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Abstract: In this paper, we study the time dependent linear ellipticbfgm with dynamic boundary condition. The problem is
discretized by the backward Euler's scheme in time and felienents in space. In this work, an optinaapriori error estimate is
established and an optimalposteriorierror with two types of computable error indicators is pihv&he first one is linked to the
time discretization and the second one to the space dizafietn. Using these a posteriori errors estimates, an adagigorithm
for computing the solution is proposed. Finally, numeriegberiments are presented to show the effectiveness ofutianed error
estimators and the proposed adaptive algorithm.

Keywords: Dynamic boundary condition , finite element methaghosteriorianalysis.

1 Introduction representation cannot be generalize®ifis not the unit
ball of R?. This motivated the authors o®][and [7] to
Let Q ¢ R? be a bounded simply-connected open domainintroduce a semi discrete explicit and implicit Euler's
in R2, with a Lipschitz-continuous connected boundary scheme in order to approximate the Dirichlet-to-Neumann
I, and let]0,T[ to denote an interval in R where semigroup numerically. The convergence of these semi
T € (0,+) is a fixed final time. We denote by(x) the  discrete schemes is based on the Chernoff's product
unit outward normal vector at € . We intend to work  formula. For the discretization of probler)(the authors
with the following time dependent linear elliptic problem of [9] show simple numerical experiments. The aim of
with dynamic boundary condition: this work is to show optimah priori and a posteriori
) estimates and some numerical investigations.
—Au(t,x) =0in]0, T[xQ,

The idea of thea posteriorierror estimates is based
@(t %)+ Bn(x).0u(t,x) = 0 on]0, T[xI (1) onan upper bound of the error between the exact solution
ot ’ ’ ’ and numerical one with a sum of a local indicators
u(0,x) = ug onl", expressed in each element of the mesh. To get more
precision and to minimize the error, the goal is to
wheref is a positive constant. The unknownusand ug decrease this indicators by using the adaptive mesh
is the initial condition at time = 0. techniques which consists to refine or coarsen some
regions of the mesh. Tha posteriori error estimate is
The solution of problem1) can be represented on the optimal if we can make each one of these indicators
boundary by a Dirichlet-to-Neumann semigroup (see forbounded by the local error of the solution around the
instance 17]). For the existence and uniqueness of this corresponding element. We refer for example to the books
solution see 17]. In a particular case, whe® = B(0,1) Verfurth [16] or Ainsworth and Oden1]. For the time
the unit ball ofR?, in his book [L4], P.Lax showed that dependent problems, we have two types of computable
the Dirichlet-to-Neumann semigroup had a simple error indicators, the first one being linked to the time
explicit representation. In9], it is shown that the Lax discretization and the second one to the space
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discretization. We have to handle the two kinds of values in a separable functional space, ¥ayln the
indicators, some times, we change the time step and in afollowing, f(t) represents the functiofi(t,.). Let | - ||y
other times, we adapt the mesh. A large amount of workdenote the norm of; then for any r, I<r < oo, we define
has been made concerning tnposteriori errors. We can b

cite for example, Ladevezel ] for constitutive relation L"(a b;Y) = {f measurable i!‘ra,b[;/ [ ft)]dt < oo},
error estimators for time-dependent nonlinear FE a

analysis, Verfurth15] for the heat equation, Bernardi and equipped with the norm

Verfurth [6] for the time dependent Stokes equations, b Ur

Bernardi and Suili4] for the time and space adaptivity for [ llir@py)= (/ I f(t)H{,dt) ,

the second—order wave equation, Bergam, Bernardi and ' a

Mghazli [5] for some parabolic equations , Ern and with the usual modifications if = . It is a Banach space
Vohralk [10] for estimation based on potential and flux if Y is a Banach space.

reconstruction for the heat equation and Bernardi andy the same way, for any integkrwe define

Sayah B] for the time dependent Stokes equations with

mixed boundary conditions, ... Ck(a,byY) = {f measurable ifg, b[x Q;
fUt,. :
In this paper, the data of the problem is the initial te]aj[l,Jo%ng (t v < oo}

condition of the unknown at the boundary. We propose a , . .
very standard low cost discretization relying on the For the existence and the uniqueness of the solution of

