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Abstract: In this paper, the aim is to study the possible extension of the one-dimensional fractional differential equations to the multi-
dimensional fractional differential equations with theirapplications. For this purpose, the multi-dimensional Laplace Transform method
(L.T.M) is developed in order to solve multi-dimensional fractional differential equations with constant and variable coefficients. It is
also observed that the proposed technique is possible and highly suitable for such problems. The results of the proposedscheme are
encouraging and efficient.
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1 Introduction

Integral transforms are widely applied to solve several
different type of differential and integro-differential
equations. In the literature there are several integral
transforms and each of suitable for different type
differential equations. Recently some new integral
transforms were introduced, see [19,20] and applied to
solve some ODE as well as PDEs, see for example [21,
22]. A fractional differential equation is an equation
which contains arbitrary order derivatives. Fractional
differential equations used in many branches of sciences
such as, mathematics, physics, chemistry and
engineering. The fractional calculus has gained
importance during the past three decades due to its
applicability in diverse fields of science and engineering.
Since fractional derivatives provide an excellent
instrument for description of long time memory. This is
the main advantage of arbitrary order derivatives in
comparison with classical integer-order derivatives. Thus
many authors and researchers have been studying the
fractional order differential equations, for example see [4]
and [16]. Since a new fractional calculus, which allows us
to perform local analysis of non-differentiable functions.
This is a new notion, which can be seen as a local version
of the classical Riemann–Liouville derivative and give
many properties of ordinary derivatives, see [11,12,13]

the authors show that by using Taylor’s of fractional
order, further the stochastic differential equation
dx = σxdb(t,a), whereb(t,a) is a fractional Brownian
motion of order a, which can be converted into an
equation involving fractional derivative, further the
solution can be expressed in terms of the Mittag–Leffler
function, see [9] and [26]. In [5], the authors studied
fractional differential equations that such kind of
equations appear in many problems. In particular, they
have find a fractional differential equation related to the
classical Schrodinger equation, by studying Nottales
approach to quantum mechanics via a fractal space–time,
see [18], Similarly, Laplace transform method was used
to obtain the explicit solution of a certain kind of ordinary
differential equations with fractional derivatives, the work
in [10] was devoted the applications of the
one-dimensional Laplace transform to construct the
solutions of linear non-homogenous fractional order
differential equations involving the Riemann–Liouville
fractional derivatives with constant coefficients, see [2].
By using Laplace transform, one can also find the exact
solution of time fractional partial differential equationand
some fractional order integral and integro-differential
equations, see [14]. Of course the procedure is similar to
the ordinary Laplace transform, in order to solve a
differential equations we transform of the unknown
function, and later apply the inverse Laplace to obtain the
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desired solution. In [7], it was given the idea of fractional
derivatives and fractional integrals with their basic
properties. In order to solve fractional equations, there are
several different methods available in the current
literature , see [15] and [3], [25]. In order to solve finance
related problems see, [8] where fractional stochastic
differential equations with applications to finance were
considered. In [27] the authors give a new nonlinear
dynamic econometric model with fractional derivative.
Later, the fractional derivative is defined in the Jumarie
type and in [1], and it was used for the singular
perturbations method for fractional differential equation
and new development of the variational iteration method,
and the homotopy decomposition method were also
available in the litertaure.
In the next section we follow [6] and give the definition
and some theorems of the multi-dimensional Laplace
transform.

2 Fractional Differential Equations

The one-dimensional Laplace transform method is widely
used in engineering mathematics, where it has numerous
applications. Particularly useful in problems where the
mechanical or electrical driving force has discontinuities,
for instance, acts for a short time only, see, [23].

