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Abstract: By combining the algebraic topological concepts such a®rEctaracteristics, (co)homology groups, fundamental and
homotopy groups with digital topology we can compare, ¢fass identify the digital images between each other. Irsthbaper, we
explore the digital relative homotopy relation between twatinuous functions on a pointed digital image whose domaren-cube

and which map the boundary of arcube to a fix point. Then we introduce th® homotopy group of a pointed digital image and give
a relation between the homotopy groups of two pointed digitages.
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1 Introduction fundamental group of its continuous analogue. H&8| [
also introduces the digital covering space and proves the
non-product property of the digital fundamental group of
the digital product image. BoxeB][ discusses the errors
of Han’s results 18], and develops further the topic of the
digital covering space by concerning the existence and

Kopperman, Kovalevsky, Malgouyres, Ayala, Boxer properties of digital universal covering spaces. Boxer and

Chen, Han, Karaca and others) in this area have studied t§2raca L0 show that the digital covering spaces are

determine the properties of digital images with tools from c[a§sified bY the conjugacy class corresponding o a
Topology (especially Algebraic Topology). d_|g|tall covering space. Boxer and a[lSI compute .the
simplicial homology groups of certain minimal simple

closed surfaces and the Euler characteristics of certain
digital surfaces.

Digital Topology is to study and characterize the
properties of digital images. Therefore it plays an
important role in Computer Vision, Image Processing and
Computer Graphics. Researchers (Rosenfeld, Kong

Rosenfeld 29 introduced a notion of continuity for
functions between digital images. This notion has an
importance in the applications of image processing and
particularly in the study of mappings between the digital  One of the achievements of Algebraic Topology is to
images. Boxer extends the results of Rosenfeld’s byturn the global topological problems into Homotopy
examining the digital versions of several classical nation Theory problems. In mathematics, homotopy groups are
from topology including homeomorphism, retraction, and important invariants in Algebraic Topology and used in
homotopy to compare the digital images iB].[ The  classifying the topological spaces and generalize the
digital fundamental group of a discrete object was firstfundamental group which gives an information about
introduced by Kong Z0Q]. Later Boxer has showed how loops and homotopy groups give information about holes
classical methods of Algebraic Topology may be used inof a space. The fundamental group was defined by
calculating the digital fundamental form group based onPoincaré inAnalysis Stus [24] and in the same paper he
the notions of digitally continuous function2d], and the  introduced Homology Theory and the relation between
digital homotopy p]. Boxer [9] has also examined the homology and homotopy. To describe higher dimensional
digital fundamental groups of unbounded digital images.connectivity by the homotopy concept, mathematicians
Ayala and al. B] have observed that the digital need a generalization of the fundamental group to higher
fundamental object is naturally isomorphic to the dimensions. One would hope for a sequence of groups
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which are amenable to computation and have the propertglistinct and differ by at most 1 in each coordingbeand
that two spaces are homeomorphic if and only if theirqin Z? are 4adjacent if they are 8-adjacent and differ in
corresponding groups are isomorphic. The definitions ofexactly one coordinate. Two poings and g in 78 are
homotopy groups were given by Edudtdch and Witold  26-adjacent if they are distinct and differ by at most 1 in
Hurewicz in 1932-1935. In recent years, one of the mosteach coordinate; they are -B8jacent if they are
famous problem of algebraic topology is to determine the26-adjacent and differ in at most two coordinates; they are
homotopy groups ofi-spheres. Homotopy is more easily 6-adjacent if they are 18-adjacent and differ in exactly
defined and conceptionally simpler. It doesn’t requireone coordinate. We generalize these adjacencies as
elaborating the explanations of chains, boundaries, syclefollows [9]. Let |,n be positive integers, ¥ | < n and
or quotient groups. Homotopy applies immediately to two distinct pointsp = (p1,...,pn), 4= (1,02, ---,0n) iN
general topological spaces and does not require th&", p andq arek;-adjacent if there are at mosit distinct
special polyhedral structure that are used in homology. coordinatesj for which |pj —q;| = 1, and for all other
coordinatesj, pj = qgj. A kj-adjacency relation o/Z"
Poincaré 24] was greatly preoccupied with the may be denoted by the number of points that are
classification problem. He hoped that the fundamentakdjacent to a poinp € Z". Thus, thek;-adjacency orZ
group would overcome the deficiencies of Homology may be denoted by the number 2, andadjacent points
Theory in the classification of 3-manifolds. However, of Z are called 2-adjacent. Similarly;-adjacent points
JW. Alexander J] showed that there exists of Z? are called 4-adjacenk;-adjacent points of.? are
non-homeomorphic  3-manifolds having isomorphic called 8-adjacent; and i3, ki-, k»-, and kz-adjacent
homology groups and isomorphic fundamental groupspoints are called 6-adjacent, 18-adjacent, and 26-adjacen
We think that the same problem may occur in Digital respectively.
Topology; we might have two digital images that are not
isomorphic (we use the term "isomorphic” instead of Let k be an adjacency relation defined @\. A
"homemorphic”) to each other but their corresponding k-neighbor of p € Z" is a point ofZ" that isk-adjacent to
digital fundamental groups and digital homology groups p. A digital imageX c Z" is k-connected [?] if and only
are isomorphic. The aim of this paper is to explore theif for every pair of different pointx,y € X, there is a set
digital homotopy groups of a digital image and show that {xg, X, ..., X } of points ofX such thax = xp, y = X, and
they are invariants of a digital image. Xi andx;1 arek-neighbors wheréec {0,1,...,r —1}. A
k-component of a digital image X is a maximal
This paper is organised as follows. In the preliminary k-connected subset of.
part, we give some basic definitions such as digital

