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Abstract: By combining the algebraic topological concepts such as Euler characteristics, (co)homology groups, fundamental and
homotopy groups with digital topology we can compare, classify or identify the digital images between each other. In this paper, we
explore the digital relative homotopy relation between twocontinuous functions on a pointed digital image whose domains aren-cube
and which map the boundary of ann-cube to a fix point. Then we introduce thenth homotopy group of a pointed digital image and give
a relation between the homotopy groups of two pointed digital images.
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1 Introduction

Digital Topology is to study and characterize the
properties of digital images. Therefore it plays an
important role in Computer Vision, Image Processing and
Computer Graphics. Researchers (Rosenfeld, Kong,
Kopperman, Kovalevsky, Malgouyres, Ayala, Boxer,
Chen, Han, Karaca and others) in this area have studied to
determine the properties of digital images with tools from
Topology (especially Algebraic Topology).

Rosenfeld [25] introduced a notion of continuity for
functions between digital images. This notion has an
importance in the applications of image processing and
particularly in the study of mappings between the digital
images. Boxer extends the results of Rosenfeld’s by
examining the digital versions of several classical notions
from topology including homeomorphism, retraction, and
homotopy to compare the digital images in [5]. The
digital fundamental group of a discrete object was first
introduced by Kong [20]. Later Boxer has showed how
classical methods of Algebraic Topology may be used in
calculating the digital fundamental form group based on
the notions of digitally continuous functions [25], and the
digital homotopy [5]. Boxer [9] has also examined the
digital fundamental groups of unbounded digital images.
Ayala and al. [3] have observed that the digital
fundamental object is naturally isomorphic to the

fundamental group of its continuous analogue. Han [18]
also introduces the digital covering space and proves the
non-product property of the digital fundamental group of
the digital product image. Boxer [8] discusses the errors
of Han’s results [18], and develops further the topic of the
digital covering space by concerning the existence and
properties of digital universal covering spaces. Boxer and
Karaca [10] show that the digital covering spaces are
classified by the conjugacy class corresponding to a
digital covering space. Boxer and al. [13] compute the
simplicial homology groups of certain minimal simple
closed surfaces and the Euler characteristics of certain
digital surfaces.

One of the achievements of Algebraic Topology is to
turn the global topological problems into Homotopy
Theory problems. In mathematics, homotopy groups are
important invariants in Algebraic Topology and used in
classifying the topological spaces and generalize the
fundamental group which gives an information about
loops and homotopy groups give information about holes
of a space. The fundamental group was defined by
Poincaré inAnalysis Situs [24] and in the same paper he
introduced Homology Theory and the relation between
homology and homotopy. To describe higher dimensional
connectivity by the homotopy concept, mathematicians
need a generalization of the fundamental group to higher
dimensions. One would hope for a sequence of groups
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which are amenable to computation and have the property
that two spaces are homeomorphic if and only if their
corresponding groups are isomorphic. The definitions of
homotopy groups were given by EduardČech and Witold
Hurewicz in 1932-1935. In recent years, one of the most
famous problem of algebraic topology is to determine the
homotopy groups ofn-spheres. Homotopy is more easily
defined and conceptionally simpler. It doesn’t require
elaborating the explanations of chains, boundaries, cycles
or quotient groups. Homotopy applies immediately to
general topological spaces and does not require the
special polyhedral structure that are used in homology.

Poincaré [24] was greatly preoccupied with the
classification problem. He hoped that the fundamental
group would overcome the deficiencies of Homology
Theory in the classification of 3-manifolds. However,
J.W. Alexander [1] showed that there exists
non-homeomorphic 3-manifolds having isomorphic
homology groups and isomorphic fundamental groups.
We think that the same problem may occur in Digital
Topology; we might have two digital images that are not
isomorphic (we use the term ”isomorphic” instead of
”homemorphic”) to each other but their corresponding
digital fundamental groups and digital homology groups
are isomorphic. The aim of this paper is to explore the
digital homotopy groups of a digital image and show that
they are invariants of a digital image.

