

### **Applied Mathematics & Information Sciences** An International Journal

© 2012 NSP Natural Sciences Publishing Cor.

# Notes on Generalized Fermat Numbers

H. Eleuch

Max Planck Institute for Physics of Complex Systems, 01187 Dresden, Germany

Received: Jan. 13, 2012; Revised April 28, 2012; Accepted 1 March 2012

Published online: 1 Sep. 2012

**Keywords:** Prime numbers, Fermat numbers

#### 1. Introduction

There are two different definitions of generalized Fermat numbers (GFN), one of which is more general than the other. In [5], Ribenboim defines a generalized Fermat number as a number of the form  $F_{a,n} = a^{2^n} + 1$  with a > 2, while Riesel ([6]) further generalizes, defining it to be a number of the form  $a^{2^n} + b^{2^n}$ . Both definitions generalize the usual Fermat numbers  $F_n=2^{2^n}+1$ . The only known Fermat primes are  $F_0,F_1,F_2,F_3$  and  $F_4$ . Generalized Fermat numbers  $F_{a,n}$  can be prime only for even a. It is generally expected that there are an infinite number of primes of this form for each n. In fact, this is a consequence of the famous "Hypothesis H" in 1958 of Sierpiński and Schinzel. In 1962, Bateman and Horn indicated a quantitative form of "Hypothesis H" which could be used to predict the number of primes for given polynomials [1]. Many of the largest known prime numbers are generalized Fermat numbers. The largest known as of January 2009 is  $24518^{2^{18}} + 1$  (http://primes.utm.edu/ primes/ page.php?id=84401), which has 1150678 decimal digits. The following table gives the first few generalized Fermat primes for various even bases a:

| a | prime $a^{2^n} + 1$                             |
|---|-------------------------------------------------|
| 2 | 5, 17, 257, 65537, 4294967297,                  |
| 4 | 17, 257, 65537,4294967297, 18446744073709551617 |
| 6 | 37, 1297, 1679617, 2821109907457,               |

Note that if  $a = \alpha^{\beta}$ , then  $F_{a,n} = \alpha^{\beta^2} + 1$  and it can be shown that if  $\beta$  takes the form  $\beta = (2\gamma + 1)2^k$  for some  $k \in N$  and  $\gamma \in N \setminus \{0\}$ , then

$$\alpha^{(2\gamma+1)2^k} + 1 \equiv 0 \pmod{\alpha^{2^k} + 1}$$

and hence  $\alpha^{\beta} + 1$  is not prime. Then the primality of  $F_{a,n}$ implies that  $\beta$  takes the form  $\beta=2^k$  and in this case  $F_{a,n} = a^{2^n} + 1 = \alpha^{2^{n+k}} + 1 = F_{\alpha,n+k}$ . Then we can consider define GFN  $F_{a,n}$  for a particular choice of a, that is a is even and not of the  $\alpha^{\beta}$  where  $\alpha$  and  $\beta$  are positive integers with  $\alpha, \beta \geq 2$ . In this paper we shall focus our study on the properties of GFN of this form.

# 2. Divisibility and properties of GFN

We begin this section by recalling some results

### Lemma 2.1

Let  $n, k \in \mathbb{N}^*$ , then the following are equivalent

 $i. X^n + 1 \equiv 0 \pmod{X^k + 1}$ 

ii.  $n \equiv 0 \mod k$  and  $\frac{n}{k}$  is an odd positive integer.

**Proof**: If we set n = qk + r with  $0 \le r < k$ , then the result follows from the following rule:

$$X^{n} + 1 = (X^{k} + 1) \sum_{j=1}^{q} (-1)^{j-1} X^{n-jk} + (-1)^{q} X^{r} + 1.$$

### Corollary 2.2

Let  $n, k \in N^*$  and assume that

i.  $X^n + 1 \equiv 0 \pmod{X^k + 1}$  for some integer 1 < 1k < n then  $n \neq 2^p$  for all  $p \in N^*$ 

ii. Let  $n \in N^*$ , if for any integer k with  $2 \le k < n$ , one has  $X^n + 1 \neq 0 \pmod{X^k + 1}$ , then n is prime or  $n=2^p$  for some  $p\in N^*$ .