k-adjacencies, a digitalki, k2)-continuous function, a Leta,b € Z with a< b. Adigital interval [6] is a set of
digital (K1, k2)-isomorphism, digitallyk1, k»)-homotopy,  the form
a pointed digital image, a continuous map between two [ably={zcZ: a<z<b}

pointed digital images, and a pointed contractible digital

image. In Section 3, we introduce a 'relative homotopy in Which 2-adjacency is assumed.

map’ between two continuous functions that map the

n-cube to a pointed digital image and the boundary of an  Let X € Z™ andY C Z"™. Let k; be an adjacency

n-cube is mapped to a base point. Then we show that theelation defined oiZ", i € {1,2}. We say that a function

relative homotopy relation is an equivalence relation andf : X — Y is (k1, k2)-continuous [8] if the image undeif

the equivalence classes together with the operation * of everyko-connected subset of is k;-connected subset

that we introduce is a digitat-th homotopy group of a  of Y.

pointed digital image. Also this construction yields a

covariant functor from the category of pointed digital Let X ¢ Z" andY C Z" be digital images with

images and a pointed continuous functions to the categoryi-adjacency andko-adjacency respectively. Then the

of groups and homomorphisms. As a result we get somdunction f : X — Y is (K1, k2)-continuous 25,6] if and

conclusions. only if for every pair ofk;-adjacent pointgxg,x; } of X,
eitherf(xg) = f(x1) or f(Xo) andf(x1) areks-adjacent in
Y.

2 Preliminaries Composition preserves digital continuitg]] i.e., if
f:X =Y andg:Y — Z are (Ky,K2)-continuous and

Let Z be the set of integers. A (binary) digital image is a (k2,k3)-continuous respectively, then the composite

pair (X, k), whereX C Z" for some positive integarand  function(go f) : X — Z is (k1, k3)-continuous.

K indicates some adjacency relation for the members of

X. A variety of adjacency relations are used in the study Let X ¢ Z™ andY C Z™ be digital images with

of digital images. The following terminology is used in ki-adjacency and;-adjacency respectively. A function

[20]. Two pointsp andq in Z? are 8adjacentif they are  f : X — Y is a (ky,kz)-isomorphisn [5] if f is
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(K1, K2)-continuous and bijective and furthérl:vy — X
is (K2, K1)-continuous.

Definition 2.1. ([6]; see also 19]) Let X andY be digital
images. Letf,g: X — Y be (K1, K2)-continuous functions.
Suppose there is a positive integeand a function

F:Xx[0,mz—Y such that

—forall x e X, F(x,0) = f(x) and F(x,m) = g(x);

—for all x € X, the induced functiory : [0,mz — Y
defined by K(t) = F(x,t) forall t € [O,m|z is
(2,K)-continuous; and

—for all t € [0,m]z, the induced functiork : X — Y
defined by R(x) F(x,t) forall x € X is
(K1, K2)-continuous,

thenF is a digital (K1, k2)-homotopy betweerf and g,
and f and g are digitally (k1,k2)-homotopic inY, and
denoted byf ~, «, Y.

