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Abstract: In this paper, the aim is to study the possible extensionebtie-dimensional fractional differential equations ®1thulti-
dimensional fractional differential equations with thaplications. For this purpose, the multi-dimensionallaag Transform method
(L.T.M) is developed in order to solve multi-dimensionadtional differential equations with constant and vaeatefficients. It is
also observed that the proposed technique is possible ghtytsuitable for such problems. The results of the propcsbeme are
encouraging and efficient.
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1 Introduction the authors show that by using Taylor's of fractional
order, further the stochastic differential equation
dx = oxdh(t,a), whereb(t,a) is a fractional Brownian
motion of ordera, which can be converted into an
quation involving fractional derivative, further the
olution can be expressed in terms of the Mittag—Leffler
function, see 9] and [26]. In [5], the authors studied
fractional differential equations that such kind of
equations appear in many problems. In particular, they
22]. A fractional differential equation is an equation have.find afractipnal differen'tial equation rt_alated to the
which contains arbitrary order derivatives. Fractional classical ‘Schrodinger equation, by studying Nottales
differential equations used in many branche:s of sc:ienceapproamh o quantum mechanics via a fractal space—time,
such as, mathematics, physics, chemistry anc%ee p.8]_, Slmllarly, 'Laplac.e transform .met'hod Was'used
engineerin'g The fractié)nal Ca|CL'J|US has gained qobtamthe expl_|C|t sol_ut|on of_a certain klr_ld of ordinary
. L - differential equations with fractional derivatives, thenk
importance during the past three decades due to |t§ [10] was devoted the applications of the

e e ooy Sne-dimensonal Laplace tansiom to_ consrct th

instrument for description of long time memory. This is spluuons of Ilne'ar npn-homogenoug fractlone}l O(der
: differential equations involving the Riemann-Liouville

fractional derivatives with constant coefficients, s@g [

the main advantage of arbitrary order derivatives in
comparison with classical integer-order derivatives. Shu Bey using Laplace transform, one can also find the exact
olution of time fractional partial differential equatiand

many authors and researchers have been studying tl"g
fractional order differential equations, for example séle | some fractional order integral and integro-differential
equations, seelfl]. Of course the procedure is similar to

and [L6]. Since a new fractional calculus, which allows us
to perform local analysis of non-differentiable functions the ordinary Laplace transform, in order to solve a
Yitferential equations we transform of the unknown

This is a new notion, which can be seen as a local versio
function, and later apply the inverse Laplace to obtain the

Integral transforms are widely applied to solve several
different type of differential and integro-differential
equations. In the literature there are several integrag
transforms and each of suitable for different type
differential equations. Recently some new integral
transforms were introduced, se&9[20] and applied to
solve some ODE as well as PDEs, see for example [

of the classical Riemann-Liouville derivative and give
many properties of ordinary derivatives, seéd, 12,13
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desired solution. In7], it was given the idea of fractional is known as the fractional derivative of the
derivatives and fractional integrals with their basic Grunwald—Letnikov sense.
properties. In order to solve fractional equations, theee a
several different methods available in the currentExample(1): Let the fractional derivative of the power
literature , seel5] and [3], [25]. In order to solve finance function:
related problems see8][ where fractional stochastic ft)=(t—a),v>-1
differential equations with applications to finance were
considered. In 27] the authors give a new nonlinear
dynamic econometric ”.‘Od.e' W'th fr_acUonaI der|vat|v¢. Solution: By using the Cauchy formula and replaciog
Later, the fractional derivative is defined in the JumarleIO .

X . . y —a, we can get:
type and in [], and it was used for the singular
perturbations method for fractional differential equatio u v 1 t a1 v
and new development of the variational iteration method, aDf (t—a)" = m/ t-1) (T—a)'dr.
and the homotopy decomposition method were also 2
available in the litertaure. Letting T = a+ &(1— a) and by the definition of the beta
In the next section we followd] and give the definition  function, we can get:
and some theorems of the multi-dimensional Laplace

wherev is a real number.