This paper is organised as follows. In the preliminary
part, we give some basic definitions such as digital
κ-adjacencies, a digital(κ1,κ2)-continuous function, a
digital (κ1,κ2)-isomorphism, digitally(κ1,κ2)-homotopy,
a pointed digital image, a continuous map between two
pointed digital images, and a pointed contractible digital
image. In Section 3, we introduce a ’relative homotopy
map’ between two continuous functions that map the
n-cube to a pointed digital image and the boundary of an
n-cube is mapped to a base point. Then we show that the
relative homotopy relation is an equivalence relation and
the equivalence classes together with the operation ’⋆’
that we introduce is a digitaln-th homotopy group of a
pointed digital image. Also this construction yields a
covariant functor from the category of pointed digital
images and a pointed continuous functions to the category
of groups and homomorphisms. As a result we get some
conclusions.

2 Preliminaries

Let Z be the set of integers. A (binary) digital image is a
pair (X ,κ), whereX ⊂ Z

n for some positive integern and
κ indicates some adjacency relation for the members of
X . A variety of adjacency relations are used in the study
of digital images. The following terminology is used in
[20]. Two pointsp andq in Z

2 are 8-adjacent if they are

distinct and differ by at most 1 in each coordinate;p and
q in Z

2 are 4-adjacent if they are 8-adjacent and differ in
exactly one coordinate. Two pointsp and q in Z

3 are
26-adjacent if they are distinct and differ by at most 1 in
each coordinate; they are 18-adjacent if they are
26-adjacent and differ in at most two coordinates; they are
6-adjacent if they are 18-adjacent and differ in exactly
one coordinate. We generalize these adjacencies as
follows [9]. Let l,n be positive integers, 1≤ l ≤ n and
two distinct pointsp = (p1, . . . , pn), q = (q1,q2, . . . ,qn) in
Z

n, p andq areκl-adjacent if there are at mostl distinct
coordinatesj for which |p j − q j| = 1, and for all other
coordinatesj, p j = q j. A κl-adjacency relation onZn

may be denoted by the number of points that areκl
adjacent to a pointp ∈ Z

n. Thus, theκ1-adjacency onZ
may be denoted by the number 2, andκ1-adjacent points
of Z are called 2-adjacent. Similarly,κ1-adjacent points
of Z2 are called 4-adjacent;κ2-adjacent points ofZ2 are
called 8-adjacent; and inZ3, κ1-, κ2-, and κ3-adjacent
points are called 6-adjacent, 18-adjacent, and 26-adjacent,
respectively.

Let κ be an adjacency relation defined onZn. A
κ-neighbor of p ∈ Z

n is a point ofZn that isκ-adjacent to
p. A digital imageX ⊂ Z

n is κ-connected [?] if and only
if for every pair of different pointsx,y ∈ X , there is a set
{x0,x1, . . . ,xr} of points ofX such thatx = x0, y = xr and
xi andxi+1 areκ-neighbors wherei ∈ {0,1, . . . ,r−1}. A
κ-component of a digital image X is a maximal
κ-connected subset ofX .

Let a,b ∈ Z with a ≤ b. A digital interval [6] is a set of
the form

[a,b]Z = {z ∈ Z : a ≤ z ≤ b}

in which 2-adjacency is assumed.

Let X ⊂ Z
n1 and Y ⊂ Z

n2. Let κi be an adjacency
relation defined onZni , i ∈ {1,2}. We say that a function
f : X → Y is (κ1,κ2)-continuous [8] if the image underf
of everyκ0-connected subset ofX is κ1-connected subset
of Y .

Let X ⊂ Z
n1 and Y ⊂ Z

n2 be digital images with
κ1-adjacency andκ2-adjacency respectively. Then the
function f : X → Y is (κ1,κ2)-continuous [25,6] if and
only if for every pair ofκ1-adjacent points{x0,x1} of X ,
either f (x0) = f (x1) or f (x0) and f (x1) areκ2-adjacent in
Y .

Composition preserves digital continuity [6], i.e., if
f : X → Y and g : Y → Z are (κ1,κ2)-continuous and
(κ2,κ3)-continuous respectively, then the composite
function(g ◦ f ) : X → Z is (κ1,κ3)-continuous.

Let X ⊂ Z
n1 and Y ⊂ Z

n2 be digital images with
κ1-adjacency andκ2-adjacency respectively. A function
f : X → Y is a (κ1,κ2)-isomorphism [5] if f is
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(κ1,κ2)-continuous and bijective and furtherf−1 : Y → X
is (κ2,κ1)-continuous.