Euler's implicit scheme in time combined with finite ProPlem (), we refer to the theorer2.1, page 169 in the
elements in space. Then, we prove optimalriori anda book [17].
posteriori error estimates for the discrete problem. Theorem 2.11f I" is of class € and for each y € L%(I"),
Finally, some numerical simulations are presented baseg@roblem () has a unique solution u[0,+c) — H(Q),
on the proposed algorithm using the FreeFem++ softwaresatisfying:
The outline of the paper is as follows: 1.uc C([0,+);HY(Q)) ﬂLZQ[O, +00); le(_Q));
canti . , 2.Ur € C([0,+00);L2(I))NCH([0, +o0); L2(I));
Sreé)cé:gr%lz is devoted to the study of the continuous 3.n0ue ([0, +oo);L(2(I')).
—In section 3, we introduce the discrete problem and weFurthermore, we have the following bound:
recall its main properties. 9 1 )
—In section 4, we study tha priori errors and derive B|‘Du|||_2([o7+oo);|_2(o)) < _HU0HL2</—)- @)
optimal estimates. 1
—In section 5, we study theposteriorierrors and derive  If in addition, w € Hz ("), and the unique solution of the
optimal estimates. problem

—In section 6, we show numerical results of validation. —Au=0 inQ
u=up onl

) satisfies riJu € L?(I"), then the solution u of the problem
2 Analysis of the model (1) satisfies
. . . Lue CH([0, +e0);H(Q));
In order to write the variational formulation of the problem 2 yj- e C1([0, +w); L2(I));
(), we introduce the Sobolev spaces: 3.n0u € C([0,4);L2(I)).

Remark 2.2 Unfortunately, to our knowledge, there is no
equivalent to the previous theorem in the case of a
polyhedral domainQ. This will be our next research

H™Q)={vel?Q),d%el?(Q), Y|a|<m},

equipped with the following semi-norm and norm ;

work.
1/2
|V|mao= / | 9%v(x) |? dx We suppose thatip € HY/%(I") and introduce the
of=m’2 following variational problem in the sense of distribution
on]O,T[:
and 12 Findu(t) € HL(Q)such that :
[ VIme= { > |V|§,Q} - u(0) = up onr,
k<m d
As usual, we denote by, -) the scalar product df?(Q). B /Q Du(t, v dx+ (/r u(t,s)v(s)ds) =0
vveHY(Q).
For handling time-dependent problems, it is convenient to 3)

consider functions defined on a time interyalb[ with
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Theorem2.3 If u € L?%0,T;HY(Q)) and elementk of Jn, belong to a space of polynomials of
ulr € L®(0,T;L%(r)), the problem 1) is equivalent to  degree one. In other words,
the variational one ¥). Furthermore, we have the

following bound Xoh = {V1 € CO(Q), V1|« is affineVk € Tpn}
5 1 5 1 5 We note that for each andh, X, € H1(Q). There exists
BlIDullEz0 7 1202y + 51U I2(r) < 5 llUollizry- an approximation operatdy, € 2 (H?(Q); Xan) such that

form=0,1
WeH(Q), [In(v) ~Vimo < CH*MV]20.

. The full discrete implicit scheme associated with the

3 The discrete problem Problem B) is: Givenull~* € X,_1n, find ull with values in
Xnhh Solution of

From now on, we assume th@tis a polyhedron. In order
to describe the time discretization with an adaptive choice Yh € Xan, 1
of local time steps, we introduce a partition of the interval B/ Ouf Dvhdx+/ = (up— uﬂ—l) vhdo = 0. )
[0,T] into subintervalsfth,_1,ts], 1 < n < N, such that Q r Tn
0=ty <ty <--- <ty =T. We denote by, the length of . 0: . . .
to_tn, by T the N-tuple (tu,...,7v), by |1| the by assuming thaty, is an approximation afi(0) in Xo.

maximum of thet,, 1 < n <N, and byo; the regularity = Remark 3.2 It is a simple exercise to prove existence and

parameter uniqueness of the solution of problemd) (as a
. Tn consequence of discrete problem of Poisson’s equation
Or = max ) X ) "
2<n<N Tp_1 with a Robin condition.
From now on, we work with a regular family of partitions, Theorem 3.3 For eachm=1,...,N, the solution [f of the
i.e. we assume that; is bounded independently of problem @) satisfies the bound:
m
. - 1
We introduce an operatar by the next definition. um|2 Ul 5 < ————||ud)|3 5
[ h||o,r+nZ1 nlUhl1o < mln(l,ZB)H nllor. (5

Definition 3.1 For any Banach space X and any function

g continuous froml0,T] into X, zg denotes the step ProofFor allv, € Xoh, letuy) be the unique solution of the
function which is constant and equal tgtg on each  (4). Choosingv(th) = uj, in (4), we find

intervalJtn_1,tn], 1 < n < N. Similarly, with any sequence

(¢h)1<n<n in X, we associate the step function g BTaull? o + ||UllI3 - :/ uﬂ—luﬂdg, (6)

which is constant and equal tg, on each interval ’ ' r

Jth-1,tn], 1<n < N; ) o By applying the Holder inequality and summing ower
Now, we describe the space discretization. For @gch from 1 tom, we get 6). 0

0 <n <N, aregular triangulation o (), is a set of
non degenerate elements which satisfies:

—for eachh, Q is the union of all elements ofy; 4 a priori error estimates

—the intersection of two distinct elements &k, is
either empty, a common vertex, or an entire common
edge;

—the ratio of the diameter of an elemeanin .7, to the
diameter of its inscribed circle is bounded by a
constant independent ofandh.