1 1
transform. At AWV _ _a\v-a Vi zy-a—1
D (1) = =g (t-a) ™ [e &) a
. . . . _ ! pravini-are
2 Fractional Differential Equations r(—a) ’
The one-dimensional Laplace transform method is widely = % (t—a) % (a<0,v>0).

used in engineering mathematics, where it has numerous
applications. Particularly useful in problems where the Grunwald—-Letnikov Fractional Derivative
mechanical or electrical driving force has discontingitie

for instance, acts for a short time only, se2g]|[ (If p<0andqis any real number, then:

aDf(aDP f(t)) =a DP 1 (1),

2.1 Basic Definitions for(m<p<m+1ln<g<n+1).
@ipf p >0 and g is any real number when
We start this section by the following definitions and f®(@) =0,(k=0,1,..,m—1), then:
properties of the fractional derivative, there exist difiet
definitions of the classical and sequential derivatives are ath(aDtpf 1) =a Dtp+qf(t),

Definition (2.1.1)Grunwald—Letnikov Fractional Next, the following definition gives the definition of the
Derivative]: Let f be a function oft from the Cauchy Riemann-Liouville fractional derivative.
formulais defined by:
1 . Definiti]on (2.1.2) Riemann-Liouville Fractional
—a _ a-1 Derivative]:
D10 = Frg /a (t— )% (1)dr
Consider this definition is the most widely known

where f(t) has m+1 continuous derivatives in the Closeddefinition of the fractional derivative:

interval [a,t], then we get the fractional integral of order

: mtl ot
‘ n 100 () o o= (g) [t

DY) = ————— a
2D (1) kZO r(a+k+1)

1
TFlarmr )
wherem< a < m+1.

From the above equation and replacing eadby —a,
we can get:

(m< a <m+1) and the above equation can be written as:

t
(t—1)9" ™ (™D ()dr, ‘
/a aD{ (1) = ﬁ%/ta— )9t (1)dr,

a

where(k—1 < a <K).

m £k (a)t—a)-atk Riemann-—Liouville Fractional Derivative:
Dff(n = 5 LAY

& (—a+k+1) (i)If p,q are two positive real number and- a, then:

1 t —a— - _
e A UL :DP(aD; 1 (1)) =a DY *1(0).
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(iHIf0 <k—1<qg<k, then: whereDP is any mutation of the above equation.

—p, R AP
aDr (ath(tz) =D (Y 2- The Leibnitz rule for Fractional Derivatives:-

t—a)P-i
& rA+p—j) Let f be a continuous function afin the intervala, ]
. , ) and ¢ (t) has n+1 continuous derivatives in this interval.
(iii)if f(t) is continuous fot > a, then: Then
aDr P(aDr (1)) =a D P (1). a

Next, the following definition gives the definition of the
Caputo’s fractional derivative.

DFO0T0) = 5 (E) $4(t)aDP 1 (1).

o _ 3- Fractional Derivative of a Composite Function:
Definition ~ (2.1.3]The  Caputo's  Fractional | et an analytic composite functigh(t) = F (h(t)) and by
Derivative]: using the Leibnitz rule, we can obtain:

Let f be a function of t the Caputo’s fractional
derivative defined by:

JDPF(h(t)) = “(‘ 3 ;’¢<t>
k— k

. 1 t f(Wrdr Kit—a
DU (D) = r(a— n)/a(t—r)a+1—n’ +Z() + Z

()

_ where the sum extends over all combinations of
i-If u,a >0andt >0, then: non-negative integer values af, a;, ..., a such that,

aDcH(EDE (1) =D H (1)

where(n—1< a < n).

Caputo’s Fractional Derivative:

K K
_'1f (0% thtu-a S ra=kand §a=m
% Fu—atkrl) = “

whereO<a <u,m—l<pu<ml-1<a<l<m-1,

m,l) €N . . .
(mD) 2.2 Some Basic Methods for Solving Fractional
ii- From the above relation and takimg= u, we get:  Differential Equations

tk
aDr “ (5D (1) = f(t) - 20 £ (0*)5,(m—1< a <m). Fractional Differential Equations appear in various
_ k= o research areas and engineering applications. An effective
Next, we define Sequential fractional derivative. and easy to use method for solving such equations. Now,
Definition  (2.1.4)The  Sequential Fractional e give some of these methods for details 2
Derivativel]:

: , o Definition (2.2.1)
Let f be a function oft, n-th order differentiation is
simply a series of first-order differentiations and repiaci Let f be a function ok specified fox > 0 The Laplace

each first-order derivative by fractional derivatives of : .
orders. Then, we can get: transform off (x) denoted byL {f(x)} or F(s) is defined

by:
a 1RO an o
D f(t) =D“D"2 . D f(t), Lf(X) _ F(S) :/ eﬁsxf(X)dX
wherea = a; + az + ... + oy, is known as the sequential 0
fractional derivative. wheres is a complex number. The Laplace transform of
f(x) exists if the integral that appeared in the above
Some Properties of the Fractional Derivatives: equation converges for some valuesof
1- Linearity:- Definition (2.2.2).