Definition 2.1. ([6]; see also [19]) Let X andY be digital
images. Letf ,g : X →Y be(κ1,κ2)-continuous functions.
Suppose there is a positive integerm and a function

F : X × [0,m]Z → Y such that

–for all x ∈ X , F(x,0) = f (x) and F(x,m) = g(x);
–for all x ∈ X , the induced functionFx : [0,m]Z → Y
defined by Fx(t) = F(x, t) for all t ∈ [0,m]Z is
(2,κ2)-continuous; and

–for all t ∈ [0,m]Z, the induced functionFt : X → Y
defined by Ft(x) = F(x, t) for all x ∈ X is
(κ1,κ2)-continuous,

then F is a digital (κ1,κ2)-homotopy betweenf and g,
and f and g are digitally (κ1,κ2)-homotopic inY , and
denoted byf ≃κ1,κ2 Y .

Digital (κ1,κ2)-homotopy is an equivalence relation
among digitally continuous functionsf : X → Y (see [19,
6]).

If (X ,κ) is a digital image andp ∈ X , the triple
(X , p,κ) is a pointed digital image ([9]). A pointed
digitally continuous function f [8,9] from a pointed
digital image (X , p,κ1) to a pointed digital image
(Y,q,κ2) such thatf (p) = q.

Let f andg be pointed digitally continuous functions
from (X , p) to (Y,q). A digital homotopy

H : X × [0,m]Z → Y

between f and g is called a pointed digital homotopy
between f and g if for all t ∈ [0,m]Z, H(p, t) = q (see
[8]).

If (X , p,κ1) and(Y,q,κ2) are pointed digital images,

f : X → Y

a (κ1,κ2)-continuous function such thatf (p) = q,

g : Y → X

a (κ2,κ1)-continuous function such thatg(q) = p,

H : X × [0,mX ]Z → Y

a (κ1,κ2)-homotopy betweeng ◦ f and 1X such that

H(p, t) = q

for all t ∈ [0,mX ]Z, and

K : Y × [0,mY ]Z → Y

a (κ2,κ1)-homotopy betweenf ◦ g and 1Y such that

K(q, t) = p

for all t ∈ [0,mY ]Z, then(X , p,κ1) and(Y,q,κ2) have the
same (κ1,κ2)-homotopy type and are called
(κ1,κ2)-pointed homotopy equivalent [9]. These
functions f and g are called pointed homotopy
equivalences.

For p ∈ Y , let p denote the constant function for some
p ∈ X defined by

p(x) = p

for all x ∈ X . A digital image (X ,κ) is said to be
κ-contractible [6,19], if its identity map is
(κ ,κ)-homotopic to the constant functionp for some
p ∈ X . If the construction of homotopy holdsp fixed, we
say(X , p,κ) is pointedκ-contractible.

3 Digital Homotopy Groups

It is well known that digital interval[0,m]Z is 2-connected.
Thus,n-ary cartesian power of[0,m]Z

[0,m]Z× [0,m]Z× ...× [0,m]Z = [0,m]n
Z

is 2n-connected.

The n-boundary of [0,m]n
Z
, denoted by ∂ [0,m]Z, is

defined as follows:

∂ [0,m]n
Z
= {(t1, ..., tn) : ∃i ∈ {1,2, ..,m} ti = 0 or ti = m }.

Let (X , p,κ) be a pointed digital image. Let
f : ([0,m]n

Z
,∂ [0,m]n

Z
) → (X , p) be a (2n,κ)-continuous

map, that is, the restriction map off

f : [0,m]n
Z
→ X

is (2n,κ)-continuous and

f (∂ [0,m]n
Z
) = p.

Definition 3.1. Define Sκ
n (X , p) as the set of all

(2n,κ)-continuous maps on the digital imageX and a
base pointp of the form f : ([0,m]n

Z
,∂ [0,m]n

Z
)→ (X , p).

A digital analogue of homotopy relation for higher
homotopy groups in algebraic topology given in [16,26]
is as follows:

Definition 3.2.Let (X , p,κ) be a pointed digital image and

f ,g : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p)
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be two (2n,κ)-continuous maps. If there is a positive
integerm1 and a map

F : [0,m]n
Z
× [0,m1]Z → X

such that the following conditions are satisfied, then we
say that f and g are relative homotopic with respect to
∂ [0,m]n

Z
and denote it byf ≃ g rel ∂ [0,m]n

Z
:

–For all t = (t1, t2, ..., tn) ∈ [0,m]n
Z
, F(t,0) = f (t), and

F(t,m1) = g(t);
–for all s ∈ [0,m1]Z, and for allt ∈ ∂ [0,m]n

Z
, F(t,s) = p;

–for all t ∈ [0,m]n
Z
, the induced mapFt : [0,m1]Z → X

defined by Ft(s) = F(t,s) for all s ∈ [0,m1]Z is
(2,κ)-continuous;

–for all s ∈ [0,m1]Z, the induced mapFs : [0,m]n
Z
→ X

defined by Fs(t) = F(t,s) for all t ∈ [0,m]n
Z

is
(2n,κ)-continuous.

