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Abstract: In this paper, we define and study a new class of analytic iomeby using the concept of generalized close-to-conyexit
Coefficient results, Hankel determinant problem and sorheranhteresting properties of this class are investiga®esults proved in
this paper may stimulate further research in this area.
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1 Introduction The functionh, defined by (3) is said to belong to the
classP, see R0). Clearly P, = P, whereP is the class of
Let A be the class of functions analytic in the open unit functions with positive real part.

disckE = {z: |7 < 1} and be given by We note thatV, = C and it is known L9 that Vi,
° 2 <k < 4, consists entirely of univalent functions.

f(z2) = z+ Z an?". (1)  We now define the following.
n=2

Definition 1.Let f € A and be locally univalent satisfying
Let SC A be the class of functions which are univalent the condition f(z) # 0. Then fe My if there exists a

and alsoK, S*,C be well known subclasses &which,  fynction ge Vi, k > 2, such that, for =z E

respectively, contain close-to-convex, starlike and eanv n

functions. For more details, we refer to [2,4,6, 8,9] and the 21 #(2)

references therein. }D - |d9 <mm, m>2. (4)
Let Vi be the class of functionf with bounded boundary g(z

rotation. Paaterdld] showed that a functiof € A, f'(z) #

0 belongs to the clad4 if and only if The condition (4) is equivalent to the following condition
that
'(2) _ 6 !
/}D 6 }d9<kn' z=re®. 2) f/(Z) € Ppm> 2. € Vi 5)
g(2)
It is geometrically obvious th&t > 2. ClearlyM; > = K andM, = Ti is the class introduced and
By Paatero representation theoretf][for f € i, we can  studied in [L2].
write The following is a necessary condition for the functidns
1 (AN in the clasViy.
@)y
f'(2) Theorem 1Let f € M. Then, for allé; < 6, and for all
where 0<r<1,z=re?,
k 1
h(z) =(;+5)n(®2 zf"(z m+k
G 2) /m{1+ }de > (= -ym (©)
(___)hZ( )7Dhl(z)>07|:172 (3)
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ProofFrom definition, it follows that
jargf'(2)~argg(2) < 5, g€ Ve ™

Let
J i0 rreai®y L T
F(r,0) =arg{ 5 f(re")} = argf’(re'’) + = + 6,
206 2
and
J i0 a6y TT
G(r,@):arg{—aeg(re )} =arggd'(re )+§+9.

Thus

IF(re®) — o

G(r.6) < 7. ®)

and so, for9; < 6,

F(r,6) —F(r,61)
= [{F(r,62) — G(r,62)} +{G(r, 62) — G(r,61) }
+{G(r,61) —F(r,61)}]

mrr K mrt m k
<T+(§_1)H+T:(E+§

where we have used (8) and a necessary conditiog ¢or
Vi, see L. This proves (6).

-1m,

k
i f(2)| < m(14r)2 7
0 1F@)I< s
. ki1
(i) (2| < gz { (D) -1}
The function & € My, defined as

m 1+2z k1
P@ =2552) ()1
—74 iAn(m, K2, 9)

shows that these upper bounds are sharp.

(i) Jan| < An(m,K), n> 2, where A(m,K) is defined by
(9), &, is given by (1) and“*Tk is an even integer. This
result is sharp for each & 2.

We now deal with the arc length problem for the clibsy
as follows.

Theorem 3.Let L(r, f) denote the length of the image of
the circle|z| = r under f and let fe My.
Then, for0<r < 1,

L(r.f) =0(1) ()",

T (r—1),

where 1) is a constant.

Proof. Since Mk C K(B1),B1 = (¥ — 1), and it is

Remark 1. From Theorem 1, we can interpret SOme ynown [5] that, forK (1), there exist € C such that

geometrical meaning fof € M. For simplicity, let us

suppose that the image domain is bounded by an analytic
curveC;. At a point onCy, the outward drawn normal has
an angle arge®f'(re'®)}. Then it follows that the angle
of the outward drawn normal turns back at most

(T+5-1)m

Remark 2. Goodman 5] defines the clasX(B) of
function f as follows.

Let f e Aandf’(z) #0. Then, forB > 0, f € K(B) if and
only if, forz=re'’, 6, < 6,

)
zf' @)
e/D iz 46> B

We note that

m+k

Mmk C K(T_l)’ m,k > 2.

The functions iMy, are univalent fom+k < 4 and when
(m+k) > 4, f € My, need not even be finitely valent.
2 Main Results

Theorem 2. From Remark 2 and the results given ]

for the class Kf3), we at once have:
Let f € Mmk. Then, for z=re'®, 0<r < 1,

f/(2) ‘ - Bt B> 0.