2.1 Basic Definitions

We start this section by the following definitions and
properties of the fractional derivative, there exist different
definitions of the classical and sequential derivatives are:

Definition (2.1.1)[Grunwald–Letnikov Fractional
Derivative]: Let f be a function oft from the Cauchy
formula is defined by:

aD−α
t f (t) =

1
Γ (α)

∫ t

a
(t − τ)α−1 f (τ)dτ

where f(t) has m+1 continuous derivatives in the closed
interval [a, t], then we get the fractional integral of order
α:

aD−α
t f (t) =

m

∑
k=0

f (k)(a)(t −a)α+k

Γ (α + k+1)

+
1

Γ (α +m+1)

∫ t

a
(t − τ)α−m f (m+1)(τ)dτ,

wherem< α < m+1.
From the above equation and replacing eachα by−α,

we can get:

aDα
t f (t) =

m

∑
k=0

f (k)(a)(t −a)−α+k

Γ (−α + k+1)

+
1

Γ (−α +m+1)

∫ t

a
(t − τ)−α−m f (m+1)(τ)dτ,

is known as the fractional derivative of the
Grunwald–Letnikov sense.

Example(1): Let the fractional derivative of the power
function:

f (t) = (t −a)v,v>−1

wherev is a real number.

Solution: By using the Cauchy formula and replacingα
by−α, we can get:

aDα
t (t −a)v =

1
Γ (−α)

∫ t

a
(t − τ)−α−1(τ −a)vdτ.

Letting τ = a+ ξ (1−a) and by the definition of the beta
function, we can get:

aDα
t (t −a)v =

1
Γ (−α)

(t −a)v−α
∫ 1

0
ξ v(t − ξ )−α−1dξ

=
1

Γ (−α)
β (−α,v+1)(t−a)v−α

=
Γ (v+1)

Γ (v−α +1)
(t −a)v−α ,(α < 0,v> 0).

Grunwald–Letnikov Fractional Derivative

(i)If p< 0 and q is any real number, then:

aDq
t (aDp

t f (t)) =a Dp+q
t f (t),

for (m< p< m+1,n< q< n+1).
(ii)If p > 0 and q is any real number when

f (k)(a) = 0,(k= 0,1, ...,m−1), then:

aDq
t (aDp

t f (t)) =a Dp+q
t f (t).

Next, the following definition gives the definition of the
Riemann–Liouville fractional derivative.

Definition (2.1.2)[ Riemann–Liouville Fractional
Derivative]:

Consider this definition is the most widely known
definition of the fractional derivative:

aDα
t f (t) =

(

d
dt

)m+1∫ t

a
(t − τ)m−α f (τ)dτ,

(m≤α < m+1) and the above equation can be written as:

aDα
t f (t) =

1
Γ (k−α)

dk

dtk

∫ t

a
(t − τ)k−α−1 f (τ)dτ,

where(k−1≤ α < k).

Riemann–Liouville Fractional Derivative:

(i)If p,q are two positive real number andt > a, then:

aDp
t (aD−q

t f (t)) =a Dp−q
t f (t).
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(ii)If 0 ≤ k−1≤ q< k, then:

aD−p
t (aDq

t f (t)) = aDq−p
t f (t)

−
k

∑
j=1

[aDq− j
t f (t)]t=a

(t −a)p− j

Γ (1+ p− j)
.

(iii)If f (t) is continuous fort ≥ a, then:

aD−p
t (aD−q

t f (t)) =a D−p−q
t f (t).

Next, the following definition gives the definition of the
Caputo’s fractional derivative.

Definition (2.1.3)[The Caputo’s Fractional
Derivative]:

Let f be a function of t the Caputo’s fractional
derivative defined by:

c
aDα

t f (t) =
1

Γ (α −n)

∫ t

a

f (n)τdτ
(t − τ)α+1−n ,

where(n−1< α < n).

Caputo’s Fractional Derivative:

i- If µ ,α ≥ 0 andt > 0, then:
c
aD−µ

t (c
aDα

t f (t)) = c
aDα−µ

t f (t)

−
l−1

∑
k=0

f (k)(0+)
tk+µ−α

Γ (µ −α + k+1)
,

where 0< α < µ , m−1< µ < m, l −1< α ≤ l < m−1,
(m, l) ∈ N.

ii- From the above relation and takingα = µ , we get:

c
aD−α

t (c
aDα

t f (t)) = f (t)−
m−1

∑
k=0

f (k)(0+)
tk

k!
,(m−1< α ≤ m).