To get thea priori error estimates, we suppose that time
step T, and the meshZ;, don't change during time
iterations. We denote bk the time step, byh the
parameter of the mesh and By the discrete space.

In this section, the discrete variational formulatiof) (
As usualh denotes the maximal diameter of the elementstaken in the time step+ 1, becomes
of all Z4n, 0 < n < N, while for eachn, h, denotes the
maximal diameter of the elements &hp. For eachk in VWi € X, ﬁ/ Duﬂ’“l Dvhdx+/ }(UHH_ uP)vpdo = 0.
Inn, We denote byP; (k) the space of restrictions to of Q rk
polynomials with two variables and total degree at most . . (7).
one. To get thga priori error estimate, we need the following

In what follows, ¢,c/,C,C’,cy,... stand for generic the classic Gronwall lemma.

constants which may vary from line to line but are alwaysRemark 4.1 < Gronwall's lemmas-
independent oh andn. For a fixedn € N and a given Let (an)n>0, (bn)n>0 and(cn)n>o0 three real positive
triangulation 7, we define byX,, a finite dimensional sequences such th&tn)n>o is an increasing sequence.
space of functions such that their restrictions to anyWe suppose that we have:
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1.
ap+bo < co, (8)
2.there existd > 0 such that:
n-1
vn>1an+by<ch+A Zam. 9)
m=0
Then we have:
VnZO,an+bn§Cne”". (10)

In order to get the priori error estimate, we begin with
the next theorem.

Theorem4.2 If u € L®(0,T,H?3Q))
u € L®(0,T,H?(Q)), and for all m=0,...,N — 1,
have the bound:

and
we

m
1h(u(tmsa)) — U™ 1I5,- +2kB Zo“h(u(tmrl —u g

n=!
< C(N*+ K+ |up — In(wo) I3 - )

(11)
where C is a constant independent from h and k.

ProofWe consider the equatiorB)(for t €]tn,tn, 1], take
V= v”h“, integrate in time betweey andt,. 1, then take
the difference with 7) for v, = v”hJrl to get

the1
Bl 0w
th

+ [ ((Ultnra) = ult) = (0"

n+1 ( ) Vn+1( )dth

U)VEFL)(8) ds=O.

(12)
We insert+0(Ih(u(th+1))) and £0(u(tp+1)) in the first
term, anctly(u(tny1)) and+Ih(u(tn)) in the second term,
we denote by, = I (u(tn)) — uj) and we obtain

J (@1 —an)(e)vy s+ kBlanf? o =
/r ((n(Ult12)) — Ultns.2)) — (In(U(tn)) — U(te)))(5) Vi ds

o / O(U(tn1) — u(t)) OOV (x) dxdt
+B / O(1n(Ulths1)) — Ultys1)) OV (x) dxlt.
th JQ

(13)
We denote byT; andT, respectively the first and second
terms of the left hand side, afid, T4, Ts respectively the

first, second and third terms of the right hand side of the

The termT; can be bounded as

To = [ (h(u(tns2) — ultns)
~(In(ultn)) — u(t)(5) ans2(5) ds
tn+1/

U(T))'(S)ans1(s) dsdr
< / 18 (1)) = U (1) 2 llansallr T
< ChK|U'[[ = (0.1;H2(0

C?h2k
< =i
1

)) l|anta] |L2

kEl

=(0T,H2(Q)) T ||an+l|\or

We consider the terny. We have

the1
: / Uty 1,X) — U(t, X)) (X) Dany 1 (X) dxdt

tn th
= B/t +1/t +1/Q Ou'(1,x)0an+1(x) dxdr dt

< BRIV Lo o1 H1(0) lansl10
< 2¢, [ OTHYQ) T |an+1|1Q

Finally, the ternils can be bounded as

thil
Ts = B / O(In(u(tn+1))(x)
~Ultn-1.)) Dag.1(x) dxclt
the1
< BCz [ llultosa) [z 0lans /1.0

