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Abstract: In this paper, we prove some new integral inequalities ofdyfartype on time scales. The Hardy inequalities have many
applications especially in proving the boundedness @esaerators. The main results will be proved by making usewofesalgebraic
inequalities, the Holder inequality and a simple conseqeef Keller’s chain rule on time scales. The discrete iaditias that we will
derive from our results in the discrete time scales are @aflgmew.
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1 Introduction Kaijser et al. L3 established the more general (Hardy-
Knopp type) inequality

The classical Hardy inequality states that for> 0 and

. e Pici - « -
integrable over any finite intervéd, x) and f P is integrable / (D(:L/ f(t)dt>%</ CD(f(x))d—XX, 3)
0 0 0

and convergent oven,«) andp > 1, then X

0 X p p 00

/ <)—];/ f(t)dt) dx< (%1) / fP(x)dx (1)  where @ is a convex function on0,). The Hardy

0 0 P 0 inequalities have applications in the theory of differahti
equations (ordinary or partial) and led to many interesting
questions and connections between different areas of
mathematical analysis. For example, Hardy inequalities
are closely related to the quasiadditivity properties of
b capacities ] and have recently been used to find the gaps
®» (10 p \P2 0 between zeros of differential equations which appear in
nzl ﬁizia(l) < <pT1) nzla (N, p>1 (2)  the bending of beamg§).

The constant(p/(p—1))° is the best possible. The
discrete version of the inequalityl)( due to Hardy is
given by

Hardy’s inequality {) has been generalized by Hardy
Since the discovery of these inequalities various paper§imselfin [8]. There he showed that, forany> 1, p> 1,
which deal with new proofs, generalizations and @nd any integrable functiof(x) >0 on(0, ), then
extensions have appeared in the literature. We refer the
reader to the bookslf, 15,20] and the papers?]3,6,11, ® 1 < p P oo
12,13,16,17,18,19,22,23,27]. One of the applications of / il </ f(t)dt) dx< <L> / (xF(x))Pdx
0 0 0

the dicrete inequality is its proof of the boundedness of/0 X" m—1 xm
the Cesaro operatdr: /P — (P, for 1 < p < o, which is . . 4.)
defined by where the constant here also is the best possible. It is easy

to see that4) cannot be applied in the cage= 1. This
problem has been treated if] [by splitting [0, ), the

k
(Ta) = Z aj, ke N, wherea= (a)%;. interval of integration, intd0, 1] and|[1, ) and he proved
=1

Il

the following inequalities: if I< p < w0 andf(x) > 0is a

* Corresponding author e-maslhsaker@mans.edu.eg, donal.oregan@nuigalway.ie

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090623

2956 NS 2 S. H. Saker, D. O'Regan: Hardy’s Type Integral Inequalitias.

integrable or(1, ), then the chain rule, Holder's inequality and some algebraic
0 inequalities. The results in this paper contain some
*1/ [ *1 tinuous and discrete inequalities as special cases and
= <phP [ = PP con : q pec
/1 x</x f(t)dt) dxfp/l x(Xk)gX) FHe9ax, can be considered as time scale versions of the
(5) inequalities $) and @). These inequalities can be
considered as extensions and generalizations of some

p : - .
/1} (/Xf(t)dt> dx < pp/lé(x(_logx))pfp(x)dx Hardy type inequalities proved i].
0 0 0

X
(6)

A number of dynamic inequalities of Hardy type were 2 Main Results

established in 31,24,26,28]. In particular the authors

establish dynamic inequalities where the domain of the

unknown function is a so-called time scalewhich may

be an arbitrary closed subset of the real numliiersve

assume that sup= o, and define the time scale interval

[to, )1 by [tg, )T := [tp,0) N'T. The three most popular

examples of calculus on time scales are differential

calculus, difference calculus, and quantum calculus, i.e

whenT =R, T =N andT = g = {¢' : t € No} where

g > 1. For more details of time scale analysis, we refer

the reader to the two books by Bohner and Peterdgn [ i . o .