‘arg(p’(z) =2
Thatis, f € My, implies that

f'(z2) = ¢ (2hP(2),pcC,he P (10)

From these observations and (10), we have

L(r, )
2
:/|zf’(z)|d9
0
2m
- /|s(z)h51(z)|de, s=zf €S B = (mTH -1)
0
< ZH(%T7TT|S(Z)|2d6) : (%_[7n|h(z)|251d6) :
0 0
<emm(g)"
:o(l)(l_:)ﬁ}k, mk> 2,

where we have used Schwarz inequality, subordination for
starlike functions and a result due to Haym&hfpr the
functionhe P. O
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We can deduce the rate of growth of the coefficients forwWe make use of (13) in (14) and this leads us to the
f € Mk from Theorem 2 as: required result. The proof is completel

Letf € Mmy and be given by (1). Then, for> 2 Golusion B] has shown that we can chooseja= z;(r)

ay— O(l).n(wfk’l), with |z1| = r such that, for any univalent functis(z)
2r2
whereO(1) is a constant. mfﬂ(z 2)s(2)| < 37— (15)
Theorem 4Let f € Mk and be given by (1). Then Using similar technlque of Theorem 4 with (15), we can

s easily prove the following.
8 = O(1).n2,(n = ), Theorem 5Let f € Mk and be given by (1.1). Then, for
and (1) is a constant depending only on m and k. Thek > 2

function iy € Mk, defined by (8), shows that the exponent k 4
—lanal| <c(mknz==, (n— o),

Xis best possible. [2n
ProofSincef € M, there existg € Vi such that where ¢m, k) is a constant.
Let f € Aand be given by (1). Thgth Hankel determinant
(2 =d(@H([), HePmm>2. of f is defined forg > 1,n > 1 by
Set an  antl--- Gnyg-1

F(2) = (zf'(2)) =d (9h(2H(2)zH (2),

wheregzg(z)) d(2)h(z). Now, by Cauchy Theorem, for  Hg(n) = an.+1 an.+2 (16)
z=re'’, we have : : :
1 anig-1 -+ .- ani2g-2
2 _ind . . .
n’la,| = WUF(Z)E in de‘ Hankel determinants play an important role in the study of

singularities and in the theory of power series with intégra
coefficients (see, for example [2;pp. 320-335].
1 The problem of determining the rate of growth of
< 2mh+2|/|g’(z){H(z)h(z)+zH’(z)}|d9. (1) Hy(n)asn — wfor fbelonging to certain subclasses of
0 analytic functions is well known, see [6,7.10-13, 15-18,

Forg € V, itis known [1] that 21,22].
K1 For f € S, Pommerenke solved this problem completely.
(@ (22)a+z vcs 12) He showed that, if € S*,then
7)== )
’ (m)%*%’sl’ Hg(n) = 0(1).n*"9, n— e
z

and the exponen — q)is best possible, see [22]. Noor

Also, see 13,14, for H € R, we have [15] generalized this result for close-to-convex function

2
(i) %rf IH(2)|2d6 < M7 z=rel?, We also refer to [16].

0 Noonan and Thomas [10] have shown that, for a really
?;10' meanp—valent functionsf,
i

. n?P-1 =1,p>1,

i/|zH’(z)|d6§ lz, z=re'? (13) Hg(n) = O(1) 5 a P>a
2m 1-r n?Pe e q>2,p>2(q-1),

Thus, on using (12) together with the well knowd] [ whereO(1) depends upop,qandf and the exponent
distortion result fols;, s, € S* and Schwarz inequality, we  (2pg— ¢?) is best possible.

have For p = 1, Hayman([7] has shown that;(n) = o(1)n as
n62|ay| n — oo and this is best possible.

In [13], it was shown that, if €V, then
212(71( 1 )571 [ ] K
-l 1 r ‘
n2—1 q=1
101 1 Hq(n):O(l){ 7
[ /|H 2d6)* 2—/|h<z>|2d6)2 N q>2,k>8q-10,

The exponen(%OI — qz) is best possible in some sense.

+i/|zH’(z)|2de ) (14) In this paper, we estimate the rate of growth of Hankel
2m determinant forf € Mp.
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Theorem 6Let f € My and let the Hankel determinant Applying Schwarz inequality and using (13), we obtain

of f(z), for q > 2 be defined by (16). Then ThéD is a

constant depending uponrk, g and f. 1 T
2—/|H(z)h(z)+zH’(z)\de

To prove this theorem , we need the following known rro

lemmas, see [10]

1 2 % 1 2 %
Lemma 1. Let f € A and be given by (1). Let the qth < ZT/'H(Z”ZO'G ZT/|h(z)|2d6
Hankel determinant of ,fforqg > 1, n > 1, be defined by 0 0

(16). Then writingA; (n) = Aj(n,z, f),we have 2n
1 /
Hq(n) +E‘[/‘ZH (2)|d6
0
Azq_l(n) Azq_3(n+ 1) .. Aq_l(n+ qg— 1) 1
- Azq_3(n +1) Azq_4(n +2) ... Aq_z(n +0q) < cz(m, k)ﬁ’ (21)
Aqfl(nlf' q—1) o o Aq(n+.2q _2) wherec; (m,k) is constant.

