is O
a transcendental number.

In particular, this lemma applies whea=1 is a
transcendental number, so at least one of the numbers
Corollary 6 For any algebraic numbersay,...,a, TV andtv is irrational. Of course, for any algebraic
other than0O or 1, let 1, By, ..., B, be algebraic numbers V# 0 both t+v andtv aretranscendentahumbers,® so
linearly independent over Q. Then the number the interesting case is whew is also a transcendental
a;PL.. . apPn is transcendental. number. This leads us to the following result.

For a proof, see Theorem 2.3 of Ref].[

For a proof, see Theorem 2.4 of Ref] [ Theorem 2 (Transcendence of sums and products)
Given two transcendental numbegsand b, at least one
Corollary 7 The number &8 s transcendental for of the numbers;t+t, and 4 t; is transcendental.
all algebraic values ofr and 3, a # 0.

9 All rational numbers are quadratic because they are a root of
8 Baker also gave a quantitative lower bound for these linearx(x— p/q) = 0.

forms in logs, which had profound consequences for diophant 10 This basic transcendence rule is easily proved by

equations. This work won him a Fields medal in 1970. contradiction.
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Proof. Giventy,t, € <7, consider the quadratic equation Given any transcendental numbet, t' s

(x—11) (X—t2) = 0, whose roots aré; andty. As itis  transcendental for all rational# 0, which can be readily

equivalent tox? — (t; +t) X+t t; = 0, assume, towards a proved by contradiction, writing = p/q, p and q being

contradiction, that boths = t; +t, and p = tit, are non-zero integers. What abotff, a being an irrational

algebraic numbers. The equation then readsalgebraic? On taking = €, we know thatt' € &/

X2 —sx+ p =0, so, by completing the square, one finds \hereastV2 ¢ . (see Footnotés). The next theorem
sheds some light on this question.

XC—SXt—=—=—p . _— .
4 4 Theorem 4 (Existence of an irrational algebraic exponent)
s\2 & Given any transcendental number t, there is an
= (X_Q) =7 P (3)  irrational algebraic a such that f is also

transcendental.
This implies that(x — s/2)? is algebraic (see Footno&,
which is impossible because, beirgone of the roots; Proof. Given any transcendental numbey assume,
andt,, the numbex—s/2 must be transcendental. [ towards a contradiction, that’ = 8 is algebraic for all
a € #\Q. From Corollary 8, t'(B —t") s
This theorem implies, in particular, that at least onetranscendental for alF € Q, r # 0, which means that
of m+e and rre is transcendentalHowever, we are ina '+ — > = t'+0 (1 —t"~%) is transcendental. Clearly,
position to prove a stronger result. a2 = r £ a is an irrational algebraic, so
t91(1—192) = B; (1 — B,) should also be transcendental,

Theorem 3 (Transcendence of two numbers) Given which is false because it is the product of two algebraic
any non-zero complex numbe#zl/e, at least two of the .\ mpers.

numbers z-e, ze, andnz are transcendental.
O

Proof. If z= 0 is an algebraic number, then bath-e

and ze are transcendental numbers, so let us restrict our Note thatthe similar proposition “for all transcendental

attention to z¢ 7. If Inz is transcendental then we are numbert, there is an irrational algebrai such that® is

done because we know, from Theor@nthat at least one  algebraic” isfalsg as follows from Lemmd, takingt = e.

of z+ e and ze is transcendental. All that remains is to For t = 1, however, it remains open the question if there

check whether Iz € 7 implies that bothz+e andze  is some algebraiar # 0 for which 1% is algebraic'?

are transcendental numbers. Sincg 4ha — z = €9, Another consequence of Corollays as follows.

then z+e = e“ + e is a transcendental number for all

a € o/, a # 1, according to Corollaryl.** Also, since

Inze o7, then 1+Inz=In(e2 is also algebraic, and

then, according to Lemma, the numberze has to be

transcendental for alt such that Irfze) # 0, i.e.z# 1/e.

Theorem 5 (Linear independence of hyperbolic functions)
For any transcendental number t and any rational
r # 0, the numbersl, cosh(rint), and sinh(rint) are
linearly independent overg/. In particular, both
cosh(rint) and sinh(rInt) are transcendental numbers.

Proof. Sincet' is transcendental for arly¢ <7 and any
In particular, this theorem implies that at least two of ' € Q. r # 0, then it follows from Corollan that, for any

T+ e, e, and Inmr are transcendental numbers. a,B € </ not both zero,
Indeed, we can make suitable choicesgpfindts in at’ thEr =at'+Bt "¢

Theoren? in order to get further transcendence results. FInt rint
=o€ "4+ Be & of

Corollary 8 For any transcendental number t and — (g4 B)coshr Int)+ (a — ) sinh(r Int) ¢ «7. (4)
algebraic numbersy and 8 not both zero, the numbers . )
at+ B/t and t(a —t) are both transcendental. Sincea andp are arbitrary algebraic numbers, then

Proof. For anyt ¢ & and a,3 € o/, not both zero, a cosh(r Int) + B sinh(r Int) & <7, (5)
taket; = at andt, = B/t in Theorem2. If exactly one B

of a,B is null, then the proof is immediate. Otherwise, where @ = a + 3 and B = a — B are also algebraic
since t1itp = af3 € & (see Footnote 6), then numbers (not both zero), so

t1+to = at+ B/t has to be a transcendental number.