The following theorem is the analogous version for in
[6, Proposition 2.8]:

Proposition 3.3. The relative homotopy relation is an
equivalence relation on the setSκ

n (X , p). The set of all
equivalent classes ofSκ

n (X , p) under the relative
homotopy relation will be denoted byΠ κ

n (X , p) and the
equivalence class off ∈ Sκ

n (X , p) will be denoted by[ f ].

Now we adapt the concept of the’trivial extension
map’ [7] in the casen = 1 for higher dimensions.

Definition 3.4.Let (X , p,κ) be a pointed digital image and

f : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p)

be (2n,κ)-continuous map. If there is a positive integer
integerm1 ≥ m, and a map

f ′ : ([0,m1]
n
Z
,∂ [0,m1]

n
Z
)→ (X , p) defined as

f ′(t1, ..., tn) =

{

f (t), 0≤ ∀ ti ≤ m, i = 1,2, ...,n;
p, otherwise.

for t = (t1, ..., tn) ∈ [0,m1]
n
Z
, then f ′ is called the

trivial extension of f .

Digital (2n,κ)-continuous mapsf andg in Sκ
n (X , p)

belong to the same equivalence class inΠ κ
n (X , p) if there

are trivial extensionsf ′ and g′ of f and g, respectively,
whose domains have the same cardinality, and a relative
digital homotopy betweenf ′ andg′.

Definition 3.5. Let (X , p,κ) be a pointed digital image.
Let

f : ([0,m1]
n
Z
,∂ [0,m1]

n
Z
)→ (X , p)

and
g : ([0,m2]

n
Z
,∂ [0,m2]

n
Z
)→ (X , p)

be(2n,κ)-continuous maps. By the definition, these maps
belong toSκ

n (X , p). The ’product’ of f andg, written f ⋆g,
is the generalization of definition of the product given in
[19]. Formally;

( f ⋆ g) : ([0,m1+m2]
n
Z
,∂ [0,m1+m2]

n
Z
)→ (X , p)

For a fixed indexi ∈ {1, ...,n}

( f ⋆g)(t)=



























f (t1, ..., tn), t1 ∈ [0,m1]Z
and for j 6= 1, t j ≤ m1;

g(t1, ..., ti −mi, ..., tn), ti ∈ [m1,m1+m2]Z
and for j 6= 1, t j ≤ m2;

p, otherwise.

From now on, without loss of generality we fix the
indexi ∈ {1, ...,n} as 1, i.e., we assume that:

( f ⋆g)(t)=



























f (t1, ..., tn), t1 ∈ [0,m1]Z
and for j 6= 1, t j ≤ m1;

g(t1−m1, t2, ..., tn), t1 ∈ [m1,m1+m2]Z
and for j 6= 1, t j ≤ m2;

x0, otherwise.

Lemma 3.6 The operation is well-defined on the set of
Π κ

n (X , p), i.e, if f1, f2 ∈ [ f ] andg1,g2 ∈ [g], then

[ f1 ⋆ g1] = [ f2 ⋆ g2].

Proof Let

f1, f2 : ([0,m1]
n
Z
,∂ [0,m1]

n
Z
)→ (X , p) and

g1,g2 : ([0,m2]
n
Z
,∂ [0,m2]

n
Z
→ (X , p)

be(2n,κ)-continuous maps.