[5] which summarize and organize much of the time scale o(t)i=inf{seT: s>1},  p(t):=supseT: s<t},

calculus. where sup@=infT. A pointt € T, is said to be left-dense
In [24] the author established a time scale version ofjt p(t) =t andt > infT, is rlght—dense ifo(t) =t, is

the Hardy inequality) and proved thatip > 1 andg isa  |eft_scattered ifp(t) < t and right—scattered ib(t) > t

In this section, we will prove the main results. For
completeness, we recall the following concepts related to
the notion of time scales. A time scdleis an arbitrary
nonempty closed subset of the real numb&s We
assume throughout th@thas the topology that it inherits
from the standard topology on the real numb&tsThe
forward jump operator and the backward jump operator
are defined by:

nonnegative and such that the delta intedfa(g(t))’At A functiong: T — R is said to be right-dense continuous

exits as a finite number, then (rd—continuous) provided is continuous at right-dense
points and at left—dense pointsh left hand limits exist

Ja wwar g’(x (fa gt )At> Ax < ( ) Ja gP(X)Ax.  and are finite. The set of all such rd—continuous functions

(7) is denoted byCyqy(T). The spaceZ of regressive
If in addition (t)/t — 0 ast — o, then the constant is functions (B, page 58]) defined by
the best possible. However it is an open problem whether _ _
the constant in inequality7} is the best possible also on #:={x:T—R: xisrd-continuousory and 1+p(t)x(t) # O}.
time scales than do not satisfy lim.(u(t)/t) = 0. Also,
it is easy to see thaf] cannot be applied when the term
(a(x) —a)P is replaced by o (x) — a).

In [21] the authors established a new inequality with
weighted functions, which can be considered as the tim
scale version of the inequality3). In particular, they
proved that ifu € Cq([a, b, R) is a nonnegative function

The graininess functiop for a time scal€T is defined by
u(t) := o(t) —t, and for any functionf : T — R the
notation f9(t) denotesf(o(t)). We will assume that
upl = », and define the time scale intervia, bjt by
a,bjr :=[a,b]NT. Fixt € T and letx: T — R. Define
X4 (t) to be the number (if it exists) with the property that
given anye > 0 there is a neighborhoadl of t with

such that the delta mtegrgllb 7)>)As exists as a
finite number and the functionis defined by [[x(a(t)) —x(s)] —xA(t)[o(t) — 5| < €|a(t) -9, forallseU.
_ & u(s) In this case, we sa¥? (t) is the(delta) derivative ok att
vt = _a)/t a0 _—a’s telbl and thai is (delta) differentiable at

) . We will frequently use the following results which are
and®: (c,d) — R, is continuous and convex, whez@ € due to Hilger [L0. Assume thag: T — R and lett € T.
R, then the inequality (i) If gis differentiable at, theng is continuous at.
(i) If gis continuous at andt is right-scattered, thegis

b b
Jaut)® (WH Y 9(3)A3> 5 < LVO)PQU))E5.  differentiable at with g (t) = W.

_ _ (8) (i) If gis differentiable and is right-dense, then
holds for all delta integrable functiorgse Cq([a,b],R)
m 90 —9(s)

such thag(t) € (c,d). "
In this paper, we will prove some new inequalities of g (t) = L'_,t t_s
Hardy’s type on time scales where powprwill be
replaced byp/q wherep andq are positive real numbers. (iv) If g is differentiable at t, then
The technique in this paper depends on the application of(o(t)) = g(t) + u(t)g?(t).
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Note that if T = R then The integration by parts formula is given by
_ At _ b b
o=t w0 =0 =10, [1ai= [ 1o [ uo st=uovio - [ wovnat @12)
a a
if T =7, then

o(t)=t+1, u(t)=1, fA@t) =Af(t), [2f(1)At=3PLE(1),
if T=hZ,h>0,theno(t)=t+h, u(t) =h,and
Yo (1) = Any(t) == YD P yar— 5.5 fat khh,

and if T = {t:t =g, ke No, q> 1}, thena(t) = qt,

XA (1) = AgX(t) =

A e f (1)t = 350, F () (),

whereto =g, and if T = N3 := {n? : n€ No}, theno (t) =
(VI+1)?

