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Abstract: In this paper, we prove some new integral inequalities of Hardy’s type on time scales. The Hardy inequalities have many
applications especially in proving the boundedness Cesàro operators. The main results will be proved by making use of some algebraic
inequalities, the Hölder inequality and a simple consequence of Keller’s chain rule on time scales. The discrete inequalities that we will
derive from our results in the discrete time scales are essentially new.
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1 Introduction

The classical Hardy inequality states that forf ≥ 0 and
integrable over any finite interval(0,x) and f p is integrable
and convergent over(0,∞) andp> 1, then

∫ ∞

0

(

1
x

∫ x

0
f (t)dt

)p

dx≤
(

p
p−1

)p∫ ∞

0
f p(x)dx. (1)

The constant(p/(p−1))p is the best possible. The
discrete version of the inequality (1) due to Hardy is
given by

∞

∑
n=1

(

1
n

n

∑
i=1

a(i)

)p

≤
(

p
p−1

)p ∞

∑
n=1

ap(n), p> 1. (2)

Since the discovery of these inequalities various papers
which deal with new proofs, generalizations and
extensions have appeared in the literature. We refer the
reader to the books [14,15,20] and the papers [2,3,6,11,
12,13,16,17,18,19,22,23,27]. One of the applications of
the dicrete inequality is its proof of the boundedness of
the Cesàro operatorT : ℓp → ℓp, for 1< p< ∞, which is
defined by

(Ta)k =
1
k

k

∑
j=1

a j , k∈ N, wherea= (ak)
∞
k=1.

Kaijser et al. [13] established the more general (Hardy-
Knopp type) inequality

∫ ∞

0
Φ
(

1
x

∫ x

0
f (t)dt

)

dx
x

≤
∫ ∞

0
Φ ( f (x))

dx
x
, (3)

where Φ is a convex function on(0,∞). The Hardy
inequalities have applications in the theory of differential
equations (ordinary or partial) and led to many interesting
questions and connections between different areas of
mathematical analysis. For example, Hardy inequalities
are closely related to the quasiadditivity properties of
capacities [1] and have recently been used to find the gaps
between zeros of differential equations which appear in
the bending of beams [25].

Hardy’s inequality (1) has been generalized by Hardy
himself in [8]. There he showed that, for anym> 1, p> 1,
and any integrable functionf (x)> 0 on(0,∞), then

∫ ∞

0

1
xm

(

∫ x

0
f (t)dt

)p

dx≤
(

p
m−1

)p∫ ∞

0

1
xm (x f(x))pdx,

(4)
where the constant here also is the best possible. It is easy
to see that (4) cannot be applied in the casem= 1. This
problem has been treated in [6] by splitting [0,∞), the
interval of integration, into[0,1] and[1,∞) and he proved
the following inequalities: if 1< p< ∞ and f (x) > 0 is a
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integrable on(1,∞), then

∫ ∞

1

1
x

(

∫ ∞

x
f (t)dt

)p

dx≤ pp
∫ ∞

1

1
x
(xlogx)p f p(x)dx,

(5)

∫ 1

0

1
x

(

∫ x

0
f (t)dt

)p

dx≤ pp
∫ 1

0

1
x
(x(− logx))p f p(x)dx.

(6)
A number of dynamic inequalities of Hardy type were
established in [21,24,26,28]. In particular the authors
establish dynamic inequalities where the domain of the
unknown function is a so-called time scaleT, which may
be an arbitrary closed subset of the real numbersR. We
assume that supT = ∞, and define the time scale interval
[t0,∞)T by [t0,∞)T := [t0,∞)∩T. The three most popular
examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus, i.e,
whenT = R, T = N andT = qN0 = {qt : t ∈ N0} where
q > 1. For more details of time scale analysis, we refer
the reader to the two books by Bohner and Peterson [4],
[5] which summarize and organize much of the time scale
calculus.