Next, we define Sequential fractional derivative.
Definition (2.1.4)[The Sequential Fractional

Derivative]:

Let f be a function oft, n-th order differentiation is
simply a series of first-order differentiations and replacing
each first-order derivative by fractional derivatives of
orders. Then, we can get:

Dα f (t) = Dα1Dα2...Dαn f (t),

whereα = α1 +α2 + ...+αn is known as the sequential
fractional derivative.

Some Properties of the Fractional Derivatives:

1- Linearity:-
Let the fractional differentiation is a linear operation:

Dp(C1 f1(t),C2 f2(t), ...,Cn fn(t)) = C1Dp f1(t)+C2Dp f2(t)

+...+CnDp fn(t)

whereDp is any mutation of the above equation.

2- The Leibnitz rule for Fractional Derivatives:-

Let f be a continuous function ofτ in the interval[a, t]
andϕ(t) has n+1 continuous derivatives in this interval.
Then

aDp
t (ϕ(t) f (t)) =

∞

∑
k=0

(

p
k

)

ϕk(t)aDp−k
t f (t).

3- Fractional Derivative of a Composite Function:
Let an analytic composite functionϕ(t) = F(h(t)) and by
using the Leibnitz rule, we can obtain:

aDp
t F(h(t)) =

(t −a)−p

Γ (1− p)
ϕ(t)

+
∞

∑
k=0

(

p
k

)

k!(t −a)k−p

Γ (k− p+1)

k

∑
m=1

F (m)(h(t))

∑
k

∏
r=1

1
ar !

(

h(r)(t)
r!

ar
)

where the sum extends over all combinations of
non-negative integer values ofa1,a2, ...,ak such that,

k

∑
r=1

rar = k and
k

∑
r=1

ar = m.

2.2 Some Basic Methods for Solving Fractional
Differential Equations

Fractional Differential Equations appear in various
research areas and engineering applications. An effective
and easy to use method for solving such equations. Now,
we give some of these methods for details see [24]:

Definition (2.2.1):

Let f be a function ofx specified forx> 0 The Laplace
transform of f (x) denoted byL{ f (x)} or F(s) is defined
by:

L f (x) = F(s) =
∫ ∞

0
e−sxf (x)dx

wheres is a complex number. The Laplace transform of
f (x) exists if the integral that appeared in the above
equation converges for some values ofs.

Definition (2.2.2):

Let L{ f (x)}= F(s) then f (x) is called an inverse Laplace
transform ofF(s) and we writef (x) = L−1{F(s)} where
L−1 is called the inverse Laplace transformation operator.
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2.3 Solution of the Linear Ordinary Fractional
Differential Equations Via the Laplace
Transform

Consider Fractional order for one-dimensional Differential
equation with constant coefficient:

Dvy(x) = Dn[Dn−vy(x)] = Dn[D−uy(x)]

wheren is the smallest integer greater thanv > 0, u =
n− v, we can write this equation as:

Dvy(x) = Dn[D−(n−v)y(x)].

Now, by taking Laplace Transform to both sides of above
equation, we have:

Ł {[Dvy(x)]} = Ł
{

Dn[D−(n−v)y(x)]
}

= snŁ
{

D−(n−v)y(x)
}

−
n

∑
i=1

sn−iDi−1−(n−v)y(0)

= sn[s−(n−v)Y(s)]−
n

∑
i=1

sn−iDi−1−(n−v)y(0).

= svY(s)−
n

∑
i=1

sn−iDi−1−n+vy(0).

In particular,

n= 1⇒ svY(s)−D−(1−v)y(0), 0< v≤ 1.

n= 2⇒ svY(s)− sD−(2−v)y(0)−D−(1−v)y(0), 1< v≤ 2.

If n= 3 then

svY(s)− s2D−(3−v)y(0)− sD−(2−v)y(0)−D−(1−v)y(0),

for 2< v≤ 3.

Example [2]: Let solveD
2
3 y(t) = ay(t), where a is a

constant, 0< v= 2/3≤ 1.