Since f1 ≃ f2 rel ∂ [0,m1]
n
Z
, there is a positive integer

n1 and a map

G : [0,m1]
n
Z
× [0,n1]Z such that

–for all t = (t1, ..., tn) ∈ [0,m1]
n
Z
, G(t,0) = f1(t) and

G(t,n1) = f2(t);
–for all s ∈ [0,n1]Z, and for allt ∈ ∂ [0,m1]

n
Z
, G(t,s) = p;

–for all t ∈ [0,m1]
n
Z
, the induced mapGt : [0,n1]Z → X

defined by Gt(s) = G(t,s) for all s ∈ [0,n1]Z is
(2,κ)-continuous;

–for all s ∈ [0,n1]Z, the induced mapGs : [0,m1]
n
Z
→ X

defined by Gs(t) = G(t,s) for all t ∈ [0,m1]
n
Z

is
(2n,κ)-continuous.
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Sinceg1 ≃ g2 rel ∂ [0,m2]
n
Z
, there is a positive integer

n2 and a map

H : [0,m2]
n
Z
× [0,n2]Z such that

–for all t = (t1, ..., tn) ∈ [0,m2]
n
Z
, H(t,0) = g1(t) and

H(t,n2) = g2(t);
–for all s∈ [0,n2]Z, and for allt ∈ ∂ [0,m2]

n
Z
, H(t,s) = p;

–for all t ∈ [0,m2]
n
Z
, the induced mapHt : [0,n2]Z → X

defined by Gt(s) = G(t,s) for all s ∈ [0,n2]Z is
(2,κ)-continuous;

–for all s ∈ [0,n2]Z, the induced mapHs : [0,m2]
n
Z
→ X

defined by Hs(t) = H(t,s) for all t ∈ [0,m2]
n
Z

is
(2n,κ)-continuous.

Let m3 = m1+m2 andn3 = n1+ n2

( f1 ⋆ g1) : ([0,m3]
n
Z
,∂ [0,m3]

n
Z
)→ X

( f1 ⋆ g1)(t) =



























f1(t), t1 ∈ [0,m1]Z, and for j 6= 1,
t j ≤ m1;

g1(t∗), t1 ∈ [m1,m3]Z, and for j 6= 1,
t j ≤ m2;

p, otherwise.

wheret = (t1, ..., tn) andt∗ = (t1−m1, ..., tn).

( f2 ⋆ g2) : ([0,m3]
n
Z
,∂ [0,m3]

n
Z
)→ X

( f1 ⋆ g1)(t) =



























f2(t), t1 ∈ [0,m1]Z, and for j 6= 1,
t j ≤ m1;

g2(t∗), t∈[m1,m3]Z, and for j 6= 1,
t j ≤ m2;

p, otherwise.

wheret = (t1, ..., tn) andt∗ = (t1−m1, ..., tn).
Now let’s define a relative homotopy map between
( f1 ⋆ g1) and( f2 ⋆ g2).

F : [0,m3]
n
Z
× [0,n3]

n
Z
→ X

F(t,s)=



























G(t,min{s,n1}), t1 ∈ [0,m1]Z, and for
j 6= 1, t j ≤ m1;

H(t∗,max{s− n1,0}), t1 ∈ [m1,m3]Z, and for
j 6= 1, t j ≤ m2;

p, otherwise.

wheret = (t1, ..., tn) andt∗ = (t1−m1, ..., tn).

Then the mapF is a relative homotopy between
( f1 ⋆ g1) and( f2 ⋆ g2) and;

F(t,0)=



























G(t,min{0,n1}), t1 ∈ [0,m1]Z, and for
j 6= 1, t j ≤ m1;

H(t∗,max{0− n1,0}), t1 ∈ [m1,m3]Z, and for
j 6= 1, t j ≤ m2;

p, otherwise.

=



























G(t,0), t1 ∈ [0,m1]Z, and for
j 6= 1, t j ≤ m1;

H(t∗,0), t1 ∈ [m1,m3]Z, and for
j 6= 1, t j ≤ m2;

p, otherwise.

= ( f1 ⋆ g1)(t).

F(t,n3)=



























G(t,min{n3,n1}), t1 ∈ [0,m1]Z, and for j 6= 1,
t j ≤ m1;

H(t∗,max{n3− n1,0}), t1 ∈ [m1,m3]Z, and forj 6= 1,
t j ≤ m2;

p, otherwise.

=



























G(t,n1), t1 ∈ [0,m1]Z, and for j 6= 1,
t j ≤ m1;

H(t∗,n2), t1 ∈ [m1,m3]Z, and for j 6= 1,
t j ≤ m2;

p, otherwise.

= ( f2 ⋆ g2)(t)

wheret = (t1, ..., tn) andt∗ = (t1−m1, ..., tn).
�

By Lemma 3.6, the operation

[ f ]⋆ [g] = [ f ⋆ g]

is well-defined onΠ κ
n (X , p). We will show that the set

Π κ
n (X , p) together with the ’⋆’ operation is a group.