<Chp \/RHUHL”(O,T,HZ(Q))
2121 p2

_ o2

- 2&3

VKani1|10

k83

||u|||_°°(o,T,H2(Q)) |an+1|1Q

Using the previous bounds, we get

%/afzwl( S__/an
2/ ant1—an

s)ds+kplan:1/iq

equation £3). Then we choose] = an. _ CZkh? P ksl H 12
The termT; can be expressed as T 2g =(0TH2(2)) T an+1llor (14)
2 k82
T= 5 / a2, (9)ds— > / a2(s +2—82”“ B om oy + 5 Al
212K B2 kes
b3 [ @ - a9 ds 2 e g+ g lBna o
(@© 2015 NSP
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We choiceg, = i, & = B and & = B to get the 5.1 Construction of the error indicators

. 8T 2 2
following bound

—Ham+1|\or + z |an+1|1Q In this section, we will introduce several notations and
properties and we will define the indicators.
For every elememt in 1, we denote by

m
< C3 (M2 4Kk?) + + K 20 laniall3 e & the set of edges of that are not contained ihQ,
16T & ’ o &' the set of edges af which are contained idQ,
. . (15) o A the union of elements af, that interseck,
We write the last term of the previous bound as e A the union of elements of,, that intersect the edge

€,

kg ansa|2r = ¢ hy the diameter ok andhe the diameter of the edge

16T n; +1ior e and|[]e the jump througte for each edges in an &
(making its sign precise is not necessary).

k et Also, n, stands for the unit outward normal vector ko
16T z Han+1|\or+16-|-|\an+1”ora ondk.

Kk 1 _ For the proofs of the next theorems, we introduce for an
we suppose that— < - and then apply the classic elementk of Zp,, the bubble functiony (resp.yse for the
Gronwall lemma to get the result. O edgee) which is equal to the product of the 3 barycentric

coordinates associated with the verticeskofWe also
Corollary 4.3 If  u € L*(0,T,H%Q)) and  consider a lifting operata defined on polynomials on
U €L®(0,T,H?(Q)), foralm=0,...,N—1, we have the € vanishing onde into polynomials on the at most two
following bound: elementx containinge and vanishing o@k \ e, which is
constructed by affine transformation from a fixed operator
mil L2 on the reference element. We recall the next results from
[u(tmi1) — Uy I3 - + 2B Z U(ta1) —up ™10 [16, Lemma 3.3].

<C(h+Ke+ ||u° 0|h(U0)||or) Property 5.1 Denoting by P(k) the space of polynomials
(16) of degree smaller than r ok, we have

where C is a constant independent of h and k. 1/2
P WePR k), {c||v||oK<||Yw/ lox < ¢IVllox.
ProofForallm=0,...,N—1: V1,6 < ch ||Vl |ok-
(18)
12 - 12
m+ N+ . .
[Jultmea) —up™ Mo +2kB S [u(tnia) — U110 Property 5.2 Denoting by P(e) the space of polynomials
n=0 of degree smaller than r on e, we have
< [Ju(tms1) = Th(Ultme)) 1[5, + [Th(U(tmes)) — up 15 -
i | | VVER(®),  c|vioe < VeEloe < ¢V,
+2kB 20|U(tn+1) —In(u(ta2))lf 0 and, for all polynomials v in Pe) vanishing orde, if k is
= an element which contains e,

m
+2kp zouh(u(tm —uprtE . |-ZeV]lox + he | Zov |16 < che/?[|V][o.e.

a7 We also introduce a Clement type regularization operator
Based on the theorem.2 the second hand of the %nn[8] which has the following properties, se& Bection
inequality (L7) can be bounded b@; (h? + k?), whereCy IX.3]: For any functionw in H1(Q), %nw belongs to the
is a constant independentlofandk. The properties of, space of continuous affine finite elements and satisfies for
give the result. O anyk in Jn, andein g,

[[W — GrnWl|2() < Chie|[W][1,4,

19
and  ||w— G| 2 < che'%|Wi|1.a,. (19)

5 a posteriori error estimates
For the a posteriori error studies, we consider the
We now intend to provea posteriori error estimates Piecewise affine functiow, which take in the interval

between the exact solution of Problem 8) and the [tn-1;t] the values

numerical solutiony, of Problem 4). unt) t—th1
h prm—
Tn

(Wh—up )+
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The solutions of Problems3) and @) verify for t in
Jtn_1,tn] @and for allv(t) € H(Q) andvy(t) € Xun:

UUh

B/Du uh(tx)thxdx+/

:_B/QD(uh(t,x)—ug(x))mv(t,x)dx

—B/ Duﬂ(x)Dv(t,X)dx—/ adth

r

(t,s)v(t,s)ds

)(X)Ov(t, x) dx

- Z) p /ﬁ K(Duﬂn)(x)(

/ up —un?
r Tn
(20)

We introduce, for every edgeof the mesh, the function

V—Vh)(t,x)dx

s(v—wp)(t,s)ds.