Digital (k1,k2)-homotopy is an equivalence relation
among digitally continuous functiorfs: X — Y (see [L9,
6]).

If (X,k) is a digital image andp € X, the triple
(X,p,K) is a pointed digital image ). A pointed
digitally continuous function f [8,9] from a pointed
digital image (X,p,k1) to a pointed digital image
(Y,q,K2) such thatf (p) = .

Let f andg be pointed digitally continuous functions
from (X, p) to (Y,q). A digital homotopy

H:Xx[0,mz—Y

betweenf and g is calleda pointed digital homotopy
betweenf andg if for all t € [0,m]z, H(p,t) = q (see

(8]).
If (X, p,k1)and(Y,q,k2) are pointed digital images,

f:X=Y

a (K1, K2)-continuous function such thét p) = q,
g:Y =X

a (K2, k1)-continuous function such thgtq) = p,

H:Xx[0,mx]z =Y

a (K1, K2)-homotopy betweego f and I such that
H(p.t) =1

forallt € [0,mx]z, and

K:Y x[0,my]z =Y

a (Ko, K1)-homotopy betweeri o g and ¥ such that

K(qat) =p

for all t € [0,my]z, then(X, p,k1) and(Y,q,kz2) have the
same (Ki1,K2)-homotopy type and are called
(K1,Kz2)-pointed homotopy equivalent [9]. These

functions f and g are called pointed homotopy

equivalences.

Forp €Y, letp denote the constant function for some
p € X defined by
p(X)=p

for all x € X. A digital image (X,k) is said to be
k-contractible  [6,19], if its identity map is
(k,K)-homotopic to the constant functiop for some

p € X. If the construction of homotopy holdsfixed, we
say(X, p,K) is pointedk -contractible.

3 Digital Homotopy Groups

Itis well known that digital interval0, m|z is 2-connected.
Thus,n-ary cartesian power d0, m|,

[0,m]z x [0,m]z x ... x [0,m]z = [0,m]},
is 2n-connected.

The n-boundary of [0,m]7,
defined as follows:

denoted byad[0,m|z, is

2[0,m)y ={(ts,...,tn): i €{1,2,..,miti=0o0rt;=m}.
Let (X,p,k) be a pointed digital image. Let
f: ([0,m3,0[0,m]]) — (X,p) be a(2n,k)-continuous
map, that is, the restriction map 6f
f:[om)} — X

is (2n, K )-continuous and

f(2[10,mz) = p.

Definition 3.1. Define S(X,p) as the set of all
(2n,K)-continuous maps on the digital imagé and a
base poinp of the formf : ([0,m[},d[0,m];) — (X, p).

A digital analogue of homotopy relation for higher

homotopy groups in algebraic topology given t6]26]
is as follows:

Definition 3.2.Let (X, p, k) be a pointed digital image and
f.g: ([0,mlz,2(0,mjz) — (X, p)
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be two (2n,k)-continuous maps. If there is a positive be(2n,k)-continuous maps. By the definition, these maps

integerm; and a map belong toS! (X, p). The 'product’ off andg, written f xg,
N is the generalization of definition of the product given in
F:[0,mz x [0,my]z — X [19]. Formally;

such that the following conditions are satisfied, then we
say thatf andg are relative homotopic with respect to

f : n n X
2]0,m) and denote it byf ~ g rel [0, m]}: (Fx9): ([0, My +myJz, 5[0, My +Mylz) = (X, p)

—For allt = (tg,t, ...,tn) € [0,m]2, F(t,0) = f(t), and ~ Forafixedindex e {1,....n}
F(t,m) = g(b);

—for all s€ [0,my]z, and for allt € 9[0,m]}, F(t,s) = p; f(tz; s tn), t1€[0,miz

—for all t € [0,m]], the induced mag : [0,my]z — X and forj # 1, tj <my;
defined byR(s) = F(t,s) for all se€ [0,my]z is  (fxQ)(t)=< g(ty,....t —mi,...,tn), t € [mg, Mg+ My
(2,K)-continuous; . and forj # 1, tj < my;

—for all s e [0,m]z, the induced maps : [0, M), — X otherwise
defined by Fs(t) = F(t,s) for all t € [0,m]} is P,

(2n,K)-continuous.