Lemma 3.7. The operation ’⋆’ is associative on the set
Π κ

n (X , p). That is, if [ f ], [g], [h] ∈ Π κ
n (X , p), then

([ f ⋆ g]⋆ h) = ([ f ]⋆ [g ⋆ h]).

Proof The proof follows from the analogous result in [6,

Lemma 4.5].
�

Lemma 3.8.Let (X , p,κ) be a pointed digital image and

ep : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p)
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be a map defined by ep(t) = p for all
t = (t1, ..., tn) ∈ [0,m]n

Z
. Then [ep] is an identity element

for Π κ
n (X , p). That is, if[ f ] ∈ Π κ

n (X , p), then

[ f ]⋆ [ep] = [ep]⋆ [ f ] = [ f ].

Proof Let

f : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p)

be a(2n,κ)-continuous map and

ep : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p),

ep(t) = p ∀t = (t1, t2, ..., tn) ∈ [0,m]n
Z

be a constant map.
We’d like to show that

f ⋆ ep ≃ f rel ∂ [0,m]n
Z
.

( f ⋆ ep) : ([0,2m]n
Z
,∂ [0,2m]n

Z
)→ (X , p)

( f ⋆ ep)(t) =



























f (t), t1 ∈ [0,m]Z, and for j 6= 1,
t j ≤ m;

ep(t∗), t1 ∈ [m,2m]Z, and for j 6= 1,
t j ≤ m;

p, otherwise.

=











f (t), t1 ∈ [0,m]Z, and for j 6= 1,
t j ≤ m;

p, otherwise.

Then we see that( f ⋆ ep) are trivial extensions off , hence
they are relative homotopic to each other:f ≃ ( f ⋆ ep)
rel ∂ [0,m]n

Z
.

Similarly, it can be seen that(ep ⋆ f )≃ f rel ∂ [0,m]n
Z
.

�

Lemma 3.9.Let (X , p,κ) be a pointed digital image and
f : [0,m]n

Z
→X be a(2n,κ)-continuous map. Then the map

g : ([0,m]nZ,∂ [0,m]nZ)→ (X , p)

defined by
g(t) = f (m− t1, ...tn)

for t = (t1, ..., tn) ∈ [0,m]n
Z

is an element of[ f−1] in
Π κ

n (X , p).

Proof We’d like to show that there is a relative homotopy
between( f ⋆ g) andep.

( f ⋆ g) : ([0,2m]n
Z
,∂ [0,2m]n

Z
)→ (X , p)

( f ⋆ g)(t) =



























f (t), t1 ∈ [0,m]Z, and for j 6= 1,
t j ≤ m;

g(t∗), t1 ∈ [m,2m]Z, and for j 6= 1,
t j ≤ m;

p, otherwise.

=



























f (t), t1 ∈ [0,m]Z, and for j 6= 1,
t j ≤ m;

f (t ′), t1 ∈ [m,2m]Z, and for j 6= 1,
t j ≤ m;

p, otherwise.

wheret = (t1, ..., tn) andt ′ = (2m− t1, ..., tn).

Define;

H : [0,2m]n
Z
× [0,m]Z → X

H(t,s) =











( f ⋆ g)(t), t1 ∈ [0,m− s]Z or for j 6= 1,
m+ s ≤ t1 ≤ 2m;

( f ⋆ g)(t ′′), otherwise.

wheret = (t1, ..., tn) andt ′′) = (m− s, ..., tn)

Then the digital mapH is a relative homotopy between
( f ⋆ g) andep.

With a similar proof, it can be seen that(g ⋆ f ) ≃ ep
rel ∂ [0,m]n

Z
.

�

Definition 3.10. The set Π κ
n (X , p) together with the

operation⋆ has a group structure as the previous three
lemmas hold. This group is called a digitaln-th homotopy
group of a pointed digital image (X , p).

Lemma 3.11.Let (X , p,κ1) and (Y,q,κ2) be two digital
images, and let the digital map

ϕ : (X , p)→ (Y,q), ϕ(p) = q

be a(κ1,κ2)-continuous. Iff : ([0,m]n
Z
,∂ [0,m]Z)→ (X , p)

is (2n,κ1)-continuous map, then

(ϕ ◦ f ) : ([0,m]n
Z
,∂ [0,m]Z)→ (Y,q)

is (2n,κ2)-continuous map.

