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Abstract: In this paper, we study a generalized Fisher equation witialke coefficients which has applications governing the
spatiotemporal dynamics of the bacterial population amdotugrowth. Conservation laws for this equation are corsd for the
first time by using the new conservation theorem due to lbnagias well as the Lie symmetries. Furthermore, some coasemaws
are derived by employing the direct multipliers method otAmnd Bluman.
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1 Introduction determination of invariant solutions of initial and
boundary value problems and to the derivation of

The classic simplest case of a nonlinear reaction-diffusio conservation laws.

is the Fisher-Kolmogorov equation. This equation wasThe equation analyzed in this paper is a generalized Fisher

introduced by Fisher in 1937 to model the advance of anequation with variable coefficients

advantageous gene through a geographic region. It is 1

given by: = f(u)+—
0P_D02P p<1 P) a c(x)
ot ox? P)’ whereg(u) is the diffusion coefficient depending on the

whereP(x,t) represents the gene frequency at location ;?g@gg%fﬁégg’; 2?1%(58ealr?g?lfi'?rg(rj;mr;/:t:?r?geglai)n%?ng

and timet, D is the diffusion coefficient? is the carrying on the space variabte Let u(x.t) denote the density of

capacity, that is, the saturation value beyond which thet lis. 1 deul thi tion has b
population cannot grow anymore ang is the umor cells. In some particular cases this equation has been

proliferation. D, P and p are positives constants. studied by other authors.

Reaction-diffusion equations such as Fisher equatiorilj-he Kolmogorov-Petrovskii-Piskunov equatidri] given

appear in a variety of problems ranging from population U = Ugx+ (L) 3)
genetics to neurobiology and pattern formati&h [The ) ) 7 ) i
Fisher equation and its extensions are a family Ofpro_wdes a Q|ﬁe(ent generalization to the Fisher equation
reaction-diffusion models arising in population dynamics ThiS equation is reguced to the well known Huxley
problems L, 2], most prominently in cancer modelling,[ ~ €duation forf(u) = u“(1 —u) and has been studied by
5], applications to brain tumor dynamics$][ in the Hodgkln and quley and Kolmogorov. Anotherzlmportant
description of propagating crystallization/polymeripat ~ €9uation of this class is forf(u) = u(1 —u), the
fronts [7], chemical kinetics §], geochemistry 9] and Fitzhugh-Nagumo equation which arises in the study of
many others fields. nerve cells 11,12]. Over the last two decades a lot of

Li t Ivsis of diff tial i id attention has been paid on using Lie point symmetry
1€ Symmelry analysis ot dilterential équations provides a,qihqqs to exploit the invariance of the generalized
powerful and fundamental framework to the exploitation equation

of systematic procedures leading to the integration by
quadrature of ordinary differential equations, to the U = (A(U)ux), + B(u)ux+C(u). 4)

(C(X)g(U)UX)X, (2)

* Corresponding author e-marharia.rosa@uca.es

(© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090604

2784 NS 2 M. Rosa et al.: Lie Symmetry Analysis and Conservation Laws.

A complete Lie symmetry classification for the non-linear are just the substitutions of nonlinear self-adjointness w
heat equationd) with B = C = 0 was described byi[]. also derive some conservation laws of EB) by using
Equation @) with B(u) = 0 becomes the so called density the multipliers direct methodL[7].

dependent equation

U = f(u) + (g(u)ux)y, (5) 2 Nonlinearly self-adjoint equations

which has been considered irl]] The integrability = We will prove now by explicit constructions that equation
properties of a generalized Fisher equation as well a42) is nonlinearly self-adjoint in the sense @f7].

explicit and numerical solutions for specific cases of Equation ) is written in the form

nonintegrable systems were derived ][ In [15] the
authors have considered equatio) (with c(x) = x, F=u—f(u———[c(X)g(u)u], = 0. (6)
however they stated that a classification2)f¢an only be c(x)

achieved wheng is linear inu. In [16] Eq. (2) with e adjoint equation to equatiof)(has the form

c(x) = x has been studied from the point of view of the

theory of symmetry reductions in partial differential . O(VF)

equations and a group classification was obtained. All the F= ou 0, ()
reductions were derived from the optimal system of where

subalgelqras. Some of the reduced eq_uations admit Lie 5 ) ) ) )
symmetries which yield to further reductions. A WA S WA )=, (8)