From (18), (19) and Lemma 2, it follows that
where, withAp(n,z;, f) = a,, we define for 3> 1. .
Aj(nvzla f(Z)) = O(l)'n?717 (22)
Aj(n,z, f) =Aj_1(n,z1, f) —nhj_a(n+ 1,7, f)... (19)

O(1) depends only om,k andj.

Lemma 2.With x= (7337y) ,v> O and integer o
We use similar argument due to Noonan and Thomas [10]

Aj(n+v,x,2f (2)) :f')g(it)her with Lemma 1 to estimate the rate of growth of
. q .
i
_ NY<v—(k=1n)
N kZo <k> (n4+1)k Ajkn+vtky f(2) Forqg =1, Hi(n) = a, = Ap(n) and, from Theorem 4, it
follows that
We now prove Theorem 6. K

ProofWe shall prove this result by using the differences

(17). Sincef € My, there existg € \, such that Forq > 2, we have, from (20) and Lemma 1,

t(2) =g (2H(2), Hq(n) = O(1).n3~(4D} k> 4(q— 1)~ 2=4q-6.

whereH € Py and, with(zd(2))’ = g'(2)h(2),h € R, we This gives us the required resultD
have

F(2=(zf(2) =d (2 [H@h(2) +zH (2)]

As a special case, we note that

Hao(n) = O(1).n*2 k> 2

Now, for j > 0,z any non-zero complex, we consider Also, fork = 2, f € My, and in this case

[4i(n. 2, F @) Hq(n) = O(1).n% %,

1 2n . I ineie
= /O (z—2,)) (2f(2)) e”(™D)edg
2 .
< 1 / n|(z—zl)|‘ |9 ()| |H(@)h(2) + zH' (2)| d6. Theorem 7Let f € Myx then f maps|zl < R onto a
2™t Jo convex domain where R is the least positive root of

We use (12) and (15) and distortion result &rto have, T(R) = R3_ (r2+2r1)R2— (2rrp+ r%)RJr rfrz —0,(23)
with k > 4j — 2, ’

where

|4 (n,21,F(2))]
k—vke-4 m— v/t —4

< A 2\ ¢ 512 o= ——> r = 5
—\r 2mnti \1—r2 1—r

o As a special case, whenskm, thenr; =r, and we have
x/ H(2)h(2) +zH 6| d6. (20) R=(2-3)ra.
0
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Proof.For f € My, we can write
(27 =d(2H(z),ge Wkand He Py,

. Itis known that, foriz] < rq, OH(z) > 0, see 20Q].
Let a be any complex number such thet < rj.
Then
r2+a), ., jaf?
p(2) =H(+—=) =H (a)(l— —22+...)

2
r{+az r2

is analytic in|z| < ry andd p(z) > O for all |z < r1. Hence,
by a result due to Nehar®[, we have

2|H(a)]
r

IOfI2

‘H’(a) (1- ’ < SR

which implles that
‘GH’(G)‘ -
H(a)

Sincea is any complex number such that| < rq, we can
write the inequality (22) as

2r1|a|
_ |a|2'

(24)

zf"(z) zd'(2) 2r1lZ|
(2 d@ 1~ rg-|z72
Hence
(zf'(2)) (zd(2)  2ri|g
e Ve o

k—v/k2—4

2

Also, forg € Vg, O <Z§(<3)' >0for|zg <ry,=

Using Harnack Inequality, we can write

L (2d@) 2|2
9@ ~r+l
Therefore
L@@ -l 2nl
f'(z)  ~ra+lz ri—|z2
_ (= [2)(rF— |2?) — 2rf2|(r2+|2))
B (r2+12)(rf - 12)
- T(l2)
(rz+|2|)(r +22)°
where, with|zl = R, T(R) is given by (21). We note that

T(0)=ror? andTl <0,s0R€ (0,1) exists.
Hence O <fo,/§§>))/ > 0 for |z < R, whereR is the least
positive root ofT (R) = 0. This completes the proof.00

As a special case, leh = k. In this casef € My, maps

|zl < (2—+/3)r, onto a convex domain.
Here

T(R) =R®—3r,R? —3r3R+13

= (r2+ R)(R?— 4r,R+13).

ThatisR = (2— 1/3)r,. We note that, by taking
(20 1+z
90 " 1-7 geVy,

it can be shown that2 — 1/3) cannot be replaced by a
smaller constant.

Conclusion

We have used the concept of close-t-convexity to

introduce and investigate some new classes of analytic
functions. The rate of growth for Hankel determinant of

coefficients of these functions has been studied.
Arclength problem is also a part of our results. Several
applications our main results have been pointed out. The
ideas and techniques of this paper may motivate further
research in this field.
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