Lemma 3.12.Let (X , p,κ1) and (Y,q,κ2) be two digital
images, and

ϕ : (X , p)→ (Y,q), ϕ(p) = q

c© 2015 NSP
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be a(κ1,κ2)-continuous map. For

f ,g : ([0,m]n
Z
,∂ [0,m]Z)→ (X , p)

(2n,κ1)-continuous maps, iff ≃ g rel ∂ [0,m]n
Z
, then

ϕ ◦ f ≃ ϕ ◦ g rel ∂ [0,m]n
Z
.

Proof Let f ≃ g rel ∂ [0,m]n
Z
. Then there exists a digital

interval[0,m1]Z, and a digital map

F : [0,m]n
Z
× [0,m1]Z → X such that

–for all t = (t1, ..., tn) ∈ [0,m]n
Z
, F(t,0) = f (t) and

F(t,m1) = g(t);
–for all s ∈ [0,m1]Z, and for allt ∈ ∂ [0,m]n

Z
, F(t,s) = p;

–for all t ∈ [0,m]n
Z
, the induced mapFt : [0,m1]Z → X

defined by Ft(s) = F(t,s) for all s ∈ [0,m1]Z is
(2,κ1)-continuous;

–for all s ∈ [0,m1]Z, the induced mapFs : [0,m]n
Z
→ X

defined by Fs(t) = F(t,s) for all t ∈ [0,m]n
Z

is
(2n,κ1)-continuous.

We’d like to construct a relative homotopy map
between

(ϕ ◦ f ),(ϕ ◦ g) : ([0,m]n
Z
,∂ [0,m]Z)→ (Y,q).

Define,
H : [0,m]n

Z
× [0,m1]Z → X

H(t,s) = ϕ ◦F(t,s) for t = (t1, ..., tn) ∈ [0,m]n
Z
.

Then;

–for all t = (t1, ..., tn) ∈ [0,m]n
Z
, H(t,0) = ϕ ◦ f (t) and

H(t,m1) = ϕ ◦ g(t);
–for all s ∈ [0,m1]Z and for allt ∈ ∂ [0,m]n

Z
, H(t,s) = q;

–for all t ∈ [0,m]n
Z
, the induced mapHt : [0,m1]Z → Y ,

Ht(s) = ϕ ◦ F(t,s) for all s ∈ [0,m1]Z is
(2,κ2)-continuous;

–for all s ∈ [0,m1]Z, the induced mapHs : [0,m]n
Z
→ X ,

Hs(t) = ϕ ◦ F(t,s) for all t ∈ [0,m]n
Z

is
(2n,κ2)-continuous.

Hence,(ϕ ◦ f )≃ (ϕ ◦ g) rel ∂ [0,m]n
Z
.

�

Theorem 3.13.The digital homotopy group construction
induces a covariant functor from the category of pointed
digital images and pointed digitally continuous functions
to the category of groups and homomorphisms.

Proof The proof follows from the analogous version for
[6, Proposition 2.8].

�

Theorem 3.14. If (X , p,κ1) and (Y,q,κ2) are (κ1,κ2)
isomorphic and the pointp ∈ X is mapped to the point
q ∈ Y under the isomorphism mapϕ , thenΠ κ1

n (X , p) and

Π κ1
n (Y,q) are isomorphic groups for all positive integern.

Proof Let ϕ : X → Y be (κ1,κ2)-isomorphism map and
ϕ(p) = q, ϕ has a(κ2,κ1)-continuous inverse, say,

φ : Y → X such thatφ(q) = p.

Then,
ϕ ◦φ = IdY and φ ◦ϕ = IdX .

From Theorem 3.13, the homotopy functorΠn is
covariant functor and preserves the composition of maps
and identity. Hence;

Πn(ϕ ◦φ) = Πn(IdY ) → Πn(ϕ)◦Πn(φ) = IdΠn(Y,q)

so that the homomorphismΠn(ϕ) is surjective and;

Πn(φ ◦ϕ) = Πn(IdX) → Πn(φ)◦Πn(ϕ) = IdΠn(X ,p)

so that the homomorphismΠn(ϕ) is injective. Therefore,
Πn(ϕ) is a group isomorphism betweenΠ κ1

n (X , p) and
Π κ2

n (Y,q).
�

Corollary 3.15. If the pointed digital images(X , p,κ1)
and(Y,q,κ2) have the same(κ1,κ2)-homotopy type, then
their n-th homotopy groups are isomorphic.