) . ) . From now on, without loss of generality we fix the
The following theorem is the analogous version for in jndexi ¢ {1,...,n} as 1, i.e., we assume that:

[6, Proposition 2.8]:

Proposition 3.3. The relative homotopy relation is an fty,....tn), ty € [0,mu]z,

equivalence relation on the s&f (X, p). The set of all and forj # 1, tj < my;

equivalent classes of§j(X,p) under the relative (fig)(t)={g(ti—my,ts,...ty), te [y, My + Mgz

homotopy relation will be denoted by (X, p) and the and forj # 1, t; < mp;

equivalence class df € S$(X, p) will be denoted by f]. : =
X0, otherwise

Now we adapt the concept of tHérivial extension
map’ [7] in the casen = 1 for higher dimensions.
Lemma 3.6 The operation is well-defined on the set of
Definition 3.4.Let (X, p, k) be a pointed digital image and 115 (X, p), i.e, if f, f> € [f] andgy, g2 € [g], then

f: ([Ovm]%vd[ovm]%)% (X,p) [fl*gl]:[fZ*gZ]'

be (2n,k)-continuous map. If there is a positive integer

. Proof Let
integerm; > m, and a map

£ ([0.my]2,0[0.my]1) - (X.p) defined as fi, f2 2 ([0,mu]z, 0[0,mJz) ~ (X.p)  and

(|0 n.,d[0 D X
'ty ...tn)z{f“), 0<vVt<m i=12..n 9,02 : (10, melz, JI0, melz = (X, )

p otherwise be (2n, k)-continuous maps.

for t = (tg,...,ta) € [0,my]}, then f’ is called the Sincefy ~ f, rel d[0,my], there is a positive integer
trivial extension of f. n; and a map

Digital (2n,k)-continuous maps andg in S(X, p) G:[0,my]7 x [0,m]z  such that
belong to the same equivalence clas$Tfi(X, p) if there N
are trivial extensiong’ andg of f andg, respectively, for all t = (ty,...tn) € [0,my]7, G(t,0) = fa(t) and
whose domains have the same cardinality, and a relative G(t,ny) = fa(t); N
digital homotopy betweeff andg'. —forallse [0,ny]z, and for allt € 2[0,my )7, G(t,s) = p;

—for all t € [0,my]7, the induced mags; : [0,n1]z — X
defined by Gi(s) = G(t,s) for all s € [0,n1]y is
(2,K)-continuous;

. n n —for all s€ [0,n4], the induced mafss : [0,my]) — X

f 2 ([0,mu]z,0[0,m]z) — (X, p) defined b[szgt) = G(t,s) for all t é [o,gnzl]% is

and (2n,k)-continuous.

g: ((0,mg]3,9[0,ml7) — (X, p)

Definition 3.5. Let (X, p,k) be a pointed digital image.
Let
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Sinceg; ~ gz rel d[0,my]}, there is a positive integer
n, and a map
H:[0,mp]} x [O,ng]z  such that
—for all t = (t,...,ta) € [0,mp]}, H(t,0) = gi(t) and
H(t,nz) = ga(t);
—forall se [0,ny]z, and for allt € d[0,mp]7, H(t,s) = p;
—for all t € [0,mp]7, the induced mapt; : [0,nz]z — X
defined by Gi(s) = G(t,s) for all s € [0,ny]z is
(2,K)-continuous;
—for all s € [0,n,]z, the induced mapis : [0,mp]) — X
defined byHs(t) = H(t,s) for all t € [0,mp] is
(2n,k)-continuous.

Letmg=m +mpandnz=n;+ny

(fixg1) : ([0,mg]7,0[0,mg]7) — X

fi(t), t1€[0,m]z, and forj #1,
t) < my;
(fixg1)(t) =  91(t*), t1 € [my,mglz, and forj #1,
t) < my;
P, otherwise

wheret = (ty,...,th) andt™ = (tg — my, ..., tn).

(f2*92) : ([O, m3]%70[07m3]%) - X

fa(t), t1€[0,m]z, and forj #1,
tj < my;
(faxg1)(t) = G2(t*), te[m,mgz, and forj #1,
t) < mp;
p, otherwise

wheret = (ty,...,tn) andt* = (t; — my, ..., t).