1 .
EB [Oup.neife € &,

(ﬂ?n = un — n—1 (21)
BOu.n+ N ife el
n
Then, we get the equation
3/ O(u— Un) (&, X)DV(E, X) dx
+/ “7““)@ v(t,s)ds
(22)

)(x)Ov(t, x) dx

Z) 0/% (V=) (.0 dx.

Since, we introduce the indicators: For eacim Zp,

(Mi)? = Tall O(UR — Uy )II5.

and

(Me)?=3 hell@nlGe

ecdk

5.2 Upper bounds of the error

We are now able to prove the upper bound.
Theorem5.3 Forallm=1,...,
upper bound

BH D(U - uh)HEZ(OJmLZ(Q

m m

C[nzlxe;m(n;”()z + nleE;m T (h)? + [luo — WRlI§
(23)

N, we have the following

) + HU(tm) - uhm”g,l' <

where C is a constant independent gfdmnd ;..

(t,s)v(t,s)ds

ProofWe denote byL(v) the right hand side of the
equation 22) and we introduce the function
w(t,x) = e '(u— uy)(t,x) which verify the equation

w 4 0(u—un)
E(t,xﬂ—w(t,x) =€ tT(t,x).

We multiply L(v) by e and takev = w to obtain

B/|Dwtx|2dx+/V\/2ts
ow?
> 0t( S

>BHDW()IIOQ+

(24)

+ s)ds (25)
ow?

5| ot (t,s)ds.

By taking into accounttha ™ < 1 and remark thdt(w) <
L(u—un), we have

ow?

BIOWOZa+5 [ S

s)ds
SB/Q O(u—un) (&, X)0(u—un)(t,x)dx  (26)
+/rwa,s)(u—uh)(t,s)ds.

We integrate the last relation jt,_1,t,], sum ofn from 1
to m, take into account the relati@r2! > e 27 to get the
following bound

m ot
(B3 [ I0u-w 3o

1
+—/ U= Un[2(tm, 5) ds] @7)
2J)r
s /"L dt 4 = 2(0,s)d
< u—u +—/ U—up|%(0,s)ds
<3 [ Hu-wdtr g [ u- w09
and then
1
B [ 10(t) ~ () Badt + 5 utte) IR
1
SC( L(u—un)dt + [luop— upllg ).
n=1"th-1
(28)

whereC is a constant independentlaf and ;.

Next, we have to bound the right hand side of the last
inequality. In all the rest of the proof, we denete- u— up,
and we decomposk(v) = Li(v) + Lz(v) and we bound
each one separately. First, we have

Li(v ul™h) (%) Ov(t, x) dx
Ke.J
th— _
<B|- | 10(up —ud™) [l [1DV(E) ok

N keI

(29)

(@© 2015 NSP
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We integrate the last systemlin_1,tn] and we obtain

th
Ly(v)dt

(th—1)?
5

1
2

tn
< 3 (BI0MR -G [

KE90h

dt)

([ 10wl can’

HDVHLz (th—1.tn,L2(k )))

T 2%
gﬁ(’(%h(nnx)) (KCnh

<Gile) 3 (it 2

2
% IOVIIE2, 11200

1
2

KEIhh
(30)
Next, we sum oven from 1 tomand get the bound
m th m
> | Liu—un)dt <Cy(er) ) % (nfx)?
n=1"/th-1 N=1k & (31)

&1 2
+ 10U—=un)lZ2 (04, 12(0)):

whereC;(&1) is a constant independentlaf and 1.
Next, by takingvn(t) = Ran(v(t)), we have

La(v)

= /% )(V—Vh)(t,x)dx

nheeﬁx

K;heezﬁK
<C 3 (3 helgfalBel?( ¥ IDVOIIBa)?

KEInh ecok ecdK

1 1
<C( Y (M) [=YCIFWE
(K;Jnh e ) (Ke;nheezd:( 07A)

<oy (nh,0?)2[[Ov(t)

(t) = Vvh()lloe

(32)
whereC, andC;s are constants independentgfandt,.
We integrate the last system ovgt_1,t,] and we have:

th

Lo(v)dt
tho1
1

th 1
<c3/ 2/ 1Ov(t) |2 o dt) 2
th 1KEZ tho1 00 )

Scs( Z Tn(nr?,x)z)z”DV”LZ(tn,l,tn,LZ(Q))

K€ Inn

m

< Cy(e2) Tn (M k)
nlee;]h i

&
5 18— ) [z 04,1200
(33)

whereCy(&2) is a constant independentlaf andy,.