Corollary 3.16. Let (X , p,κ) be a pointed digital image
that is contractible to a pointp. ThenΠ κ

n (X , p) is trivial
for all positive integern.

Proof SinceX is contractible to a pointp, there exists
a homotopy map between the identitiy map ofX and a
constant mapp such that

H : X × [0,m1]Z → X

–H(x,0) = x, ∀x ∈ X ;
–H(x,m1) = p, ∀p ∈ X and,
–H(p,s) = p, ∀s ∈ [0,m1]Z

Take any(2n,κ)-continuous map,

f : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (X , p).

Define the relative homotopy map

G : [0,m]n
Z
× [0,m1]Z → X

(t,s) 7−→ G(t,s) = H( f (t),s)

for t = (t1, ..., tn) ∈ [0,m]n
Z
. Then

–For all t = (t1, ..., tn) ∈ [0,m]n
Z
,

G(t,0) = H( f (t1, ..., tn),0) = f (t1, ..., tn)

and
G(t,m1) = H( f (t),m1) = p;
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–for all s ∈ [0,m1]Z, and for allt ∈ ∂ [0,m]n
Z
,

G(t,s) = H(p,s) = p;

–for all t ∈ [0,m]n
Z
, the induced mapGt : [0,m1]Z → X ,

Gt(s) = H( f (t),s)

for all s ∈ [0,m1]Z is (2,κ)-continuous;
–for all s ∈ [0,m1]Z, the induced mapGs : [0,m]n

Z
→ X ,

Gs(t) = H( f (t),s)

for all t ∈ [0,m]n
Z

is (2n,κ)-continuous.

So, f ≃ ep rel ∂ [0,m]n
Z
, and hence the groupΠ κ

n (X , p) is
trivial.

�

4 Application

Digital image processing algorithms are the tools for
correcting the quality of images such as satellite images,
telescope images, videos, photos or photoshops. Any
distinction that can be measured, idenitified, compared or
visualized are extremely important. By combining the
algebraic topological concepts such as Euler
characteristics, (co)homology groups, fundamental and
homotopy groups with digital topology we can
distinguish or compare the digital images between each
other. As an example computer scientists use the
fundamental group to count the objects in the images.
Also the contractibility is a kind of a thinning operation
and it can be used to compare or classify the digital
objects.

Since regions in 2 or 3 dimensional Euclidean spaces
are digitized as the discrete grid of pixels or voxels which
have integer coordinates respectively, it is of interest to
consider topological invariants that are preserved by the
digitization process for computer tomography. The digital
homotopy groups are such a tool for the desired interest.
As an example, by computing the digital homotopy
groups of MRI and CAT scan o a brain, it may detect the
abnormalities like a brain tumor and diagnose the size or
the stage of it by comparing with the digital homotopy
groups of fine brain scan.

Fig. 1: MRI scan of a tumoral brain.

As an another example, the image of the seismic
section is given below. The blue line is a fault and the red
lines are erosional surfaces. The computation of the
digital homotopy groups of the seismic section might be
able to detect the breaking point of the fault. The digital

Fig. 2: The image of a fault and an erosional surfaces of a seismic
section.

homotopy can be used to reduced the computer data of
the image for saving of time. This is a tool for thinning
operation for the digital image to reduce the data without
loosing its own topological properties. Below the digital
image

MSC′
8 = {(1,0),(0,1),(−1,0)(0,−1)}

is an 8-deformation retract toZ2 − {(0,0)}. In this
example the infinite digital imageZ2 − {(0,0)} is
reduced to bounded image without loosing its
connectivity and homotopy type [17].

Fig. 3: MSC8′ is an 8-deformation retract toZ2−{(0,0)}.

5 Conclusion

In this paper we introduce the construction of the digital
homotopy groups and show that they are invariants for
digital images. In the future, we will investigate the
relationship between the digital higher homotopy groups
and digital covering space map, and the relationship
between the digital homology groups and the homotopy
groups of a digital image. The homotopy theory in
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algebraic topology satisfies all the homology axioms
except the ’excision’. We’ll explore which homology
axioms are satisfied without any certain conditions. Also
we’ll study the digital homotopy groups of a pair and we
hope that this will yield us to compute the homotopy
groups of some part of the digital image if we know the
homotopy groups of an entire image.
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