Let the fractional differentiation is a linear operation: . .
P LetL{f(x)} =F(s) thenf(x) is called an inverse Laplace

DP(Cy fa(t),Cofa(t),....Cafn(t)) = C1DPF1(t) +CoDPf2(t)  transform ofF (s) and we writef (x) = L~ {F(s)} where
+... +CaDPfn(t) L~ is called the inverse Laplace transformation operator.
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2.3 Solution of the Linear Ordinary Fractional
Differential Equations Via the Laplace
Transform

Consider Fractional order for one-dimensional Differahti
equation with constant coefficient:

D¥(x) = D"[D""y(x)] = D"[D""y(x)]

wheren is the smallest integer greater than- 0, u =
n— v, we can write this equation as:

D*y(x) = D"D~"Yy(x)].

Now, by taking Laplace Transform to both sides of above

equation, we have:
£{DYY(]} = £ {D"D-"y(x)}
—Jd {Df(nfv)y(x)} _ lisniDil(nv)y(o)

=" s "VY(g)] - _ig“—ioi—l—m—wy(oy

_ VY(S) _ _isniDianrVY(o).

In particular,

n=1=sY(s)—D Vy(0), 0<v<1.

n=2=sY(s)—sD @ Vy0)-D T Vy0), 1<v<2
If n=3then

$Y(s) - D Yy(0) — D> y(0) D~ Vy(0),
for2<v<a3.

Example [2]: Let soIveD%y(t) =ay(t), where ais a
constant, 6<v=2/3<1.

Solution: Now, by taking Laplace Transform to both
sides of above equation, we have:

2
L{D¥y(n)} =aL{y®)},
implies
$/3Y(s) — D~ (1-2/3y(0) = aY(s).

Assume thaD~(1-2/3)y(0) = D~Y3y(0) is the value of
D~1/3y(t) att = 0 exists, and call it;. Then:

$?/3Y(s) —c_1 = aY(s),

Y(s) = =t

ZErY

_ (o 1 2
y(t)=L"" { 32/37131} = C—1t§E2/3,2/3 (ata)

and
L{D—1/3y(t)} = s 13y(s).
Since
— C71
Y(s) = 5o
Then,
- c_1s-1/3
L{D 1/3y(t)} — 52;'3_61 .
So,

—1/3
~1/3y4) — | —1J €18
D Py(t) =L { 32/3—a}
= C_1E2/371 (at%) .

Att =0,
D 3y(t) = Ez/31(0) =c-1.

Example [3]: Let solveDgy(t) =0,1<v=4/3<2.

Solution: By taking the Laplace transform of both
sides of the equation, we have:

L{D%‘y(t)} ~0,
implies that,
$3Y(s) — sD~(2-4/3)y(0) — D~ (1-43y(0) = 0.
We will assume that constan3~(2-4/3)y(0) = ¢; and
D~ (1-4/3)y(0) = ¢, exist. Then:
ng(s) —c1S—Cc=0.
Solving forY(s), we obtain:

C1S C2
Y(S) = @ + @

Finally, we find the inverse Laplace ¥{s):
_fasy,  ar e
v =g+ h)

_ G o3 G L3
y(t) = t + =5t
r(z) r()

2.4 The Multi- Dimensional Laplace Transform

As seen before, the one-dimensional Laplace transform is
defined for functions of only one independent variable. In
1999, Dahiya and Nadjafi defined the multi-dimensional
Laplace transform for functions of more than one
independent variable. Also, they study some properties
that concerned with this definition.