In [24] the author established a time scale version of
the Hardy inequality (1) and proved that ifp> 1 andg is a
nonnegative and such that the delta integral

∫ ∞
a (g(t))p ∆ t

exits as a finite number, then

∫ ∞
a

1
(σ(x)−a)p

(

∫ σ(x)
a g(t)∆ t

)p
∆x≤

(

p
p−1

)p
∫ ∞

a gp(x)∆x.

(7)
If in addition µ(t)/t → 0 ast → ∞, then the constant is
the best possible. However it is an open problem whether
the constant in inequality (7) is the best possible also on
time scales than do not satisfy limt→∞(µ(t)/t) = 0. Also,
it is easy to see that (7) cannot be applied when the term
(σ(x)−a)p is replaced by(σ(x)−a).

In [21] the authors established a new inequality with
weighted functions, which can be considered as the time
scale version of the inequality (3). In particular, they
proved that ifu ∈ Crd([a,b],R) is a nonnegative function

such that the delta integral
∫ b
t

u(s)
(s−a)(σ(s)−a)∆s exists as a

finite number and the functionv is defined by

v(t) = (t −a)
∫ b

t

u(s)
(s−a)(σ(s)−a)

∆s, t ∈ [a,b],

andΦ : (c,d)→R, is continuous and convex, wherec,d∈
R, then the inequality

∫ b
a u(t)Φ

(

1
(σ(t)−a)

∫ σ(t)
a g(s)∆s

)

∆ t
t−a ≤ ∫ b

a v(t)Φ(g(t)) ∆ t
t−a,

(8)
holds for all delta integrable functionsg ∈ Crd([a,b],R)
such thatg(t) ∈ (c,d).

In this paper, we will prove some new inequalities of
Hardy’s type on time scales where powerp will be
replaced byp/q wherep andq are positive real numbers.
The technique in this paper depends on the application of

the chain rule, Hölder’s inequality and some algebraic
inequalities. The results in this paper contain some
continuous and discrete inequalities as special cases and
can be considered as time scale versions of the
inequalities (5) and (6). These inequalities can be
considered as extensions and generalizations of some
Hardy type inequalities proved in [6].

2 Main Results

In this section, we will prove the main results. For
completeness, we recall the following concepts related to
the notion of time scales. A time scaleT is an arbitrary
nonempty closed subset of the real numbersR. We
assume throughout thatT has the topology that it inherits
from the standard topology on the real numbersR. The
forward jump operator and the backward jump operator
are defined by:

σ(t) := inf{s∈ T : s> t}, ρ(t) := sup{s∈ T : s< t},

where sup /0= infT. A point t ∈ T, is said to be left–dense
if ρ(t) = t and t > infT, is right–dense ifσ(t) = t, is
left–scattered ifρ(t) < t and right–scattered ifσ(t) > t.
A functiong : T→ R is said to be right–dense continuous
(rd–continuous) providedg is continuous at right–dense
points and at left–dense points inT, left hand limits exist
and are finite. The set of all such rd–continuous functions
is denoted byCrd(T). The spaceR of regressive
functions ([4, page 58]) defined by

R := {x : T→ R : x is rd-continuous on∑ and 1+ µ(t)x(t) 6= 0}.

The graininess functionµ for a time scaleT is defined by
µ(t) := σ(t)− t, and for any functionf : T → R the
notation f σ (t) denotes f (σ(t)). We will assume that
supT = ∞, and define the time scale interval[a,b]T by
[a,b]T := [a,b]∩T. Fix t ∈ T and letx : T → R. Define
x∆ (t) to be the number (if it exists) with the property that
given anyε > 0 there is a neighborhoodU of t with

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, for all s∈U.

In this case, we sayx∆ (t) is the(delta) derivative ofx at t
and thatx is (delta) differentiable att.