G(t,min{0,n1}), t; € [0,my]z, and for

J# Lt <my;
F(t,0)= < H(t*,max{0—n1,0}), t1 € [my,mg]z, and for
J ALt <my;
p, otherwise
G(t,0), t; € [0,my]z, and for
J# Lt <my;
= ¢ H(t*,0), t; € [my, mg]z, and for
J# Lt <y,
P, otherwise
= (fixg1)(1).
G(t,min{nz,n1}), t; € [0,my]z, and forj # 1,
t) < my;
F(t,n3) =< H(t*,max{ns —n1,0}), t1 € [my,mg]z, and fof # 1,
t) < mp;
P, otherwise

ty € [0,my]z, and forj # 1,
ty € [mg,mg]z, and forj # 1,

p, otherwise

= (faxg2)(t)

wheret = (tg,...,th) andt™ = (tg — my, ..., tn).

By Lemma 3.6, the operation

[f]x[g] = [fxg]

Now let's define a relative homotopy map betweenis well-defined onf1} (X, p). We will show that the set

(fl*gl) and(fz*gz).
F :[0,mg]}, x [0,ng] — X

G(t,min{s,n1}), t; € [0,my]z, and for

J ALt <my;
F(t,s) =< H(t*,max{s—n1,0}), t; €[my,ms|z, and for
J# Lt <y,
P, otherwise

wheret = (ty,...,tn) andt* = (t; — my, ..., t).

Then the mapF is a relative homotopy between
(f1*91) and(fz*gz) and;

X (X, p) together with the+' operation is a group.

Lemma 3.7.The operation*' is associative on the set
r¥ (X, p). Thatis, if[f],[g], [h] € 15 (X, p), then

([fxglxh) = ([f]x[gxh]).

Proof The proof follows from the analogous result in [6,

Lemma 4.5].
O

Lemma 3.8.Let (X, p,k) be a pointed digital image and

€p: ([Ov m]%va[ov m]%) - (Xv p)
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be a map defined byeyt) = p for all
t = (t1,....,tn) € [O,m];. Then[ep] is an identity element

for [14(X, p). Thatis, if[f] € M1£(X, p), then f(t), t1€[0,mz, and forj#1,
tp<m
(7] [ep] = (&« [] = [f]. (fxg)() =4 g(t"). te[m2amy, and forj # 1,
Proof L =
root Let P, otherwise

£ (j0,m%,a0,m) — (X
(10.miz, 910.mfz) = (X, p) f(t), tie[0,mlz, and forj #1,

be a(2n, k)-continuous map and tp<m
=< f(t'), t;e€[m2m|z, and forj # 1,
€p: ([07 m]%vd[ov m]%) — (X7 p)? ( ) < r[n ]
j > I
ep(t) = p vt = (t1,t2,...,tn) € [0,m]}, be a constant map. P, otherwise

We'd like to show that wheret = (ty,...,th) andt’ = (2m—ty, ..., ).

fxep~ f rel 9[0,m]}.

Define;
. n
(fxep) : ([0,2m%, [0, 2m%) — (X, p) H 2 {0,2miz > [0,mlz — X
f(t), te0my and forj£1, (fxg)®, uelom-ggorfor j~1
b o< H(t,s) = m+s<t; <2m
) ="" 1 ;
(fxep)(t) =< ep(t"), tye[m2ml|z, and forj #1, (Fxg)(t"), otherwise
G=m wheret = (t,...,ty) andt”) = (m—s,....t,)
p, otherwise
Then the digital magH is a relative homotopy between
f(t), tpe[0,mz, and forj #1, (f*g) andep.
= t<m . - .
0 Jo?herwise With a similar proof, it can be seen th@g« f) ~ e,
’ rel 2[0,m]7.
Then we see thdtf x e) are trivial extensions of, hence O
they are relative homotopic to each othér> (f xep)
rel 2[0,m]3. Definition 3.10. The set 1% (X,p) together with the
operationx has a group structure as the previous three
Similarly, it can be seen théep+ f) ~ f rel 9[0,m]}. lemmas hold. This group is called a digitath homotopy

group of a pointed digital image (X, p).
U
Lemma 3.11.Let (X, p,k1) and(Y,q,k2) be two digital
Lemma 3.9.Let (X, p,k) be a pointed digital image and images, and let the digital map
f :[0,m], — X be a(2n, k)-continuous map. Then the map
¢:(X,p) = (Y,q), ¢(p)=q

be a(k1, k2)-continuous. Iff : ([0,m],,2[0,m]z) — (X, p)
defined by is (2n, k1)-continuous map, then

aoTm e (Bo1): (0.m%000.mz) - (¥.q)
for t = (tg,..,tn) € [0, is an element of(f~% in o ) - ([0:mz,0[0,mlz) — (¥.q