We start this section, with the following definition.
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Definition (3.1), [6]: and

Let u be a function ok, X», ..., X, specified forg > 0 for 2 _(m-v

each i=1,2,...n. Then the multi-dimensional Laplace Mg, 922~ (M W u(xa, Xp) — $'s2U (51, %)
2 —(mi—vi) S

transform of U(Xg,%2, ..., %n) denoted by Miz19%

Ln{u(x1,%2,....,Xn) } oruU(sy, sy, ...,) is defined by:

The general form for three-variable with derivative of
Ln{u X17X27 Xn } - (Sl SZ; 751) g

three vanable is:
—/ / / e A%y U(X1,X2, .., Xn ) dX1 0 Xe...d X, T 'U(X173_<2,X3) _ 9%ieam 02'717("‘7V‘)U(X1,X27X3)
M, 0% Me,ox" ﬂ?zldxf(mi Vi)

wheres is a complex number for eaéh=1,2,...,n. The

multi- dimensional Laplace transform of(x1, Xz, ..., Xn)

exists if the integral that appeared in the above equation

converges for some values®f s, ..., . =4 Szmzs3 {021 =My (Xl xz X3) }
|-|| 10)(1

Now, by takingLs to both sides of above equation, then:

. mp 1 9~ T2y 0,0)
3 Initial and Boundary Value Problems and ST S 3 IREE 1{ rl.'i ox - o) }
Linear Fractional Partial Differential —z, L(M—li+v)
. i#2
Equations S 2|1 151 Z|3 153 e ML ox ™ |(+0v.§2 =
|#»2

Consider the initial and boundary value problem which B4 m )y
consists of the v-th order linear partial fractional 5™ e - {" = 12 'mi OV?X3>}
differential equation with constant coefficients: 2 MZaox

nov m i Mg Jz—1 8~ (M~131Y3) y(x; %0
dZ:lV'U(X]_,Xz\;...,Xn) Sll% z|3=1so§ LZ{ ax;(’“a*'a(*";)z )
Mt 0% (et
M <My do—1y ) o~ (M 1272u(xg 0xg) |
02' 1m‘U(X1,X2, - %n) {azp‘l("‘V‘>U(X1,X2,---,Xn)} 2% 2% LZ{ ox, M1
0 n gy (MY My s 9~ (M 111 u(0xp.x
M. %" M. 0% T IS e T S

together with appropriate initial and boundary conditions 5 ime)y
The general form for two-variable with derivative of one Z gll 1Z| 1S —12{“3_1 '31{0 Zizam- - : L S?O)}
variable is: 2= 5= M ox i

9\ a\" g\ nta and similarly,
— == — 3 -m-v)
<0x> U(Xay) ((9X> { (dx) U(va)} . S&“l%‘zsgbl_s { 92 |J;|3 dXI (Lr,:-Ele,l)(z X3) } Slvls\ézs\:/; (51,52,33)

The general form for multi-variable with derivative of

By takingL, to both sides of above equation, then implies

that: multi (all) variable is:

ﬁLZ{(i)(Ma)U(XJ)} dip:lviu(xl,xz7--<7xn) _ o a%imam 91wy (X1, X2, Xn)

ox I n,ox ™
L , L-ntay g Now, by takingLy to both sides of above equation, then
- Zﬁf u0,y) ¢ one can reach related formula.
I:ﬁa%?: ec'r.al form for two-variable with derivative of two To illustrate this method, consider the following
' examples.

dZizlei U(X1,X2) ﬁzizzlm dZizzl —(m—v) u(x1,%2)

M2, 0% N2, oX" n?:laxif(mf\/l) 1—\2Nhen dlfferent. derlyanve SiaVi = a and
Now, by takingL, to both sides of above equation, then 1< ZimgVi < 2. Inparticular, ifmy +mp =2, then:
follows that22 o, d3u(xe, %) P af(zf%m(xl xz)