We will frequently use the following results which are
due to Hilger [10]. Assume thatg : T→ R and lett ∈ T.
(i) If g is differentiable att, theng is continuous att.
(ii) If g is continuous att andt is right-scattered, theng is
differentiable att with g∆ (t) = g(σ(t))−g(t)

µ(t) .

(iii) If g is differentiable andt is right-dense, then

g∆ (t) = lim
s→t

g(t)−g(s)
t − s

.

(iv) If g is differentiable at t, then
g(σ(t)) = g(t)+ µ(t)g∆(t).
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Note that ifT= R then

σ(t)= t, µ(t)= 0, f ∆ (t)= f ′(t),
∫ b

a
f (t)∆ t =

∫ b

a
f (t)dt

if T= Z, then

σ(t) = t +1, µ(t) = 1, f ∆ (t) = ∆ f (t),
∫ b

a f (t)∆ t = ∑b−1
t=a f (t),

if T=hZ, h> 0, thenσ(t) = t +h, µ(t) = h, and

y∆ (t) = ∆hy(t) := y(t+h)−y(t)
h ,

∫ b
a f (t)∆ t = ∑

b−a−h
h

k=0 f (a+ kh)h,

and if T = {t : t = qk, k ∈ N0, q > 1}, thenσ(t) = qt,
µ(t) = (q−1)t,

x∆ (t) = ∆qx(t) = (x(qt)−x(t))
(q−1)t ,

∫ ∞
t0

f (t)∆ t = ∑∞
k=n0

f (qk)µ(qk),

wheret0= qn0, and ifT=N
2
0 := {n2 : n∈N0}, thenσ(t)=

(
√

t +1)2,

µ(t) = 1+2
√

t, ∆Ny(t) =
y((

√
t +1)2)− y(t)

1+2
√

t
.

In this paper we will refer to the (delta) integral which we
can define as follows. IfG∆ (t) = g(t), then the Cauchy
(delta) integral ofg is defined by

∫ t

a
g(s)∆s := G(t)−G(a).

It can be shown (see [4]) that if g ∈ Crd(T), then the
Cauchy integralG(t) :=

∫ t
t0

g(s)∆s exists, t0 ∈ T, and

satisfies G∆ (t) = g(t), t ∈ T. An infinite integral is
defined as

∫ ∞

a
f (t)∆ t = lim

b→∞

∫ b

a
f (t)∆ t.

We will make use of the following product and quotient
rules for the derivative of the productf g and the quotient
f/g (whereggσ 6= 0, heregσ = g◦σ ) of two differentiable
function f andg

( f g)∆ = f ∆ g+ f σ g∆ = f g∆ + f ∆ gσ ,

and

(

f
g

)∆
=

f ∆ g− f g∆

ggσ . (9)

We say that a functionp : T → R is regressive provided
1+ µ(t)p(t) 6= 0, t ∈ T. The chain rule formula (see [4,
Theorem 1.90]) that we will use in this paper is

( f (g(t))∆ =

1
∫

0

f
′
[hgσ +(1−h)g]dhg∆(t), (10)

Using the fact thatg(σ(t)) = g(t)+ µ(t)g∆(t), we obtain

( f (g(t))∆ =

1
∫

0

f
′ [

g+hµ(t)g∆(t)
]

dhg∆ (t). (11)

The integration by parts formula is given by

∫ b

a
u(t)v∆ (t)∆ t = [u(t)v(t)]ba−

∫ b

a
u∆ (t)vσ (t)∆ t. (12)

To prove the main results, we will use the following
Hölder inequality [4, Theorem 6.13]. Leta, b ∈ T. For
u, v∈Crd(T, R), we have

∫ b

a
|u(t)v(t)|∆ t ≤

[

∫ b

a
|u(t)|q ∆ t

]
1
q
[

∫ b

a
|v(t)|p ∆ t

]
1
p

,

(13)
wherep> 1 and1

p +
1
q = 1.