V(VE+1) —y(t)

1+ 2Vk, Any(t) = N

p(t) =

In this paper we will refer to the (delta) integral which we

can define as follows. 164 (t) =
(delta) integral ofy is defined by

[ atsas:=

It can be shown (seed]) that if g € Cq(T), then the
Cauchy integralG(t) := ft g(s)As exists, tgp € T, and

g(t), then the Cauchy

- G(a).

satisfies GA(t) = g(t), t € T. An infinite integral is
defined as
/ fat=lim [ f)at
b—o0 a

We will make use of the following product and quotient

rules for the derivative of the produ€y and the quotient
f /g (wheregg? # 0, hereg? = go 0) of two differentiable
function f andg

(fg)? = f9g+7g" = fg + 47,
f\* fig— fgl

and | — | =———. 9
O ®
We say that a functiop : T — R is regressive provided

1+ p(t)p(t) # 0, t € T. The chain rule formula (seel[
Theorem 1.90]) that we will use in this paper is

1
(1(g©)? = [ 1'[hg” + (1-hgldhe’ (1),  (10)
0

Using the fact thagi(o (t)) = g(t) + p(t)g? (t), we obtain

(11)

1
:/f/ {g+hu(t)gA(t)} dhef'(t)
0

To prove the main results, we will use the following
Holder inequality #, Theorem 6.13]. Let, b € T. For
u,v e Cyq(T, R), we have

/:IU(t)V(t)IAt < Mb|u(t)|qmr‘ {/:|v(t)|pAtF,

(13)
wherep > 1and%+ %=1,

Throughout the paper, we will assume that the
functions are nonnegative rd-continuous functions,
A—differentiable, locally delta integrable and the left
hand side of the inequalities exists if the right hand side
exists. We also assume that all the powers in the integrals
are positive real numbers.

Before we state and prove the main results we need to
find the integral of Yt on time scales. From the chain rule
(12), we see that

1
(logt)? of”h“ Iog(t“‘()) whenpu(t) # 0.

This allows us to define the new functiaft) on a time
scaleT by

(logt)® = z(t) := { 109 (Hﬁl(t)) » Whenpu(t) # 0,

3 whenp(t) = 0.
(14)
Thus on a time scal&, we have that (herg € T)
t t
/ z(s)As=log (—) , forteT. (15)
to to

As a generalization of 14) we have (hereg is a
nonnegative function)

(logg(t))® = Z(t) = 7100 (14 u( L), whenp(t) # 0,
| £ whenpu(t) =
qt)
(16)

provided that% € Z%. Thus on a time scal&, we have

that . ©
gt )

Z(s)As=log|( =——= |, forteT.
to ©) g(Q(tO)

As a special case oflf), we see that ifT =R, then
(logt)® = (logt) =1/t and if T =N,

(17)

(logt)® = Alogt = |og(#) =log(t + 1) — logt,

wherep(t) = 1 in N. Now, we are ready to state and prove
the main results in this paper.
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Theorem 2.1. Let T be a time scale with b [1,00)p
and p g > Osuch that gq > 1. Define

_ /t "H(s)as

Then forany b> 1

b b p/d ?
/1 Z(t) (/\U(t))p/qm < g l/l Z(t) <IZO(—?)tf(t)) Atl

forany te [1,00)7. (18)

I "2t (A ) a ")

Proof. Integrating the left hand side af9) using the parts
formula (12) with
uh(t) =2(t) andv(t) = (A1),

we have

/1bz(t) (AT(1)”9At = (/\(t))p/qlogt’:

+/ (logt) (~ (APA()) 2t

Using the chain rule](l) we see that

(20)

—(/\p/q(t))A: 2 {A+uhAA}gildh/\A(t)
0

. Ef(t)/l[/\+uh/\4]g_ldh> 0. (21)
0

Using the fact thatA (b) = 0, and substituting21) into
(20), we have

b o / _E b
/12(t)(/\ )P th_q/l £t)

Iogt/

Using the fact that\“ (t) < 0, we see that

t)+ hy(t) (t)} T dhat, (22)

I ] P_1
(P/a)] [A+huAS] S 7dh< (AT, p/a>1.

(23)

Substituting 23) into (22), we have

b / p b p/a-1

/ 2(t) (A9 (1))P9At < —/ A®)”" (logt) f (D)At.
1 qJ1
This implies that

/ bz(t)(/\ o (t))P/ant

A ORI

[(z(t))(p A/P(A (t))(p—q)/q] At. (24)

Applying the Holder inequalityZ0) on the term

/1b [(z(t))—w—q)/p(logt)f(t))} [(z(t))w—q)/p/\(p—q)/q] At
with indicesp/q andp/(p— q), we see that

/1b [(z(t))*me)/P(logtf(t))] [(z(g)(pfq)/p(/\(t))wfm/q] At
< [T ortonio) p/qm} [ nwreal ’

= [/:(z(t)) (%f(t)) p/qm] ' M’z(t) (A (t))p/qm} v

Substituting 25) into (24), we have

b b p/a
Az(t)(A“(t))p/thgapl/l z(t)('%f(t)) At

x [/1bz(t)(/\ (t))P/th] .

which is the desired inequality9). The proofis complete.

(25)

q
p

As special cases whefi =R and T =N, we can
establish from Theorem 2.1 some new differential and
discrete inequalities. We begin with the case wiiiea R.

In this case, (note thap(t) = 0 and o(t) =t) the
inequality (L9) reduces to

/1b%</tbf(s)ds>p/qt g[/ t(tlogtf(>>p/th}%
x[/f%(/ff(s)ds)p/th]T

and hence we have

p—q

{f‘f%(ﬁbf() )p/th] pgg[.f{’“'"%ﬂf“/%t)dt}g

This gives us after simplification and replacipgiby A >
1 the following result.

Corollary 2.1. Let A > 1 and assume that f is a
nonnegative function off, »)r. Then for any b> 1, we
have

/1bt}(/tbf(s)dsydtﬁ)‘A/lef’\(t)dt, Aot
(26)

RemarkOne can see that this inequalit®6j will be the
same as the inequalitp) established by Charg] if b —

00,
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When T =N, we have the following result from
Theorem 2.1.

Corollary 2.2. Let be [1,00)y and p, g> 0 such that
p/g> 1and let f(n) be a nonnegative sequence. Define

b—1

S (s

s=n

A(n) = for any be [1,00)y. (27)

Then forany b> 1

So("2) (Se)

_ (_p> p/q b‘l((logn)f(n) p/q | P
N [ (log (7))

[ )]

One can use the functicf(t) instead of the function
z(t) and prove the following result.

Theorem 2.2. Let T be a time scale with b [1,)
and p g > Osuch that gq > 1 and dt) is a nonnegative

function such tha% € Z%.LetA(t) is defined as inX8).
Then forany b> 1
pa v
f(t)) At]

® o )P/ Pl [P (l099®)
[z iac< B P20 (5

x MbZ(t)(/\(t))P/QAt} N

From the chain rule formulalQ), we have

1
1A
0

Using this formula and the inequality

(AP/A(t))2 +(1-hAJT LdA(L). (29)

QI'O

<(a+b? <2 7Y@ +b"),ifa, b>0, A > 1,
(30)

al+p <

One can also use the functicf(t) instead of the
functionz(t) to prove the following result.