Finally, for any a € 7, taket; =t andt; = a —t in a cosh(r Int)+§sinh(r Int) £y, Vye.o/. (6)
Theorem?2. Sincet; +t, = a € o/, then the number
tito =t (a —t) has to be transcendental. O 12 Note that this question is relevant for the transcendence of

InmT, because, given non-nullr, € &, B #1, n9 =B =
11 Note thata = 1 impliesz= e, a case in which our theorem a Inr=Inf is transcendental, according to the log-version of
also holds since both+e = 2e andze= €? are transcendental. Lemmal.
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Therefore, —y + a cosh(r Int) + B sinh(r Int) # O,
which shows that 1, coshint) and sinHrInt) are
linearly independent ovet/ .

The transcendence of cagtint) follows on taking
a #0 andB =0 in Eq. ), whereas that of sinfnint)

follows on takinga = 0 andB # 0.
0

In addition, it is easy to prove the transcendence of

tanh(r Int).

Theorem 6 (Transcendence ofanh(rint)) For  any
transcendental number t and anya Q, r # 0, the
numbertanh(rInt) is transcendental.

Proof. For any transcendental numbteand anyr € Q,
r # 0, we have tanfrint) := sinh(rInt)/cosh(rInt) =
" —t ") /t"+t7") = (t¥ —1)/(t¥ +1) # 1. Now,
assume, towards a contradiction, that tériht) = a, for
somea € .o/, a #0,1. Then

2 —1
21 "
=t —l=a (t*+1)=at* +a
— 1-a)t*=a+1
t2r:1+_a
l1-a’

(7)

which is impossible since the quotient of two algebraic

numbers is also algebraic, wherd&s¢ 7.
O

It follows, in particular, that cosfin ), sinh(Inm),
and tanffinm)

functions.

Theorem 7 (Linear independence of trig values) For
any algebraic numbersr, 3, a # 0,1 and i € Q, the
numbers 1, cos(Blna) and sin(Blna) are linearly
independent ovey . In particular, bothcos(BIna) and
sin(BIna) are transcendental numbers.

Proof. Sinceif € .7 \Q, then, from Lemma,t = a'?
is a transcendental number. From Coroll&ythe sum
at+ b/t is also transcendental for all algebr@andb
not both zero, so

ad'P +ba B =adBna L pgiBha g o
= (a+b)cogBIna)+i(a—b)sin(Blna) & </, (8)

which is equivalent todcogB Ina) +bsin(B Ina) # c,
for all c € «7. Therefore, for aII?a',B € &/ not both zero,
acogBIna)+bsin(BIna)—c+#0,forallce.o/. The
transcendence of c¢8Ina) follows by takinga+# 0, b=

0 and that of sifIna) follows by takinga= 0, b #£ 0.
U

are transcendental numbers. Similar
results can be derived for the basic trigonometric

Theorem 8 (Transcendence ofan(BIna)) For any
algebraic numbersa,B, a # 0,1 and i3 ¢ Q, the
numbertan(BIna) is transcendental.

Proof. Given non-zero algebraic numbess 3, a # 1,
assume, towards a contradiction, that ({@tna) = y for
somey € /. Then

_sin(Blna) 1ePna_gifina
Y= cos(Blna) i eBina_gBina
I L B L |
= iy= (9)

aBta B g 1
The last equality implies thaty # 1. From LemmeB, we
know thatt = a'f is transcendental for all algebraic
values of 8 such thati 8 ¢ Q, therefore
t2—1

2+1

— ytPty=t’-1

— (1-y)t2=1+y

1+y  1+iy

1-y 1 iy’

iy=y=

(10)

which should be algebraic since it is a quotient of two
algebraic numbers. However, this is impossible because
t? is transcendental for atl¢ o7 .

O

Theorem& and8 imply, for instance, that all numbers
trig(In2) and trig(\/i rr) are transcendental.

3 Conclusion

Summarizing, we reviewed in this note the main
transcendence results presently known involving the basic
trigonometric and hyperbolic functions, as well ésand

Inz. Since not even an irrationality proof is known for
some numbers like I, 774 e and 1re,'® we decided to
explore a generalization of a well-known ‘harmless’
irrationality theorem, our Lemma6, towards the
derivation of conditional transcendence results for those
numbers. Hopefully, the results put forward here in this
paper should be useful for those researchers who are
investigating the irrationality and/or transcendence of
such numbers.

13 There is a recent work on modular functions by Nesterenko
(2996) [12], in which he shows thatrm and e/ are
algebraically independent ovép for all integer n > 0. This
implies that, for any rationat # 0, qInmt# \/n pmt—Inr for
all non-negative integerp andq (not both zero). For =1, e.g.,
one concludes that m and \/n 11 are linearly independent over
Q. In particular, I is not a rational multiple oft.
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