Throughout the paper, we will assume that the
functions are nonnegative rd-continuous functions,
∆−differentiable, locally delta integrable and the left
hand side of the inequalities exists if the right hand side
exists. We also assume that all the powers in the integrals
are positive real numbers.

Before we state and prove the main results we need to
find the integral of 1/t on time scales. From the chain rule
(11), we see that

(logt)∆ =
1
∫

0

1
[t+hµ(t)]dh= 1

µ(t) log
(

t+µ(t)
t

)

, whenµ(t) 6= 0.

This allows us to define the new functionz(t) on a time
scaleT by

(logt)∆ = z(t) :=

{

1
µ(t) log

(

t+µ(t)
t

)

, whenµ(t) 6= 0,
1
t , whenµ(t) = 0.

(14)
Thus on a time scaleT, we have that (heret0 ∈ T)

∫ t

t0
z(s)∆s= log

(

t
t0

)

, for t ∈ T. (15)

As a generalization of (14) we have (hereg is a
nonnegative function)

(logg(t))∆ = Z(t) :=







1
µ(t) log

(

1+ µ(t)g∆ (t)
g(t)

)

, whenµ(t) 6= 0,
g∆ (t)
g(t) , whenµ(t) = 0,

(16)

provided thatg
∆ (t)
g(t) ∈ R. Thus on a time scaleT, we have

that
∫ t

t0
Z(s)∆s= log

(

g(t)
g(t0)

)

, for t ∈ T. (17)

As a special case of (14), we see that ifT= R, then
(logt)∆ = (logt)

′
= 1/t and ifT= N,

(logt)∆ = ∆ logt = log(
t +1

t
) = log(t +1)− logt,

whereµ(t) = 1 inN. Now, we are ready to state and prove
the main results in this paper.
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Theorem 2.1. Let T be a time scale with b∈ [1,∞)T
and p, q> 0 such that p/q> 1. Define

Λ(t) :=
∫ b

t
f (s)∆s, for any t∈ [1,∞)T. (18)

Then for any b> 1

∫ b

1
z(t)(Λ σ (t))p/q∆ t ≤ p

q

[

∫ b

1
z(t)

(

logt
z(t)

f (t)

)p/q

∆ t

]

q
p

[

∫ b

1
z(t)(Λ(t))p/q∆ t

]

p−q
p

.(19)

Proof. Integrating the left hand side of (19) using the parts
formula (12) with

u∆ (t) = z(t) andvσ (t) = (Λ σ (t))p/q ,

we have
∫ b

1
z(t)(Λ σ (t))p/q∆ t = (Λ(t))p/q logt

∣

∣

∣

b

1

+

∫ b

1
(logt)(−

(

Λ p/q(t)
)

)∆ ∆ t. (20)

Using the chain rule (11), we see that

−
(

Λ p/q(t)
)∆

= − p
q

1
∫

0

[

Λ + µhΛ ∆
]

p
q−1

dhΛ ∆ (t)

=
p
q

f (t)

1
∫

0

[

Λ + µhΛ ∆
]

p
q−1

dh> 0. (21)

Using the fact thatΛ(b) = 0, and substituting (21) into
(20), we have

∫ b

1
z(t)(Λ σ (t))p/q∆ t =

p
q

∫ b

1
f (t)

logt

1
∫

0

[

Λ(t)+hµ(t)Λ ∆ (t)
]

p
q−1

dh∆ t. (22)

Using the fact thatΛ ∆ (t)< 0, we see that

(p/q)
1
∫

0

[

Λ +hµΛ ∆]
p
q−1

dh≤ ( p
q)Λ

p
q−1(t), p/q> 1.

(23)
Substituting (23) into (22), we have
∫ b

1
z(t)(Λ σ (t))p/q∆ t ≤ p

q

∫ b

1
(Λ(t))

p/q−1
(logt) f (t)∆ t.