The idea of a conservation law has its origin in mechanics oU  du OUxx

du Juy

and physics. Since a large number of physical theoriesgengtes the variational derivatives (the Euler-Lagrange

including some of the ‘laws of nature’, are usually gperator) and/is a new dependent variable. Heg, Dy
expressed as systems of nonlinear differential equationsyye the total differentiations.

it follows that conservation laws are useful in both
general theory and the analysis of concrete systems. The i , ) :
classical Noether's theorem provides an elegant and®finition1. Equation €) is said to benonlinearly
constructive way to obtain conservation laws of PDEsSelf-adjointif the equation obtained from its adjoint
which admit a variational principle. However, a limitation €duation by the substitution ¥ h(x.t,u, ux,...), with a
of Noether's theorem is that it restricts to variational Certain function ifx.t,u,uy,...) such that ,
systems, or says it depends on existence of Lagrangiafl(%t;U;Ux,...) 7 0 is identical to the original equation
where the majority of the PDEs arising in applications do (6); I-€: .
not hold this property. In17] Anco and Bluman gave a F\v:h =AF.
general treatment of a direct conservation law method foli, the particular case, in which s h(x,t,u) with
partial differential equations expressed in a standard, o, equation ) is called weak self-adjointfg].
Cauchy-Kovaleskaya form, in particular for evolution ¢\, — h(u) with h, # 0, equation 6) is called quasi self-
equations adjoint [29].

Ut = G(X, U, Uy, Uxx, - - - , Unx)-

In [18] a general theorem on conservation laws l‘or2 1Th bel f l | if-adioint
arbitrary differential equations which do not require the < € subclass ol nonlfinearly seli-adjoin

existence of Lagrangians was proved. E?). ¢annot be  €quations

derived from a variational principle and Noether's ) ) . )
theorem cannot be applied. Let us smgle out nonlinearly self-agﬂomt equations from
Due to the great interest in getting conservation laws andN€ quations of the forng]. Eq. (7) yields

conserved quantities in recent papeti®,0,21,22,23,

24,2526] applying the concept of nonlinear . o 1

self-adjointness and a theorem related to conservation F = gV~ f(u)—C—X)(c(x)g(u)ux)X)]

laws due to Ibragimovd7], conservation laws have been _ CxgW% CxxgVv 9
derived for some generalized Fisher equations. = OVt Yt ©)
The aim of this paper is to derive nontrivial conservation (Cx)2 gv f

laws for Eq. @) by using two different approaches. First, 2 u-

we determine for equatior2) the subclasses of equations Settinav — h(x.t.u) in (9 i

which are nonlinearly self-adjoint and we construct, by ettingv = h(xt,u) in (9), we ge

using the Lie generators admitted &) énd the theorem c u

in conservation laws1[g], some non-trivial conservation ~g Uk — ghuu (Ux)? — 2g huxty + AL Py U
laws. Then, taking into account that the multipliers of 2

Anco and Bluman method without containing derivatives —ghu+ &g —he+ Co@h - (Cx)zg h —fuh=0,

c
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which yields:

(1)~ 5o (c0g),) =
G U +gu (U)? A + XguA

—ghuu (Ux)? — 2g hyxUx +

+nghx_h[+Cxxgh_ (Cx)zzgh_
c C C

Fr—A(w—

Cx g hy Uy

—hyur — ghix
fuh.

From the coefficients for the different derivativeswive
obtain that the following conditions must be satisfied:

—hy—A =0, (10)
2ghut LT
C C
)\gu_thU: 07
~ xgh . oxgh  (x)’gh
ghxx"‘ c ht+—c 7(:2

and solving this system, we can state the following result:

Theorem 1. Eq. (2) is neither quasi self-adjoint nor
weak self-adjoint, however Eq(2) is nonlinearly
self-adjoint, upon the substitution

h=h(xt)

for any functions f= f(u), g= g(u) and c= c(x) with
h = h(x,t) verifying the following equation

(cx)* gh
C2

_ o&xghx
C

cxxgh
ghyx —ﬂ—F

+hy

+f,h=0. (11)

For f, g andc different from constant we can distinguish
the following two cases:

Case 1For g = g(u) arbitrary, c = c(x) arbitrary and
f(u) =au+b. Thenh = h(x,t) must satisfy the following
two conditions

Case 2+Forc = c(x) arbitrary,g = g(u) arbitrary andf =
a [ gduwith a constant. Them = h(x,t) must satisfy the
following conditions

Cx

hoc— (2

h)x+ah:0, (13)

We point out that the substitutiohs$x,t) derived by using
the condition of nonlinear self-adjointness correspond to
the multipliers of Anco and Bluman method proposed in

[17].