Solution: Now, by taking Laplace Transform to both
sides of above equation, we have:

L
{

D
2
3 y(t)

}

= aL{y(t)} ,

implies

s2/3Y(s)−D−(1−2/3)y(0) = aY(s).

Assume thatD−(1−2/3)y(0) = D−1/3y(0) is the value of
D−1/3y(t) at t = 0 exists, and call itc1. Then:

s2/3Y(s)− c−1 = aY(s),

Y(s) =
c−1

s2/3−a
,

y(t) = L−1
{

c−1

s2/3−a

}

= c−1t
1
3

E2/3,2/3

(

at
2
3

)

and
L
{

D−1/3y(t)
}

= s−1/3Y(s).

Since
Y(s) =

c−1

s2/3−a
.

Then,

L
{

D−1/3y(t)
}

=
c−1s−1/3

s2/3−a
.

So,

D−1/3y(t) = L−1

{

c−1s−1/3

s2/3−a

}

= c−1E2/3,1

(

at
2
3

)

.

At t = 0,
D−1/3y(t) = E2/3,1(0) = c−1.

Example [3]: Let solveD
4
3 y(t) = 0, 1< v= 4/3≤ 2.

Solution: By taking the Laplace transform of both
sides of the equation, we have:

L
{

D
4
3 y(t)

}

= 0,

implies that,

s
4
3Y(s)− sD−(2−4/3)y(0)−D−(1−4/3)y(0) = 0.

We will assume that constantsD−(2−4/3)y(0) = c1 and
D−(1−4/3)y(0) = c2 exist. Then:

s
4
3Y(s)− c1s− c2 = 0.

Solving forY(s), we obtain:

Y(s) =
c1s

s4/3
+

c2

s4/3
.

Finally, we find the inverse Laplace ofY(s):

y(t) = L−1
{ c1s

s4/3

}

+L−1
{ c2

s4/3

}

y(t) =
c1

Γ (1
3)

t−2/3+
c2

Γ (4
3)

t1/3.

2.4 The Multi- Dimensional Laplace Transform

As seen before, the one-dimensional Laplace transform is
defined for functions of only one independent variable. In
1999, Dahiya and Nadjafi defined the multi-dimensional
Laplace transform for functions of more than one
independent variable. Also, they study some properties
that concerned with this definition.

We start this section, with the following definition.
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Definition (3.1), [6]:

Let u be a function ofx1,x2, ...,xn specified forxi > 0 for
each i=1,2,...,n. Then the multi-dimensional Laplace
transform of u(x1,x2, ...,xn) denoted by
Ln{u(x1,x2, ...,xn)} or U(s1,s2, ...,sn) is defined by:

Ln{u(x1,x2, ...,xn)} = U(s1,s2, ...,sn)

=

∫ ∞

0

∫ ∞

0
...

∫ ∞

0
e−∑n

i=1sixi u(x1,x2, ...,xn)dx1dx2...dxn

wheresi is a complex number for eachi = 1,2, ...,n. The
multi- dimensional Laplace transform ofu(x1,x2, ...,xn)
exists if the integral that appeared in the above equation
converges for some values ofs1,s2, ...,sn.

3 Initial and Boundary Value Problems and
Linear Fractional Partial Differential
Equations

Consider the initial and boundary value problem which
consists of the v-th order linear partial fractional
differential equation with constant coefficients:

∂ ∑n
i=1vi u(x1,x2, ...,xn)

∏n
i=1 ∂xvi

i

=
∂ ∑n

i=1mi u(x1,x2, ...,xn)

∏n
i=1 ∂xmi

i

{

∂ ∑n
i=1−(mi−vi)u(x1,x2, ...,xn)

∏n
i=1 ∂x−(mi−vi)

i

}

together with appropriate initial and boundary conditions.
The general form for two-variable with derivative of one
variable is:
(

∂
∂x

)α
u(x,y) =

(

∂
∂x

)n
{

(

∂
∂x

)−n+α
u(x,y)

}

.