15 (X, p). is (2n, k2)-continuous map.

g: ([0,m]3,0[0,mz) — (X, p)

Proof We'd like to show that there is a relative homotopy Lemma 3.12.Let (X, p, k1) and (Y,q,k2) be two digital
between(f xg) andey. images, and

(f+g):([0,2m]3,0[0,2mz) — (X, p) ¢:(X,p) = (Y,q), ¢(p)=q
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be a(k1, k2)-continuous map. For
f,g:([0,m]7,0[0,m|z) — (X, p)

(2n,k1)-continuous maps, iff ~ g rel 9[0,m]}, then
pof~¢og reld0o,m.

Proof Let f ~g rel 2[0,m];. Then there exists a digital
interval[0,m ]z, and a digital map

F :[0,m]}, x [0,m]z — X such that

—for all t = (tg,...,tn) € [0,m]}, F(t,0) = f(t) and
F(t,m) = g(t);

—for all se [0,my]z, and for allt € [0, m]}}, F(t,s) = p;

—for all t € [0,m]}, the induced may : [0,my]z; — X
defined by R(s) = F(t,s) for all s € [0,m]z is
(2,K1)-continuous;

—for all s € [0,my]z, the induced mays : [0,m]7, — X
defined by Fs(t) = F(t,s) for all t € [O,m]) is
(2n,K1)-continuous.

We'd like to construct a relative homotopy map
between

(¢ o f),(d) Og) : ([Ovm]%vd[ovm]Z) - (Y,C]).

Define,
H:[0,m]3 x [0,my]z — X

H(t,s) = ¢ oF(t,s) fort=(ty,...,tn) € [0,m]}.
Then;

—for all t = (ty,...,ty) € [0,m]}}, H(t,0) = ¢ o f(t) and
H(t,m) = ¢og(t);

—for all s € [0,my]7 and for allt € 2[0,m|}, H(t,s) =q;

—for all t € [0,m]?, the induced mapt; : [0,m]z — Y,
H: (s) ¢ o F(t,s) for all s € [0,my]z is
(2,K3)-continuous;

—for all s [0,my]z, the induced mapls : [0,m]7, — X,

Hs(t) = ¢ o F(t,s) for all t € [Om]; is
(2n, Kz)-continuous.
Hence(¢of)~ (¢og) rel2[0,m].
t

Theorem 3.13.The digital homotopy group construction

(Y, q) are isomorphic groups for all positive integer

Proof Let ¢ : X — Y be (K1, K2)-isomorphism map and
®(p) = q, ¢ has a(ky, K1)-continuous inverse, say,
@:Y — X suchthate(q) = p.

Then,
¢pop=I1dy and @o ¢ = ldy.

From Theorem 3.13, the homotopy functbl, is

covariant functor and preserves the composition of maps

and identity. Hence;
IMn(¢ o @) = Mn(ldy) — MMn(¢) o M(@) = 1dm, v
so that the homomorphisfi,(¢) is surjective and,;

Ma(@o @) =h(Idx) — Mn(@)oMa(¢) = Idm,x,p)

so that the homomorphisifi,(¢) is injective. Therefore,
M,(¢) is a group isomorphism betwedt;*(X, p) and
Ma?(Y,q).

0

Corollary 3.15. If the pointed digital imagegX, p, k1)
and(Y, g, k2) have the saméxi, k2)-homotopy type, then
their n-th homotopy groups are isomorphic.

Corollary 3.16. Let (X, p,k) be a pointed digital image
that is contractible to a point. Thenl1X (X, p) is trivial
for all positive integen.

Proof SinceX is contractible to a poinp, there exists
a homotopy map between the identitiy map>ofand a
constant map such that

H: X x[0,m]z — X
—H(x,0) =x, ¥xeX;

—H(x,m)=p, Vpe Xand,
—H(p,s) =p, Vse [0,m]z

Take any(2n, K )-continuous map,
f:([0,mlz,0[0,m]z) — (X, p).

Define the relative homotopy map

induces a covariant functor from the category of pointed

digital images and pointed digitally continuous functions

to the category of groups and homomorphisms.