<sup>\*</sup> Corresponding author: e-mail: heleuch@fulbrightmail.org



**Proof**: i. If  $X^n+1\equiv 0\pmod{X^k+1}$ , then by the preceding Lemma, we have  $n=(2\alpha+1)k$ , now let  $k=2^{p_1}k_1$  with  $k_1$  is an odd integer. Then if  $n=2^p$  for some p, we must have  $(2\alpha+1)k_1=2^{p-p_1}$  and hence  $p-p_1=\alpha=0$  and  $k_1=1$ , that is n=k which is a contradiction.

ii. Suppose that for any integer k with  $k, 2 \le k < n$ , one has  $X^n+1 \ne 0 \pmod{X^k+1}$  and write n=kq+r with  $0 \le r < k$ . Again by the previous Lemma we must have  $r \ne 0$  and hence n is prime or r=0 and for any divisor k of n one has  $\frac{n}{k}$  is not an odd integer, that is each divisor of n is even and hence n takes the form  $n=2^p$  for some  $p \in N^*$ .

Now we give the following

#### Lemma 2.3

Let  $k, n \in N$  with  $k \neq n$  and  $a \in N$ , then

$$\gcd(a^{2^k}+1,a^{2^n}+1) = \begin{cases} 1, \text{ if } a \text{ is odd} \\ 2, \text{ if } a \text{ is even} \end{cases}$$

**Proof**: Let  $n, k \in N^*$ , with  $k \le n$  then we have

$$a^{2^{n}} + 1 = (a^{2^{k}} + 1) \sum_{j=1}^{2^{n-k}} (-1)^{j-1} a^{2^{n} - j2^{k}} + 2.$$

Thus, it follows that

$$gcd(a^{2^{n}} + 1, a^{2^{k}} + 1) = gcd(a^{2^{k}} + 1, 2)$$
$$= \begin{cases} 1, & \text{if } a \text{ is even} \\ 2, & \text{if } a \text{ is odd} \end{cases}$$

Consider the set

$$E = \{ a \in 2N, \ a \ge 2, \ \text{and} \ \ a \ne \alpha^{\beta}$$
  
where  $\alpha, \beta \in N, \alpha > 2, \beta > 2 \}.$ 

Then we can show the following

### **Proposition 2.4**

Any odd prime number p can be written in a unique way of the form  $p=a^n+1$  where  $a\in E$  and  $n\in N\setminus\{0\}$ .

**Proof**: Set x = p - 1, and write  $x = 2^{k_1} p_2^{k_2} \dots p_r^{k_r}$  be the decomposition of x into prime factors. Note that  $k_1 \ge 1$ , since x is even. Put  $d = \gcd(k_1, \dots, k_r)$ , then one has the following two cases.

Case 1:  $d \ge 2$ Then, we write

$$x = \left(2^{\frac{k_1}{d}} \prod_{i=2}^r p_i^{\frac{k_i}{d}}\right)^d.$$

It is clear that  $a=2^{\frac{k_1}{d}}\prod_{i=2}^r p_i^{\frac{k_i}{d}}\in E$  and hence  $p=a^n+1$  where n=d.

Case 2: 
$$d = 1$$

In this case, we have  $p=(p-1)^1+1$  and  $p-1\in E$ . Now let p be an odd prime number and suppose that we can write  $p=a^n+1=b^m+1$ , where  $a,b\in E$  and  $n,m\in N\setminus\{0\}$ . This implies that  $a^n=b^m$  and hence  $a=b^{\frac{m}{n}}\in E$  or  $b=a^{\frac{n}{m}}\in E$  which show that n=m and a=b.

### Remark 2.1

Any positive integer N>2 can be written in a unique way of the form

$$N = a^m + 1,$$

where m is a natural number and a is not of the form  $\alpha^{\beta}$  with  $\alpha, \beta \geq 2$ .

Now we see from Proposition 2.4, that if p is an odd prime number then p is of the form  $p=a^m+1$  where  $a\in E$ . On the other hand if  $m=2^n(2\gamma+1)$  for some positive integer  $\gamma$  then  $a^m+1\equiv 0 \pmod{a^{2^n}+1}$ , and hence  $a^m+1$  is not prime. Thus if we let  $m=2^n$ , then the family  $\{a^{2^n}+1\}_{a\in E,n\in N}$  may contains prime numbers and together with proposition 2.4 we have the following:

# **Corollary 2.5**

If p > 2 is a prime number then p is a generalized Fermat number  $F_{a,n}$  where  $a \in E$ . From now on we shall focus our study on this family of numbers  $\{a^{2^n} + 1\}$  with  $a \in E$ .