This implies that

∫ b

1
z(t)(Λ σ (t))p/q∆ t

≤ p
q

∫ b

1

[

(z(t))−(p−q)/p(logt f (t))
]

[

(z(t))(p−q)/p(Λ(t))(p−q)/q
]

∆ t. (24)

Applying the Hölder inequality (20) on the term

∫ b

1

[

(z(t))−(p−q)/p(logt) f (t))
][

(z(t))(p−q)/pΛ (p−q)/q
]

∆ t,

with indicesp/q andp/(p−q), we see that

∫ b

1

[

(z(t))−(p−q)/p(logt f (t))
][

(z(t))(p−q)/p (Λ (t))(p−q)/q
]

∆ t

≤
[

∫ b

1

[

(z(t))−(p−q)/p(logt f (t))
]p/q

∆ t

]

q
p
[

∫ b

1
z(t)(Λ (t))p/q ∆ t

]

p−q
p

=

[

∫ b

1
(z(t))

(

logt
z(t)

f (t)

)p/q

∆ t

]
q
p [∫ b

1
z(t)(Λ (t))p/q ∆ t

]

p−q
p

. (25)

Substituting (25) into (24), we have

∫ b

1
z(t)(Λ σ (t))p/q∆ t ≤ p

q

[

∫ b

1
z(t)

(

logt
z(t)

f (t)

)p/q

∆ t

]

q
p

×
[

∫ b

1
z(t)(Λ(t))p/q∆ t

]

p−q
p

.

which is the desired inequality (19). The proof is complete.

As special cases whenT= R and T= N, we can
establish from Theorem 2.1 some new differential and
discrete inequalities. We begin with the case whenT= R.
In this case, (note thatµ(t) = 0 and σ(t) = t) the
inequality (19) reduces to

∫ b

1

1
t

(

∫ b

t
f (s)ds

)p/q

dt ≤ p
q

[

∫ b

1

1
t
(t logt f (t))p/qdt

]

q
p

×
[

∫ b

1

1
t

(

∫ b

t
f (s)ds

)p/q

dt

]

p−q
p

and hence we have

[

∫ b
1

1
t

(

∫ b
t f (s)ds

)p/q
dt

]1− p−q
p

≤ p
q

[

∫ b
1

(t logt)p/q

t f
p/q
(t)dt

]

q
p

.

This gives us after simplification and replacingp/qby λ >
1 the following result.

Corollary 2.1. Let λ > 1 and assume that f is a
nonnegative function on[1,∞)R. Then for any b> 1, we
have

∫ b

1

1
t

(

∫ b

t
f (s)ds

)λ
dt≤ λ λ

∫ b

1

(t logt)λ

t
f λ (t)dt, λ > 1.

(26)

Remark.One can see that this inequality (26) will be the
same as the inequality (5) established by Chan [6] if b→
∞.
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When T= N, we have the following result from
Theorem 2.1.

Corollary 2.2. Let b∈ [1,∞)N and p, q> 0 such that
p/q> 1 and let f(n) be a nonnegative sequence. Define

Λ(n) :=
b−1

∑
s=n

f (s), for any b∈ [1,∞)N. (27)

Then for any b> 1

b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n

f (s)

)p/q

≤
(

p
q

)p/q




b−1

∑
n=1

((logn) f (n))p/q

(

log
(

n+1
n

))

p
q−1





q
p

×





b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n

f (s)

)p/q




p−q
p

.

One can use the functionZ(t) instead of the function
z(t) and prove the following result.

Theorem 2.2. Let T be a time scale with b∈ [1,∞)T
and p, q> 0 such that p/q> 1 and g(t) is a nonnegative

function such thatg
∆ (t)
g(t) ∈R. LetΛ(t) is defined as in (18).