The relations 28), (31) and @3) allow us to get the
following bound

1
BHD(U uh)|||_2 (0m,L2(Q)) + EHU(tm) - uhmH%J'

m m

<c L T, +|lup—u
[nle;nh(nn,K) nleE;nhn(’] )2+ U0~ URlI5 ]

(e1+&2)

+ 2 [0(u— Uh)||52(o7tm7|_2(g))v
(34)
wherec is a constant independentlaf andt,.
By choosings; = g ande; = g we get the desired upper
bound. O
(U Uh)

Next, we will bound the ternfj———"||7, (OtmH-1/2(7))"

Theorem 5.4 For allm=1,...N, we have the bound:

|‘5’(U Un) 2

|||_2 (0,tm,H~ 1/2( ))

m

SC[nzl ; [(Nf)? + T (D)%) + U0 — uRllE .

(35)
where C is a constant independent gfamd 1,.

ProofLetr(t) € HY2(I") and consider the problem:

{Aw(t,x) =0in]0, T[xQ, (36)

w(t,x) = r(t,x) on]O,T[xI"
It admits a unique solutiow(t) € H(Q) which verify
[Ow(t)llo,0 < Calirlla/zrs (37)
whereC; is a constant.

We consider the equatior2?), use the relation29) and
(32), and use the Cauchy Schwartz inequality to get

1 d(u—up)
HDV(t)IIo,Q/r 5 (LSv(Ls)ds

< BJI0(u—un)(t)

NI

0.0 +¢( Z (UR,K)Z) (38)

KEIhh
[th —t] 5 \1/2
o=t )

n

+B 100 = up™h)

KE90h

For every v(t) € HY2(I"), we consider it lifting in
v(t) € HY(Q) verifying the system36). Using 37), we
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deduce following bound
1 d(u—up)
t,s)v(t,s)ds
||V(t)||1/2,r/r FrSRAUE)

1 Jd(u—up)
< T a9t 9s

< B0 = uw)loa +e( 3 (nf,0)?)?

KE90h

|th —t] n—1y2 \Y?
+php— O(up—u .
S TR Y
(39)
Then we get

d(u—up)
1= v2r

1 /r OMU=tn) ¢ §yt,gds

= Su
e IO Ty/zr at

veHY2(r
1
< B 0(u—un) ()00 +¢( Z) (nhi)?)?
KEInn
B 1/2
Hlige)

(40)

[t —t]
(Y 104,
Tn

K€ I0n

Now, we will bound the second term of the right hand side
of (42). Fort €]th_1,ts], we haverrup(t) = upy and then

We deduce the desired result after integrating overCorollary 5.6 For all m= 1,...N, we have the following

Jtn—1,tn], summing om from 1 tomforame {1,...,N},
and using the theoret 3. O

To conclude the upper bound of caiposteriori error, we
bound the term{0(u— Tun) |2 oy, 12(0))-

Theorem 5.5 For allm=1,...N, we have the bound

100 = mun) 12204, 12(0))

m

<C[y % [(M8)?+ 0 (Nf)?] + [Iuo — URlI3 ]
n=1ke%n

(41)
where C is a constant independent gfdmd ;..

ProofFirst, we have

100U = 15Un) |2 (04 L2())

< 10U =un)|| 20 tm12(0)) * 1B(Un— T U) ([ 2(0 4 L2(02)) -
(42)

—t
Un(t) — ThUn(t) = —— (Ul —ul ). (44)
n
We obtain the relation
[[O(un — ”ruh)(t)H%,Q <
(t—tn)2 (45)
e i) S [=( (VTS
n KEIhn
that we integrate ovét,_1,tn] and we get
tn 1 T \2
| o= ©lBa <3 T (0% @9)
n—1 Tah
Finally, we conclude the relation
c 2
10(u— 18Un)[| 2004 12(0)) < C'[ > Z (M)
n=1ke.7%n
. G
LIPS TIERE
n=1keIn
whereC' is a constant independentlaf and . O
upper bound:
HD(U nTuh)HL2 Otm L2 +BHD(U uh)|||_2 OtmLz(Q>>
(U Uh)
+||U(tm)_uh||or+|| HL2 (Otm,H~ 1/2( ) <
m m
)2+||UO— o 27 }7

C T )2y Tn(nh
[nZlK;nh(nn,K) nle;Jnhn(an

where C is a constant independent gfdmnd ;..

(48)

Remark: Estimates48) constitutes oua posteriorierror
estimate.

5.3 Upper bounds of the indicators

In this section, we bound the indicataqg , and r],QK in
order to satisfy the optimality of the posteriorierror. We
begin with the time indicaton; .