#### Lemma 2.6

If  $a^{2^n} + 1 \equiv 0 \pmod{q}$  then for any  $k \in N$ , one has

$$a^{2^{n+k}}+1\equiv\ 2\ (\mod q).$$

**Proof**: Let  $F_{a,n} = a^{2^n} + 1$ , then one can show that

$$F_{a,n}-2=(a-1)F_{a,1}\dots F_{a,n-1}.$$

Now if  $F_{a,n} \equiv 0 \pmod{q}$ , then for any  $k \in N$ 

$$F_{q,n+k} \equiv 2 \pmod{q}$$
.

### Lemma 2.7

Let  $a \in E$  and assume that for some integer  $\alpha$  one has  $a^{2^n} + 1 \equiv 0 \pmod{\alpha}$ , then for any integer number k one has  $(a + 2k\alpha)^{2^n} + 1 \equiv 0 \pmod{\alpha}$ .

**Proof**: For any integer number k, one has  $a+2k\alpha \equiv a \pmod{\alpha}$  and hence  $(a+2k\alpha)^{2^n}+1 \equiv a^{2^n}+1 \pmod{\alpha}$ , then if  $a^{2^n}+1 \equiv 0 \pmod{\alpha}$  it follows that

$$(a+2k\alpha)^{2^n}+1 \equiv 0 \pmod{\alpha}.$$



For example, since  $F_5$  has the prime factor 641, then

$$2^{32}(1+641k)^{32}+1 \equiv 0 \pmod{641}$$

and hence  $\{F_{2+1282k,5}\}_{k\in N}$  are not prime numbers. Similarly we can generate a series of non prime numbers arising from the non prime known Fermat numbers  $F_6, F_7, \ldots$ 

#### Corollary 2.8

Suppose that there exist some even positive integer  $\beta$ , a positive integer s which is not of the form  $s=2^r$   $(r \neq 0)$  and  $k \in N \setminus \{0\}$  such that

$$\beta^s \pm 2k(\beta^{2^n} + 1) = a \in E$$

then  $a^{2^n} + 1$  is not prime.

Moreover  $\beta^{2^n} + 1$  divides  $a^{2^n} + 1$ .

Here we give examples of non prime GFN. For instance if  $s=2^n+1$  we obtain

$$(\beta^{2^n}(\beta - 2k) - 2k)^{2^n} + 1 \equiv 0 \pmod{\beta^{2^n} + 1},$$
  
 $n \in N, k \in \mathbb{Z} \setminus \{0\}.$ 

For instance, take  $\beta=6$  and k=2, then  $6^{2^n}+1\mid 2^{2^n}(2\times 6^{2^n}-4)^{2^n}+1$  for all n. Similarly we can see that

$$(4 \times 10^{2^n} - 6)^{2^n} + 1 \equiv 0 \pmod{10^{2^n} + 1}$$

and so on...

# 3. Conclusion

In this paper, we have shown that we can raffine our research for prime numbers within generalized Fermat numbers  $F_{a,n} = a^{2^n} + 1$  for a class of even positive integers a which are not of the form  $\alpha^{\beta}$  where  $a, \beta \geq 2$ .

Finally our believe that the following conjecture is true

### Conjecture

If  $F_{a,n}$  is not prime for some n then  $F_{a,k}$  is not prime for any k with  $k \ge n$ .

# Acknowledgment

The author is grateful to Dr Béchir Dali for useful discussions.

### References

- [1] D. Broadhurst, "GFN Conjecture." Post to primeform user forum. Apr. 1, 2006.
- [2] P. T. BATEMAN AND R. A. HORN, A Heuristic Asymptotic Formula Concerning the Distribution of Prime Numbers, Math. Comp. 16 (1962), pp. 363–367. MR 26:6139.
- [3] D. HARVEY AND Y. GALLOT, Distribution of Generalized Fermat numbers, Math. Comp. Vol. 71, No. 238, pp.825– 832 (2001)
- [4] D. HARVEY AND W. KELLER, Factors of Generalized Fermat numbers, Math. Comp. Vol. 64, No. 209, pp.397–408 (1995).
- [5] P. RIBENBOIM, The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
- [6] H. RIESEL, Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser (1994).
- [7] A. WITNO, On Generalized fermat numbers  $3^{2^n} + 1$ . Applied Math. & Information sciences, Vol. 4, No. 3, pp. 307–313 (2010).