Then for any b> 1

∫ b

1
Z(t)(Λ σ (t))p/q ∆ t ≤ p

q

[

∫ b

1
Z(t)

(

logg(t)
Z(t)

f (t)

)p/q

∆ t

]

q
p

×
[

∫ b

1
Z(t)(Λ (t))p/q ∆ t

]

p−q
p

. (28)

From the chain rule formula (10), we have

(Λ p/q(t))∆ =
p
q

1
∫

0

[hΛ σ +(1−h)Λ ]
p
q−1dhΛ ∆ (t). (29)

Using this formula and the inequality

aλ +bλ ≤ (a+b)λ ≤ 2λ−1(aλ +bλ ), if a, b≥ 0, λ ≥ 1,
(30)

one can prove several new results, and the details are left to
the interested reader. For example, using the fact thatx≤
2x−1 for x ≥ 2 we have from Theorem 2.2 the follwoing
results.

Theorem 2.3. Let T be a time scale with b∈ [1,∞)T
and p, q> 0 such that p/q≥ 2. Let Λ(t) is defined as in
(18). Then for any b> 1

∫ b

1
z(t)(Λ σ (t))p/q ∆ t ≤ 2

p
q−1

[

∫ b

1
z(t)

(

logt
z(t)

f (t)

)p/q

∆ t

]

q
p

×
[

∫ b

1
z(t)(Λ (t))p/q ∆ t

]

p−q
p

. (31)

One can also use the functionZ(t) instead of the
functionz(t) to prove the following result.

Theorem 2.4. Let T be a time scale with b∈ [1,∞)T
and p, q> 0 such that p/q≥ 2, and g(t) is a nonnegative

function such thatg
∆ (t)
g(t) ∈R. LetΛ(t) is defined as in (18).

Then for any b> 1

∫ b

1
Z(t)(Λ σ (t))p/q ∆ t ≤ 2

p
q−1

[

∫ b

1
Z(t)

(

logg(t)
Z(t)

f (t)

)p/q

∆ t

]
q
p

×
[

∫ b

1
Z(t)(Λ (t))p/q ∆ t

]

p−q
p

. (32)

As special cases whenT= R and T= N, we can
establish from Theorem 2.3 some new differential and
discrete inequalities. We begin with the case whenT= R.
In this case, (note thatµ(t) = 0 and σ(t) = t) the
inequality (31) reduces to
∫ b

1

1
t
(Λ(t))p/q dt ≤ 2

p
q−1
[

∫ b

1

1
t
(t logt f (t))p/qdt

]

q
p

×
[

∫ b

1

1
t
(Λ(t))p/qdt

]

p−q
p

and hence we have
[

∫ b
1

1
t Λ p/q

(t)dt
]1− p−q

p ≤ 2
p
q−1
[

∫ b
1

1
t (t logt)p/q f p/q(t)dt

]

q
p
.

This gives us after simplification and replacingp/qby λ ≥
2 the following result.

Corollary 2.3. Let λ ≥ 2 and f is a nonnegative
function on[1,∞)R. Then for any b> 1, we have

∫ b

1

1
t

[

∫ b

t
f (s)ds

]
λ

dt ≤
(

2λ−1
)λ

[

∫ b

1

1
t
(t logt)λ f λ (t)dt

]

, λ ≥ 2. (33)

Remark.Note the difference between the constant
(

2λ−1
)λ

in (33) and pp in (5), where the later is the best constant
in the inequality (5). This in fact arose since the chain rule
that we applied is different from the classical chain rule.

WhenT= N, we have the following result as a special
case of Theorem 2.3.

Corollary 2.4. Let b∈ [1,∞)N and p/q≥ 2. Assume
that f(n) is a nonnegative sequence andΛ(n) be as
defined as in (27). Then for any b> 1

b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n+1

f (s)

)p/q

≤ 2
p
q−1





b−1

∑
n=1

((logn) f (n))p/q

(

log
( n+1

n

))

p
q−1





q
p

×





b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n

f (s)

)p/q




p−q
p

.
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Remark.One can use Theorems 2.2 and 2.4 to obtain new
results for the time scalesT= R andT= N for a general
function logg(t) instead of log(t). The details are left to
the interested reader.