By takingL2 to both sides of above equation, then implies
that:

sα
1 L2

{

(
∂
∂x

)−(n+α)u(x,y)

}

−
n

∑
i=1

sn−i
1 L1

{

(
∂
∂x

)i−1−n+αu(0,y)

}

.

The general form for two-variable with derivative of two
variable is:

∂ ∑2
i=1vi u(x1,x2)

∏2
i=1 ∂xvi

i

=
∂ ∑2

i=1mi

∏2
i=1 ∂xmi

i

{

∂ ∑2
i=1−(mi−vi)u(x1,x2)

∏2
i=1 ∂x−(mi−vi)

i

}

Now, by takingL2 to both sides of above equation, then
follows that

sm1
1 sm2

2 L2

{

∂ ∑2
i=1−(mi−vi )u(x1,x2)

∏2
i=1∂x

−(mi−vi )
i

}

−

sm1
1 ∑m2

l2=1sl2−1
2 L1

{

∂−(m2−l2+v2)u(x1,0)

∂x
−(m2−l2+v2)
2

}

−

sm2
2 ∑m1

l1=1sl1−1
1 L1

{

∂−(m1−l1+v1)u(0,x2)

∂x
−(m1−l1+v1)
1

}

+

∑m1
l1=1sl1−1

1 ∑m2
l2=1sl2−1

2

{

∂−∑2
i=1(mi−li+vi )u(0,0)

∏2
i=1 ∂x

−(mi−li+vi )
i

}

and

sm1
1 sm2

2 L2

{

∂ ∑2
i=1−(mi−vi)u(x1,x2)

∏2
i=1∂x−(mi−vi)

i

}

= sv1
1 sv2

2 U(s1,s2).

The general form for three-variable with derivative of
three variable is:
∂ ∑3

i=1vi u(x1,x2,x3)

∏3
i=1 ∂x

vi
i

= ∂ ∑3
i=1mi

∏3
i=1∂x

mi
i

{

∂ ∑3
i=1−(mi−vi )u(x1,x2,x3)

∏3
i=1∂x

−(mi−vi )
i

}

Now, by takingL3 to both sides of above equation, then:

⇒ sm1
1 sm2

2 sm3
3 L3

{

∂ ∑3
i=1−(mi−vi )u(x1,x2,x3)

∏3
i=1∂x

−(mi−vi )
i

}

−

sm1
1 ∑m2

l2=1sl2−1
2 ∑m3

l3=1sl3−1
3 L1

{

∂−∑3
i=2(mi−li+vi )u(x1,0,0)

∏3
i=2∂x

−(mi−li+vi )
i

}

−

sm2
2 ∑m1

l1=1sl1−1
1 ∑m3

l3=1sl3−1
3 L1







∂
−∑3

i=1
i 6=2

(mi−li+vi )

u(0,x2,0)

∏3
i=1
i 6=2

∂x
−(mi−li+vi )
i







−

sm3
3 ∑m1

l1=1sl1−1
1 ∑m2

l2=1sl2−1
2 L1

{

∂ ∑2
i=1−(mi−vi )u(0,0,x3)

∏2
i=1∂x

−(mi−vi )
i

}

−

sm1
1 sm2

2 ∑m3
l3=1sl3−1

3 L2

{

∂−(m3−l3+v3)u(x1,x2,0)

∂x
−(m3−l3+v3)
3

}

−

sm1
1 sm3

3 ∑m2
l2=1sl2−1

2 L2

{

∂−(m2−l2+v2)u(x1,0,x3)

∂x
−(m2−l2+v2)
2

}

−

sm2
2 sm3

3 ∑m1
l1=1sl1−1

1 L2

{

∂−(m1−l1+v1)u(0,x2,x3)

∂x
−(m1−l1+v1)
1

}

−

∑m1
l1=1sl1−1

1 ∑m2
l2=1sl2−1

2 ∑m3
l3=1sl3−1

1

{

∂−∑3
i=1(mi−li+vi )u(0,0,0)

∏3
i=1 ∂x

−(mi−li+vi )
i

}

and similarly,

sm1
1 sm2

2 sm3
3 L3

{

∂ ∑3
i=1−(mi−vi )u(x1,x2,x3)

∏3
i=1 ∂x

−(mi−vi )
i

}

= sv1
1 sv2

2 sv3
3 U(s1,s2,s3).