G:[0,m]} x [0,my]z — X

(t,s) — G(t,s) = H(f(t),9)

Proof The proof follows from the analogous version for fort = (ty,...,tn) € [0,m]7. Then

[6, Proposition 2.8].

—Forallt = (ty,...,tn) € [0,m]},

U
G(t,0) = H(f(ty,...,tn),0) = f(t1,...,tn)
Theorem 3.14.1f (X,p,k1) and (Y,q,K2) are (Ki,K2)
isomorphic and the poinp € X is mapped to the point and
g € Y under the isomorphism map, then/7* (X, p) and G(t,my) =H(f(t),m)=p;
(@© 2015 NSP
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—for all s€ [0,my]z, and for allt € 2[0, ]}, As an another example, the image of the seismic
section is given below. The blue line is a fault and the red

G(t,s) =H(p,s) = p; lines are erosional surfaces. The computation of the

digital homotopy groups of the seismic section might be

—forallt € [0,m]7, the induced ma: : [0,mi]z — X, able to detect the breaking point of the fault. The digital

Gi(s) = H(f(t),s)

for all s€ [0,my]z is (2, k)-continuous;
—for all s€ [0,my]z, the induced mas : [0,m], — X,

forallt € [0,m]?} is (2n, K )-continuous.

So, f ~ep rel 9[0,m],, and hence the grouf, (X, p) is :
trivial. 2 s
U

Fig. 2: The image of a fault and an erosional surfaces of a seismic
section.

4 Application

homotopy can be used to reduced the computer data of
Digital image processing algorithms are the tools forthe image for saving of time. This is a tool for thinning
correcting the quality of images such as satellite imagesoperation for the digital image to reduce the data without
telescope images, videos, photos or photoshops. Anjoosing its own topological properties. Below the digital
distinction that can be measured, idenitified, compared otmage
visualized are extremely important. By combining the ,
algebraic  topological concepts such as Euler MSC; = {(1,0),(0,1),(~1,0)(0,—1)}
characteristics, (co)homology groups, fundamental and . ) ,
homotopy groups with digital topology we can IS @n 8-deformation retract @< — {go, 0)}. In this
distinguish or compare the digital images between eactfXample the infinite digital imageZ® — {(0,0)} is
other. As an example computer scientists use thgeduced to bounded image without loosing its
fundamental group to count the objects in the imagesCOnnectivity and homotopy typdf].
Also the contractibility is a kind of a thinning operation
and it can be used to compare or classify the digital
objects.

Since regions in 2 or 3 dimensional Euclidean spaces
are digitized as the discrete grid of pixels or voxels which
have integer coordinates respectively, it is of interest to
consider topological invariants that are preserved by the e e
digitization process for computer tomography. The digital
homotopy groups are such a tool for the desired interest.
As an example, by computing the digital homotopy
groups of MRI and CAT scan o a brain, it may detect the
abnormalities. like a brain t.umor'and diagn'ose the size or Fig. 3: MSC8' is an 8-deformation retract &2 — {(0,0)}.
the stage of it by comparing with the digital homotopy
groups of fine brain scan.

5 Conclusion

In this paper we introduce the construction of the digital
homotopy groups and show that they are invariants for
digital images. In the future, we will investigate the

relationship between the digital higher homotopy groups
and digital covering space map, and the relationship
) ) between the digital homology groups and the homotopy
Fig. 1: MRI scan of a tumoral brain. groups of a digital image. The homotopy theory in

(@© 2015 NSP
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algebraic topology satisfies all the homology axioms[19] E. Khalimsky, Motion, deformation, and homotopy in

except the ‘excision’. We'll explore which homology finite spaces, Proceedings IEEE International Conference o
axioms are satisfied without any certain conditions. Also  Systems, Man, and Cybernetics, 227-234 (1987).

we'll study the digital homotopy groups of a pair and we [20] T.Y. Kong, A Digital Fundamental Group, Computers and
hope that this will yield us to compute the homotopy  Graphicsl3, 159-166 (1989).

groups of some part of the digital image if we know the [21] R. Kopperman, On Storage of Topological Information,

homotopy groups of an entire image. Discrete Applied Mathematick47, 287-300 (2005).
[22] A. Kovalevsky, Finite Topology as Applied To Image

Analysis, Computer Vision, Gaphics and Image Processing
46, 141-161 (1989).
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