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Abstract: This paper proves the uniform exponential stability of tingetvarying linear dynamic systerf (r) = G(r)x(r), r € T in
terms of bounded-ness of solution of the following Cauctobjgm:

WA(r) = G(NW(r) + w(r), 0<reT,
W(O) =\Vo

whereT denotes time scal&(r) is a matrix valued functionp(r) is a bounded function ol andvg € C™. In this note we prove the
results that have the above result as an immediate coedlari
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1 Introduction A pointr € T is said to be left-scattered and left-dense if
r > p(r)andp(r) =r, respectively. If < 6(r) and6(r) =

The theory of dynamic equations on time scales wag, then such a pointe T will be called right-scattered and

introduced by Hilger 9], in 1988, in order to unify the right-dense, respectively. The set known as derived form

continuous and discrete calculus. Since then, this theoryf time scaleT denoted byT” is defined as follows:

has been developing rapidly and has received a lot of

attention in recent years. The basic theory of time scales TZ_

and dynamic equations on time scales can be found in the

recent monographes by Bohner and PetershB] [and ) — . ) ) .

the references Contained therein_ A fUnCt|On a:T—Ris Sald to be I’Ight-dense continuous
Recently, many researchers paid attention to the studyf it iS continuous at all right-dense points ih and its

of different types of stabilities of dynamic equations on eft-sided limits exist at all left-dense pointsTny whereR

time scales, with different approaches. For more detailsdenotes the set of real numbers. A functonT — Ris
see [L,4,5,7,8,10,11,12,13. said to be regressive ifv(r)a(r) # 0 forallr € T"and

if 14+ v(r)a(r) > 0, then the function is said to be
positively regressive. The set of all right-dense contiraio
and regressive functions, right-dense continuous and
positively regressive functions respectively will be

The non-empty arbitrary closed subset of real numbers iggno_ted _by REG(T) aend REG(T)*. A function
called Time Scale denoted by. The forward jump W :T — Risdefinedasv’(r) =w(6(r)), VreT.
operators, backward jump operators and graininespefinition 1.If G € REG(T), then generalized exponential
function denoted bﬁ T=T,p:T—>T,v:T —[0,) function g(r,u) onT is defined as

are respectively defined as:

T\(p(supT),supT|, if supT < o,

T if supT = o.

)

2 Preliminaries

g8 _
o(ry=inf{veT:v>r}, p(r)=sup{veT:v<r} v(r)=0(r)—r. BG(I’, u) =exp (/u XV(WG(V)AV) vrueT,
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with cylindrical transformation Theorem 1[6] Let ro € T and ¢ € R". Then the
regressive IVP(2.2) has a unique solution WT — R"
Log(1+ v(r)G(r)) if v(r) 0 given by
Xv(r)G(r) = v(r) r
G(r). if () =0. W(r) = @(r.rolvo-+ | @(r.0(n)w(n)an.
o
Lemma 1[2] Let G,H € REG(T), then: Consider the regressive time varying linear dynamic
1 Q)(r u =1and es(r, r) =1 system
X 1+v G(r))es(r,u). -
) x4 (r) = G(r)x(r); X(ro) =vo, r€ T, o € C™. (G(r))
4 r u ——
et;( ) ea(ur)” Theorem 2[6] The time varying linear dynamic system

5.e5(r,u)eg(u,v) = eg(r,V).

61fr uVvET. then (G(r)) is uniformly exponentially stable if and only if

there exists am,y > 0 with —n € REG(T)" such that
the transition matrix®g satisfies
| stmes(v0(m)an = es(vr) — es(vu).
||@c(r,r0)|| < ye_p(r,ro), VI >ro, withr,rg € T.
Definition 2.Let G be mx m matrix-valued function on a
time scale(T) such that||G(r)|| <y, y>0. Then Gis Theorem 3[6] Suppose that there exists a constant
said to be rd-continuous off if each entry of G is rd- such that for all re T, [|G(r)|| < y. Then the time
continuous and G is regressive if the eigenvalggs) of ~ varying linear dynamic systen{G(r)) is uniformly
G(r) are regressive for all <i < m. exponentially stable if and only if there exists a constant
B > O such that
Remarlk.et G* be the conjugate transpose of x m

matrix valued functiorG. If G € (R)™", thenG* = GT / [|®c(r,8(n))||An < B, ¥r>0(n), withr,n eT.
and G* € REG(T). Moreover, the function defined by

oG(r) = ﬁggﬁ) is also regressive.
Consider the matrix-valued IVP, 3 Main Results
WA(r):G(r)W(r),W(rO):Im, (2.1) Our main result concerning the uniform exponential

stability of the systeniG(r)) is stated as follows:

herel i identit trix. . . .
WRETEL m IS r> M ICentity matrix Theorem 4The systeniG(r)) is uniformly exponentially

Definition 3.The fundamental matrix is defined to be the stable if and only if for eachgve C™ and each bounded
general solution to the matrix dynamic equati@il) and  functioncw(r), the unique solution of the following Cauchy

is denoted bybg(r,ro). problem

Keep in mind that®g as a transition matrix can be Ay
replaced witheg in the following lemma. The next lemma {W (N =G(rW(r)+w(r), r =0 (G(r), w, Vo)
lists some properties of the matrix exponential function. W(0) = vo,

Lemma 2[6] Let G € REG(T) be the matrix-valued is bounded.

function onT, then the famiyG = {®g(r,u): r,ue T}

has the following properties: ProofNecessity: Let the system(G(r)) is uniformly
1.0p(r,u) = Land @s(r,r) = 1. exponentially stable, then by Theor@nwe have

2.06(6(r),u) = (14 v(r)G(r)) Ps(r,u). @ < > ith T
i Sy Tt i e 196(1.10)]| < Y- (1To), T = To, with, ro € T.
4.06(r,u) = @1 (r,u) = @ e (u,r). Consider the solution of the Cauchy probléa(r), w, Vo),
5.<D%(r, u)ds(u,v) = dg(r,v). i
026w =GN @e(r,u). W(r) = @6(r,0N0+ [ @c(r.6(n))w(n)An
Now the next theorem guarantees a unique solution to the 0 r
regressiven x 1 vector-valued dynamic IVP [IW(r)|] < ||<I>G(r,0)||vo+/0 [|®(r,8(n))||||ew(n)||An
r
WA(r) = G(rW(r) + w(r), W(ro) = Vo. (2.2) < efn(r,0)+C/ |®c(r,6(n))[|An
0
< e_p(r,0)+Cp.
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