The general form for multi-variable with derivative of
multi (all) variable is:

∂ ∑n
i=1vi u(x1,x2,...,xn)

∏n
i=1∂x

vi
i

= ∂ ∑n
i=1 mi

∏n
i=1∂x

mi
i

{

∂ ∑n
i=1−(mi−vi )u(x1,x2,...,xn)

∏n
i=1 ∂x

−(mi−vi )
i

}

.

Now, by takingLn to both sides of above equation, then
one can reach related formula.

To illustrate this method, consider the following
examples.

1-When different derivative ∑2
i=1vi = 5

4 and
1< ∑2

i=1vi ≤ 2. In particular, ifm1+m2 = 2, then:

∂ 5
4 u(x1,x2)

∂x
1
2
1 ∂x

3
4
2

=
∂ 2

∂x1∂x2

{

∂−(2− 5
4 )u(x1,x2)

∂−(1− 1
2 )x1∂−(1− 3

4 )x2

}

= s1s2L2







∂− 3
4u(x1,x2)

∂x
− 1

2
1 ∂x

− 1
4

2







− s1L1







∂
−3
4 u(x1,0)

∂x
−3
4

2







−s2L1







∂ −1
2 u(0,x2)

∂x
−1
2

1







+







∂ −5
4 u(0,0)

∂x
−1
2

1 ∂x
−3
4

2






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and

s1s2







∂− 3
4u(x1,x2)

∂x
− 1

2
1 ∂x

− 1
4

2







= s
1
2
1 s

3
4
2 U(s1,s2).

2- Whenn= 1 andv= 1
2, we have:

(

∂
∂x

) 1
2

u(x,y) =
∂
∂x

{

(

∂
∂x

)−1+ 1
2

u(x,y)

}

= s1L2

{

(

∂
∂x

)− 1
2

u(x,y)

}

−

(

∂
∂x

)− 1
2

u(0,y)

= s1

[

s
− 1

2
1 L2{u(x,y)}

]

−

(

∂
∂x

)− 1
2

u(0,y)

= s
1
2
1 L2{u(x,y)}−

(

∂
∂x

)− 1
2

u(0,y).

3- Whenn= 2 andv= 3
2,1< v≤ 2 we have:

(

∂
∂x

)
3
2

u(x,y) =
∂ 2

∂x2

{

(

∂
∂x

)−2+ 3
2

u(x,y)

}

=
∂ 2

∂x2

{

(

∂
∂x

)
−1
2

u(x,y)

}

= s
3
2
1 L2{u(x,y)}− s1L2

{

(

∂
∂x

)
−1
2

u(0,y)

}

−L2

{

(

∂
∂x

)
−1
2

u(0,y)

}

.

4- Whenn = 3 and∑3
i=1vi =

8
3, 2< ∑3

i=1vi ≤ 3. we
have:

∂
8
3 u(x1,x2,x3)

∂x
1
3
1 ∂x

2
3
2 ∂x

5
3
3

=
∂ 3

∂x1∂x2∂x3







∂− 1
3 u(x1,x2,x3)

∂x
− 2

3
1 ∂x

− 1
3

2 ∂x
2
3
3







⇒

s1s2s3L3







∂
−1
3 u(x1,x2,x3)

∂x
−2
3

1 ∂x
−1
3

2 ∂x
2
3
3







− s1L1







∂
−7
3 u(x1,0,0)

∂x
−2
3

2 ∂x
−5
3

3







−s2L1







∂−2u(0,x2,0)

∂x
−1
3

1 ∂x
−5
3

3







− s3L1







∂−1u(0,0,x3)

∂x
−1
3

1 ∂x
−2
3

2







−s1s2L2







∂
−5
3 u(x1,x2,0)

∂x
−5
3

3







− s1s3L2







∂
−2
3 u(x1,0,x3)

∂x
−2
3

2







−s2s3L2







∂
−1
3 u(0,x2,x3)

∂x
−1
3

1







−







∂
−8
3 u(0,0,0)

∂x
1
3
1 ∂x

2
3
2 ∂x

5
3
3







.