The first term of right hand of the last relation can be Theorem 5.7 For all m = 1,...N, the following estimate

bounded, using theoref3, as

m
18(u—un)ll 2020y <C[ Y ; (Nfx)?
n=1ke 7
(43)

m

£33 2+ luo— W3] 2.

n=1ke.7%n

holds

(h)? < C (I = o) 22, 012000
(49)

0= 2, 4 1oi2im0):

where C is a constant independent gfdmnd ;..
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ProofFort €]ty_1,tn], (44) allows us to have

( up (92
(ID(u Un) (£, %)% + [0 — 72un) (t,%) ).
(50)

We integrate the last relation anand onjt,_1,t,] to get
the following result:

(nﬁ,x)z <6(]|0(u— Uh)||52(tn71,tm|_2(,<))

51
+[|B(u— mup) oy

2
HLz(tn—llnyLz(K))).
|

In the following, we will bound the indicatorq,ﬂ",(. For
t €]tn_1,tn], We have

B/ O(u () 0v, x)dx+/ W(Ls)v(ns)ds

n 1

; /I]uh (t,x)0Ov(t,x)dx — / 0 (s)v(t,s)ds

_ _BK%hee%K/'a(gin(x)v(t,x)dx

(52)

Theorem 5.8 For all m = 1,...N, the following bound
holds

(M) < C (10— 1eun) 122, 601280+

5 & 2 th) d(u— uh)

S )HLZ tn 1th 1/2( )))

(53)
where
5 — lifeecgndk
0 elsewhere

and C is a constant independent gfdnd t,,.

Proof We consider the equatio?), an elemenk €
and an edge of k. We distinguish two cases

le € & is an interior edge. We set
V(t,X) = Ze(¢ We) (X) In (52) and we get

/e(qqin)z(x)q—’e(x) dx =

O(u— 1eun) (t, X) O-Ze (@ L We) (X) dx.

Ae
(54)
By using the Holder inequality and the propeBy?,
we get

[ (@020 dx
< | O(u— Tt (1) o] Zel @yt .2 (55)

1
< C'|O(u— 15un) (t) lo.ache * [ @ nlloe,

whereC, C' are constants independent lof and t,,.
Then for all interior edge we have

hel| @5n 156 < C'l|D(u— T5UR) (1)]13 4, (56)
2ecgis an edge off . We setv(t,x) = Ze( ¢, We) (X)
in (52) and we get '
(@0 00uet) dx =
/K O(U— 7hUn) (6, ) CLZe( G o) () X (57)

% 2 ) o) 00

By using the Holder inequality and the propeBy,
we get

18SnlGe < CIOU—TRUR) (t)llox |-Le(¢ W)L

1, 0(u—un
51 2O sz 6 telsze
(58)
whereC is a constant independent bf and 1,,. The
trace theorem and the propeBy2 allow us to get

1
hé | @nllo.e < C'(/[D(u— mmun) (t)]lox

(59)
) 0,
and then
hell ol < 2C(10u— Teun) (1) 3,
by a2 e,
ecok
(60)

We deduce, by usingg) and 60), the following bound

(MR )? < C1(1|0(u — Tieun) ()13 4

u—u (61)
by a2 e ).
ecoK
Finally, by integrating orjt,_1,tn], we get 63). O

6 Numerical results
To validate the theoretical results, we perform several

numerical simulations using the FreeFem++ software (see
[11]). We choosgB =1 andT =1

6.1 a priori error validations

We begin with the numerical validation of thee priori
error estimates. To perform numerical investigations, we
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need to know the exact solution of probleB).(For that

purpose, we consider instead of a polygon the -1.88 - r
; ) N i X pp—
two-dimensional unit circle with the following exact ieab Palyfit /'
solution
-1»7.
—ty)\2 —ty/)2
e 'X)°— (e 1
utxy) = EEI ety 1 e
2 2
which verifies the systemil). In fact, the corresponding §, e
mesh is a polygon and we introduce here a geometrica '
approximation. Nevertheless, the numerical results giver -1.78f
in the end of this section show that this approximation has sl
not a major influence.
-1.82p
Figurel represents the mesh with= 50 segments oh iea . . .
. 27-[ -1.3 -1.25 -12 -1.15 -1.1
and a mesh step size= - We choose&k = h and we Mesh step

Fig. 2: A priori error curve.

6.2 a posteriori error validations

For the numerical validation of tha posteriori error
estimates, we consider the unit squére=|0, 1[> and the
following initial data onl” of problem ()

0 on the sides and the bottom/of
(65)

sin(2rx) on the top of,
uO(va =

The considered numerical scheme is

YWh € Xnn, B/ DuﬂDvh(t)dx+/ iuﬂvh(t)da
Q r Tn

Fig. 1: The mesh.