Theorem 2.4. Let T be a time scale with k& [1,00)p
and p g > Osuch that gg > 2, and dt) is a nonnegative

function such thaf%) € Z.LetA(t) is defined as inX8).
Then forany b> 1
p/q
f(t)) At

/ Z(t 0)P9at < 267t [/;Z(t) ('03330
qu} p;pq.

[z

As special cases whefi =R and T =N, we can
establish from Theorem 2.3 some new differential and
discrete inequalities. We begin with the case wfiea R.

In this case, (note thau(t) = 0 and o(t) =t) the
inequality 31) reduces to

/1b}( ())p/th<2“1[Ab%(tlogtf(t))p/th}%

q
p

32

t
p—q

x [Ab%(/\(t))‘)/th]p

and hence we have
p

2 wa] " <288 12 lognPa o]

This gives us after simplification and replacipgqby A >
2 the following result.

q
p

Corollary 2.3. Let A > 2 and f is a nonnegative
function on[1,«)g. Then for any b> 1, we have

/119% [/tbf(s)dS:|/\ e (ZAfl)A

Mb%(nogm fA(t)dt] JA>2 (33)

RemarkiNote the difference between the const

in (33) and pP in (5), where the later is the best constant
in the inequality §). This in fact arose since the chain rule
that we applied is different from the classical chain rule.

one can prove several new results, and the details are leftto  \yhent = N, we have the following result as a special

the interested reader. For example, using the fact¢tkat

21 for x > 2 we have from Theorem 2.2 the follwoing

results.

Theorem 2.3. Let T be a time scale with b [1,)
and p g > O such that gg > 2. LetA(t) is defined as in
(18). Then for any b> 1

b Y o b logt p/g
/12(t)(/\ )79t < 2571 Az(t)(mf(t)) At

a
p

x sz(t) (A (t))p/th} v 31)

case of Theorem 2.3.
Corollary 2.4. Let be [1,0)y and p/q > 2. Assume

that f(n) is a nonnegative sequence amdn) be as
defined as inZ7). Then for any b> 1

b—1 1 p/a b1
zlog(’1+ )( T f(s ) gzﬁllz
s=n+1 n=1

S ONE

((logn) f(n))p/‘*] ’
(log("st))e
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RemarkOne can use Theorems 2.2 and 2.4 to obtain newRemarkit is worth mentioning here that the constant
results for the time scaléB=R andT = N for a general can be replaced by in Theorems 2.1- 2.5. Also one can
function logg(t) instead of logt). The details are left to replacez(t) by Z(t) in Theorem 2.5 to obtain general

the interested reader. results with logy(t) instead of log.

In the following, we consider the case whppiq < 2 In the following, we prove a new class of inequalities
and prove new inequalities of Hardy’s type on time scales similar to the inequality § on time scales by using the
To prove these results, we need the inequality operator

2-1@ +b) < (a+b a +b'), wherea, b>0,0<r <1 t
( )=l = ) (34) Q(t) ::/ f(s)As, forany teT. (36)
0

Applying this inequality when & p/g—1< 1ontheterm

(NS + (1—h)A ]9 we see that Theorem 2.6. Let T be a time scale jg > 0 such that

p/q > 2. Assume that f is an nonnegative function®n

AP — /1 AElamag ande(t) is defined as in36). Then
9% /O 2(t) (Q° (1)) At
P i -1 1 logt| p/a
— £ [ M7+ (1-h)AJs tdh b1
q 0/[ +(1-h)A]a f(t) < (21 )P/Q/O z(t)( 20 f(t)) At. (37)
< [[Aa]g—l+ [A]g—l} £(t), Proof. As in the pro<l)f of Theorem 2.3 we have
and then sincé\2(t) = —f(t) < 0 anda(t) > t, we get /0 2(t)(Q7(t))P9At = (p/q)
that

—(APA))A < 2[A M)A ().
This gives us the following result.