In the following, we consider the case whenp/q≤ 2
and prove new inequalities of Hardy’s type on time scales.
To prove these results, we need the inequality

2r−1 (ar +br)≤ (a+b)r ≤ (ar +br) , wherea, b≥ 0, 0≤ r ≤ 1.
(34)

Applying this inequality when 0≤ p/q−1< 1 on the term

[hΛ σ +(1−h)Λ ]
p
q−1 , we see that

−(Λ p/q(t))∆ = − p
q

1
∫

0

[hΛ σ +(1−h)Λ ]
p
q−1dhΛ ∆ (t)

=
p
q

1
∫

0

[hΛ σ +(1−h)Λ ]
p
q−1dh f(t)

≤
[

[Λ σ ]
p
q−1+[Λ ]

p
q−1
]

f (t),

and then sinceΛ ∆ (t) = − f (t) < 0 andσ(t) ≥ t, we get
that

−(Λ p/q(t))∆ ≤ 2[Λ(t)]
p
q−1 f ∆ (t).

This gives us the following result.

Theorem 2.5. Let T be a time scale with b∈ [1,∞)T
and p, q> 0 such that p/q≤ 2. Let Λ(t) is defined as in
(18). Then for any b> 1

∫ b

1
z(t)(Λ σ (t))p/q∆ t ≤ 2

[

∫ b

1
z(t)

(

logt
z(t)

f (t)

)p/q

∆ t

]

q
p

×
[

∫ b

1
z(t)(Λ(t))p/q∆ t

]

p−q
p

.

WhenT= R andT= N, we have from Theorems 2.5
the following results.

Corollary 2.5. Assume that f is a nonnegative function
on [1,∞)R and0< λ ≤ 2. Then for any b> 1

∫ b

1

1
t

[

∫ b

t
f (s)ds

]
λ

dt

≤ 2λ
[

∫ b

1

1
t
(t logt)λ f λ (t)dt

]

, λ ≤ 2. (35)

Corollary 2.6. Let b∈ [1,∞)N and0< p/q≤ 2. Let f
be a nonnegative sequences andΛ(n) is defined as in (27)
. Then for any b> 1

b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n+1

f (s)

)p/q

≤ 2





b−1

∑
n=1

((logn) f (n))p/q

(

log
( n+1

n

))

p
q−1





q
p

×





b−1

∑
n=1

log

(

n+1
n

)

(

b−1

∑
s=n

f (s)

)p/q




p−q
p

.

Remark.It is worth mentioning here that the constantb
can be replaced by∞ in Theorems 2.1- 2.5. Also one can
replacez(t) by Z(t) in Theorem 2.5 to obtain general
results with logg(t) instead of logt.

In the following, we prove a new class of inequalities
similar to the inequality (6) on time scales by using the
operator

Ω(t) :=
∫ t

0
f (s)∆s, for any t∈ T. (36)

Theorem 2.6. LetT be a time scale p, q> 0 such that
p/q≥ 2. Assume that f is an nonnegative function onT

andΩ(t) is defined as in (36). Then
∫ 1

0
z(t)(Ω σ (t))p/q∆ t

≤ (2
p
q−1)p/q

∫ 1

0
z(t)

( |logt|
z(t)

f (t)

)p/q

∆ t. (37)

Proof. As in the proof of Theorem 2.3 we have
∫ 1

0
z(t)(Ω σ (t))p/q∆ t = (p/q)

∫ 1

0
(|logt|)

1
∫

0

[hΩ σ +(1−h)Ω)]
p
q−1dh( f (t))∆ t. (38)