To illustrate this approach, consider the following
examples.
5- Consider the initial and boundary value problem which

consists of the fractional order linear partial differential
equation with constant coefficients:

∂
3
2 (x,y)

∂x
3
4 ∂y

3
4

= xy, 1< v1+ v2 = 3/2≤ 2.

together with the initial and boundary conditions:

∂ −3
4 (x,0)

∂y
−3
4

=
∂ −3

4 (0,y)

∂x
−3
4

=
∂ −3

2 u(0,0)

∂x
−3
4 ∂y

−3
4

= 0.

Then by taking the two-dimensional Laplace transform of
both sides of the above fractional partial differential
equation, one can have:

L2

{

∂ 3
2 u(x,y)

∂x
3
4 ∂y

3
4

}

= L2{xy}

s
3
4
1 s

3
4
2 U(s1,s2)− s1L1

{

∂
−3
4 (x,0)

∂y
−3
4

}

− s2L1

{

∂
−3
4 (0,y)

∂x
−3
4

}

+

{

∂
−3
2 u(0,0)

∂x
−3
4 ∂y

−3
4

}

=
1

s2
1s2

2

.

Therefore

U(s1,s2) =
1

s
3
4
1 s

3
4
2

1

s2
1s2

2

=
1

s
11
4

1 s
11
4

2

.

By taking the inverse two-dimensional Laplace transform
of both sides of the above equation, one can have:

L−1
2 {U(s1,s2)}= L−1

2







1

s
11
4

1 s
11
4

2







.

Hence

u(x,y) =
x

7
4 y

7
4

Γ
(

11
4

)

Γ
(

11
4

)

is the solution of the above initial and boundary value
problem.

6- Consider the initial and boundary value problem
which consists of the fractional order linear partial
differential equation with constant coefficients:

{

∂
5
2 u(x,y,z)

∂x5
2

}

= eax+eay−eby, 2<
3

∑
i=1

vi ≤ 3

together with the initial and boundary conditions:

∂ −1
2 u(0,y,z)

∂x
−1
2

=
∂ 1

2 u(0,y,z)

∂x
1
2

=
∂ 3

2 u(0,y,z)

∂x
3
2

= 0.
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Then by taking the three-dimensional Laplace transform
of both sides of the above fractional differential equation,
one can have:

L3

{

∂
5
2 u(x,y,z)

∂x5
2

}

= L3

{

eax+eay−eby
}

.

Therefore

s
5
2
1 U(s1,s2,s3)−L2

{

∂
−1
2 u(0,y,z)

∂x
−1
2

}

−s1L2

{

∂
1
2 u(0,y,z)

∂x
1
2

}

− s2
1L2

{

∂
3
2 u(0,y,z)

∂x
3
2

}

=
1

s1−a
+

1
s2−a

−
1

s2−b

⇒U(s1,s2,s3) =
1

s
5
2
1 (s1−a)

+
a−b

s
5
2
1 (s2−a)(s2−b)

By taking the inverse three-dimensional Laplace transformof
both sides of the above equation, one can have:

L−1
3 {U(s1,s2,s3)}= L−1

3







1

s
5
2
1 (s1−a)

+
a−b

s
5
2
1 (s2−a)(s2−b)







.

Hence

⇒ u(x,y,z) = x
5
2 E1, 7

2
(ax)+

x
3
2 (eay−eby)

Γ ( 5
2)

is the solution of the above initial and boundary value problem.

4 Conclusion

In this work, we proposed multi-dimensional Laplace
transforms method(M.D.L.T.M) for solving multi-dimensional
fractional differential equations with constant and variable
coefficients. It is illustrated that the method is effectiveand
reliable tool for the solution of fractional linear partial
differential equations. Furthermore, it accelerates the rate of
convergence. The M.D.L.T.M has been successfully applied to
find an exact solution of fractional partial differential equations
with constant and variable coefficients.
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