=1
m 1 9~ (mp— I2*"2)ux ,0) 03 7
1z|2 1522 Ll{ |2+V21 }_ =519l M —siba ﬁui(il’m
ml |1+V1 0 dxl 2 0X2 4 (9XZj_
SZ |1 ]_S]_ { ml |1+V1 X2> } + 1
B 0 zl 1(m| |+VI> (0 0) _SZL]_ w + w
AT T [ ox ) Ox? z?xlT dxz
(@© 2015 NSP
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and consists of the fractional order linear partial differahti
9~ 3u(xq, X 13 equation with constant coefficients:
8152{%}=8f524w81,52)- 3
X, < 0%
1 9% LYy 1cvitva—3/2<2
2- Whenn= 1 andv = 3, we have: xidyi
9\? 0 9\ L3 together with the initial and boundary conditions:
(0_)() (X y) 0X (0_)() (X Y) -3 -3 -3
07 (x0) 970y _07u00)
1 1 = = —
0 -3 a -3 =3 =3 =3 =3 :
— Sle{ (E() U(X,y)} _ (&) U(O,y) 0YT 0XT 0X70YT
Then by taking the two-dimensional Laplace transform of
! 9\ 2 both sides of the above fractional partial differential
=5 [Sl Lz{U(X,Y)}} = <E() u(0,y) equation, one can have:
B AR a3u(x.y)
= ux,y)t— = u . 2U(X,
e (utey) - () uoy) Lz{ ) Z}:Lz{xy}
oOxaogya
3-Whenn=2andv = 3,1 < v < 2we have: s
3 974 (x,0) 04(0y)
3 ) 243 sis;U (s, s) — — <l —=—
0\?2 17} 17} 2
) uy) = =53 (5] uxy) e ox%
ox ’ 0x2 | \ dx ’

sé%
B +{02u00} 1
—0—2{<i)2u(x,y)} 0XTdyT %%

- 2
ox ox Therefore

_ 3 - )7 U(s1.s) =
=silo{u(xy)} —sil2 { (dx) U(QY)} (S1,%2) sf‘sg; 22
1

AN _
_L2{<a_x> “(O’y)}' s'sf

By taking the inverse two-dimensional Laplace transform

4-Whenn=3 andy3 ,vi=& 2< 33 ,v <3 we _ \
2isVi =3 2isaVi S of both sides of the above equation, one can have:

have:
0§u(x X x) 03 03 (x X x) _ _ 1
L2 - Lo’ LM {U(s1. )} =" — ¢
0Xf 0X 0X3 0X10X20X3 X 30)(2 30)(3 517 527
= Hence -
1 -7 XzyZ
073 U(Xg, X2, X: 073 u(x,0,0 ux,y) = —ro—e
simsls] LU L g )97 u04.0.0) by rEr &)
0% 0%° 0%3 0%, O3

is the solution of the above initial and boundary value

9-2u(0,x%,0 2~ 1u(0,0,x problem
—slg % ~ sl %
0% Ox5® 0% 0%,° 6- Consider the initial and boundary value problem

PE e which consists of the fractional order linear partial
3 U(Xg,X%2,0 3 u(xq,0,x% ; : . . i :
—s5ls ( 175 2,0) — 5500 ( {2 3) differential equation with constant coefficients

Ox5° %>

1 -8
073 u(0,xp,X 073 u(0,0,0
—SZ%LZ # _ % .
0% 03 053 0%

To illustrate this approach, consider the following i L .
examples. 07 u(0,y,2 dzu(0,y,2) dzu(0,y,2)
5- Consider the initial and boundary value problem which Ix2 T ad T a8

5
{w}_e + e, 2<Zlv|<3

5
x5

together with the initial and boundary conditions:

=0.

(@© 2015 NSP
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Then by taking the three-dimensional Laplace transform [4] Ben F. and Cresson J., About non-differentiable funtio

of both sides of the above fractional differential equation
one can have:

Ls { 02U(X Y, ) } _ Ls{eax+eay_eby}.
(9x2
Therefore

47 u(0
SlgU(SLSQaSB)_LZ{M}

-1
X7z

02u0 A 22u(0,y,
—sily 73/ ﬁL 73/)
(9X2 dxz

1 1 1
_|_ —

ss—a s-a $-b

1 a—b

5 T

si(ss—a) si(s2—a)(sz—h)
By taking the inverse three-dimensional Laplace transfofm
both sides of the above equation, one can have:

U(s1,%,83) =

L31{U(317SQ753)}—L31{ t ek }
(s1—a) si(s—a)(s2—b)

ucn

Hence
X2 (e? — )
r(3)

is the solution of the above initial and boundary value peohl

= u(x,y,z) = X3 Ely% (ax) +

4 Conclusion

In this work, we proposed multi-dimensional
transforms method(M.D.L.T.M) for solving multi-dimensial
fractional differential equations with constant and vhiga
coefficients. It is illustrated that the method is effectized
reliable tool for the solution of fractional linear partial
differential equations. Furthermore, it accelerates tae of
convergence. The M.D.L.T.M has been successfully apptied t
find an exact solution of fractional partial differentialuagions
with constant and variable coefficients.
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