1 1 p
/O(|Iogt|)/[hQU+(1—h)Q)]ﬁ’ldh(f(t))At. (38)
0

Theorem 2.5. Let T be a time scale with b [1,00)y  APPlying  the pinequality 80) on the term
and p g> Osuch that gg< 2. LetA(t) is definedasin  [hQ9 + (1— h)Q)]ﬁ’l, we see (note that
(18). Then forany b> 1 QA(t) = f(t) > 0) that

b y logt p/a E
/12(t)(/\ ())Pth<2[/1 ()(Z(t)f(t)> At

x [Abz(t)(A(t))P/th] v

WhenT =R andT = N, we have from Theorems 2.5
the following results. < 2371(90)571' (39)

1
p o g—l
O/[hQ +(1-h)Q))% dh

o

©
e}

1
< a2a—2/ (1) 84 (- i8] dn
0

Corollary 2.5. Assume that f is a nonnegative function Substituting 89) into (38), we have
n[l and0< A < 2. Thenforany b>1 1 1
onfL Y /O 2t) (Q7(t)P9At < 2%’*1/0 llogt| (29 ()¢ (t)At

b
% U e ds] @ = 2571 [ [(att)) - 9/P1ogt (1) [(a10) - 9/P(2° 1)) > 9]
1
<2 U (tlogt) f (t)dt] CA<2 (35)  Applying the Holder inequalityZ0) on the right hand side
1 with indicesp/q andp/(p— q) and proceeding as in the

Corollary 2.6. Let be [1,00)y and0 < p/q< 2. Let f proof of Theorem 2.3, we get the desired inequal@y)(
be a nonnegative sequences ahh) is defined asinZ7) ~ The proofis complete.

. Then for any b> 1
g Applying the chain rule ¢, Theorem 1.87])

b-1 b-1 P9 o1 (1oam f(mP/a ] ?
3 log (””) (gH”S)) =2 [ZW] #4(g(t)) = f'(g(c)g (1), wherec € [t, o (1)),
o/q] 52 we see that there exists [t, o(t)] such that
X billog (11) (bzlf(s)> A
& o\ )J\& ' (eFa)” = (‘_;)mp*l(c)gﬂ(t). (40)
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Using (36), we see thaR?(t) = ( ) > 0. This implies ~ References
thatQ?(t) > Q(c), sinceo(t) > c. Substituting this into

(40), we have [1] A. Aikawa and M. EssérPotential Theory-Selected Topics
Lecture Notes in Math. 1633, Springer-Verlag, Berlin

/ A P, g P (1996).
(Qp q(t)) Sa(Q (t))a ~f(t). (41) [2]F. G. Avkhadiev and R. G. Nasibullin, Hardy-type

inequalities in arbitrary domains with finite inner radius,

. . Siberian Math. J. 55 (2014), 191-200.

Procegdlng as in the proof of Theorem 2.6, we have the [3] P. R. Bessack, Hardy's inequality and its extensionsjfiea

following theorem. J. Math. 11 (1961), 39-61.

[4] M. Bohner and A. Peterson, Dynamic Equations on Time
Scales: An Introduction with Applications, Birkhauser,
Boston, 2001.

[5] M. Bohner, A. Peterson, Advances in Dynamic Equations
on Time Scales, Birkhauser, Boston, 2003.

. . 0/ [6]L. Y. Chan, Some extensions of Hardy's inequality,

o p [logt| Canadian Math. Bull. 22 (1979), 165-169.
/0 z(t) (Q (t))p/th < (a)p/q/o Z(t)< z(t) (t)> At [7]1 G. H. Hardy, Notes on a theorem of Hilbert, Math. Z. 6
(1920), 314-317.
. . . [8] G. H. Hardy, Notes on some points in the integral calculus
Applying the_pillnequallty 84) on the term Messenger Math. 57 (1928), 12-16.
[hQ° +(1-h)Q)]4 " whenp/q < 2, we see that [9] G. H. Hardy, J. E. Littlewood and G. Polymequalities 2nd
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