Applying the inequality (30) on the term

[hΩ σ +(1−h)Ω)]
p
q−1, we see (note that

Ω ∆ (t) = f (t)> 0) that

p
q

1
∫

0

[hΩ σ +(1−h)Ω)]
p
q−1dh

≤ p
q

2
p
q−2

1
∫

0

[

h
p
q−1 (Ω σ )

p
q−1+(1−h)

p
q−1Ω

p
q−1
]

dh

< 2
p
q−1 (Ω σ )

p
q−1 . (39)

Substituting (39) into (38), we have
∫ 1

0
z(t)(Ω σ (t))p/q ∆ t ≤ 2

p
q−1

∫ 1

0
|logt|(Ω σ (t))

p
q−1 f (t)∆ t

= 2
p
q−1

∫ b

1

[

(z(t))−(p−q)/p(logt f (t))
][

(z(t))(p−q)/p(Ω σ (t))(p−q)/q
]

∆ t.

Applying the Hölder inequality (20) on the right hand side
with indicesp/q and p/(p− q) and proceeding as in the
proof of Theorem 2.3, we get the desired inequality (37).
The proof is complete.

Applying the chain rule ([4, Theorem 1.87])

f ∆ (g(t)) = f
′
(g(c))g∆ (t), wherec∈ [t,σ(t)],

we see that there existsc∈ [t,σ(t)] such that

(

Ω p/q(t)
)∆

= (
p
q
)Ω

p
q−1(c)Ω ∆ (t). (40)
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Using (36), we see thatΩ ∆ (t) = f (t) > 0. This implies
that Ω σ (t) ≥ Ω(c), sinceσ(t) ≥ c. Substituting this into
(40), we have

(

Ω p/q(t)
)∆

≤ p
q
(Ω σ (t))

p
q−1 f (t). (41)

Proceeding as in the proof of Theorem 2.6, we have the
following theorem.

Theorem 2.7. LetT be a time scale p, q> 0 such that
p/q ≥ 2. Assume that f is an nonnegative function onT

andΩ(t) is defined as in (36). Then

∫ 1

0
z(t)(Ω σ (t))p/q∆ t ≤ (

p
q
)p/q

∫ 1

0
z(t)

( |logt|
z(t)

f (t)

)p/q

∆ t.

Applying the inequality (34) on the term

[hΩ σ +(1−h)Ω)]
p
q−1 whenp/q≤ 2, we see that

p
q

1
∫

0

[hΩ σ +(1−h)Ω)]
p
q−1dh

≤ p
q

1
∫

0

[

h
p
q−1 (Ω σ )

p
q−1+(1−h)

p
q−1Ω

p
q−1
]

dh

=
[

(Ω σ )
p
q−1+Ω

p
q−1
]

≤ 2(Ω σ )
p
q−1 . (42)

Proceeding as in the proof of Theorem 2.6, we have the
following theorem.

Theorem 2.8. LetT be a time scale p, q> 0 such that
p/q ≤ 2. Assume that f is an nonnegative function onT

andΩ(t) is defined as in (36). Then

∫ 1

0
z(t)(Ω σ (t))p/q∆ t ≤ 2p/q

∫ 1

0
z(t)

( |logt|
z(t)

f (t)

)p/q

∆ t.

In Theorems 2.6-2.8 one can useZ(t) instead ofz(t)
and get the following results.

Theorem 2.9. LetT be a time scale and p, q> 0 such
that p/q≥ 2. Assume that f is an nonnegative function on
T andΩ(t) is defined as in (36). Then

∫ 1
0 Z(t)(Ω σ (t))p/q∆ t ≤ (2

p
q−1)p/q∫ 1

0 Z(t)
(

|logg(t)|
Z(t) f (t)

)p/q
∆ t.

Theorem 2.10. Let T be a time scale p, q > 0 such that
p/q ≥ 2. Assume that f is an nonnegative function onT

andΩ(t) is defined as in (36). Then

∫ 1
0 Z(t)(Ω σ (t))p/q∆ t ≤ ( p

q )
p/q∫ 1

0 Z(t)
(

|logt|
z(t) f (t)

)p/q
∆ t.
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