= iuﬂ*1v+1(t)dc1.

r Tn
. . . (66)
consider the following numerical scheme We introduce the following time and space indicators
1 1 _ —-1y12 \1/2
(DU, Ove) + 3 (U ve) = T (U ve). (63) Mn=( 2 wlOth= o)
K k KEIhn
We introduce the error and ) 12
N Nn = ( % z Tnhe”‘ﬂr?,n”%,e) :
S Klup—u(ta)]l1.0 K necok .
erry = ”=1N , (64)  We begin the iterations with an initial time step= 20
Z Kllu(tn)||1,0 and an initial mesh correspondinglthb= 20 segments on
n=1 every side ofl". Our goal is to validate tha posteriori
T m error estimates.
WhereN = [—] = [z=] ([.] is the integer part). . )
k 2m We present here an adaptive algorithm based oraour

Figure 2 shows in logarithmic scale, the error curve Posteriori error estimates which ensures that the relative

between the exact and the numerical solution for differenten€rgy error between the exact and the approximate
values of the mesh step whema takes the values Solutions is below a prescribed toleranteAt the same
80,90,100,110,120. Ask = h, the error must be of order fime, it intends fo equilibrate the space and time
h and the slope of the straight line must be of order one estimatorg)y andny. At each time step, we aim to have
The figure2 gives a straight line with a slope ofd284. 2 hy 2

<€
Iuplf o
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Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 3305-3317 (2015)www.naturalspublishing.com/Journals.asp %N =) 3315

For the adapt mesh (refinement and coarsening), we use

routines in FreeFem++. We sat= ﬁ and we introduce
the time and space error
h
Mn n N
ey (up) = and ex(uy) = :
unllz,0 lupll1.e

The actual algorithm is as follows:

Choose an initial nmesh Zy, an initial
time step 11, and set t,=0
Set n=1 Loop in tine:
Whi | e t,<T Fig. 3: Initial mesh
th=th-1+Tn
Sol ve ul* = Sol(ul ™2, 1, )
cal cul ate eg =e;(u)) and ee =ex(uy)
if ((ee>é&) or (ee>é))

B IR A PRSI ICICR AR
& \ PO P A
Va4 A5 }éAVAVA\Aytﬁaa‘

X
&

SREEER RRRRRTIR ceclre
= - = A AUNAKARXPATL DGR SR
N zgt th=th-1—Tyh and Ty=T,/2 ?Ezwﬂi%‘ 4}47»<74§% S5

set th=th_1—1Tn
refine and coarsen the mesh using
the routine "ReMeshl ndi cator™
in FreeFem++, and create
new nesh call ed again
end if
else if(eg is very snmaller than &)
set Th=2m, up=up" and n=n+1
set Jn = Jhoin
el se
set ul=ur and n=n+1
set Jhn = Fh1n
end if
end | oop

In this algorithm, if the error does not satisfy the criteria
(67), the algorithm tests if the time error is larger than the
space error. If so, the algorithm decreases the time step
50%. Otherwise, it adapts the space mesh using the
indicators and the routine "ReMeshindicator” in
FreeFem++. If the error satisfies the critery)( the
algorithm performs time iterations either by increasing
the time step if the error is much smaller than or not
keeping the same time step .
Figures 8 to 6) show the evolution of the mesh with time
(&1 = 0.01). It is clear that the mesh is concentrated
around the part of the boundafy where we impose the
initial data.
Figures 7 to 10) show the evolution of the solution with
time.

In order to show the adapt time step, we consider
T =1 and an initial time step; = 0.05. Figurell show
the evolution of the time step during the time iterations.
At t = 0, the algorithm decreases the time step fra650 KX DA ATATaTa
to 0.0000488 and _during the iterations, the timg step ‘unwwég'fgg%féﬁﬁgﬂ,
increases progressively. These experiments are in very ’gguvﬂﬂﬂmﬂnﬂﬂuﬂﬂﬁhv

. . \NANSAAAAAANTIN

good coherence with the theoretical results. So they prove

the interest of our approach.
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Fig. 6: Mesh at t=1
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(

Isovalue

m0.0470363
m0.143604
m0240172
033674
m0'433308
mospoare

Fig. 7: Numerical solution for t=0.00273438

Isovalue

Fig. 8: Numerical solution for t=0.140234

IsoValue

Fig. 9: Numerical solution for t=0.508984

IsoValue

Fig. 10: Numerical solution for pour t=1

0.014 T T T T T T T

0012 ‘ 1

rE‘j 0.008 - b
[}
= 0.006 - b
0.004 - b
FHHHHHRHHH
0.002 b
0 E 1 1 1 | | 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time
Fig. 11: Time with respect to time step.
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