3 Lie symmetries

In this section, we perform Lie symmetry analysis for Eq.
(2). Let us consider a one-parameter Lie group of
infinitesimal transformations ifx,t,u) given by

X* = x+ €& (x,t,u) + O(?),
t* =t+eT(X,t,u)+ O(2),
u* = u+e@(x.t,u) + O(&?),

(14)

whereg is the group parameter. Then one requires that this
transformation leaves invariant the set of solutions of Eq.
(2) . This yields to the overdetermined, linear system of
eleven equations for the infinitesimaj$x,t,u), T(x,t,u)

and @(x,t,u). The associated Lie algebra of infinitesimal
symmetries is the set of vector fields of the form

17}

ot

Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface
condition

7] 7}
V_Ea_)(+T +(0% (15)

Jau

7}

o =0

After solving the determining equations, we can
distinguish nine different cases in which the symmetries
are admitted by Eqg.2). The functional forms ofc(x),
f(u) andg(u) as well as the corresponding generators are
given in Table 1.

Table 1: Functionsg;, g;, fi withi=1---9 and generators
vk withk=1---9.

(16)

i Cj Oi fi Vi

1 arbitrary arbitrary arbitrary vq

hyx — (—h) =0, 2 kyXf koud ksuP V1,V2
h+ah=0." 120 Bl ok kU vV,
e 4 ke koud kauP V1,V
k
whose solution is Sk 3 kau V1,Vs, V4, Vs
6 klefx k2 kgup V1,V4,Ve
1 a 7 klefx kzeq“ k3ep” ) V1,V4 (p 75 q)
h=c <G + B / de> e, 8 kp €™ ko€t —2k2§g ' V1,Vq,V7,Vg
9 klefx k2 kgepu V1,V4,Vg
wherea andf are integration constants.
© 2015 NSP
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where, whereh = h(x) must satisfy {3).
a We get the conservation la@) provided by generator
V1= o,
V2 = (q+ 1— p)xdx+2(1 - p)ték + 2ud,, Vi=a,
vz = e g, 4 kaeks%tug, .
V4 = O, with
e—rx B
Vg = ; axlj-e udy, Clz—guhxuux‘Fw‘Fg—:u—fh‘FDx(B),
—X+kort -1
= ( 22)(p )dx_(p_l)ta[+uﬁu, 2 CngJhUU(X 2 5
36 C* =guhUlx— —————— +(gu)” hxu ()
vr=—=F O +e7 ay, c
Vg = —qtdt +zlzu,t & (gu)® hu (uy)? N xgGuhxUty (c)? gauhuu
Vg = _p(_X;L 21t Ox — Pt + du. c ¢ c
1 gahyu— T8N o )
4 Conservation laws
where
4.1 General theorem for Equatiof)( B (g heke - cxgch k1> U ghleuy.

We use the following theorem on conservation laws proved
in [18]. We simplify the conserved vector by transferring the terms

. _ _ of the formDy(...) from C! to C? and obtain
Theorem 2. Any Lie point, Lie-Bcklund or non-local

symmetry cl_ —guthL&—chgu:uw—Fg—Lm— fh
- 7} 7}
V=& X uuy),...) o7 HNXUUg),.. )5 (17) CxgQuhU U,
(1)s- oXi (1)>- Ju szggjhxqux— ngJC Ucx +(gu)2hxu(ux)2
of equation 6) provides a conservation law;[C') = 0 for 2 2 2
the systemd), (7). The conserved vector is given by & (Qu)” hu(uy) L &9 Quikuue  (c) gguh Utk
c c c
0% 07
i = cx fouhu
E$+W|:(9 U Dl(duij)+ :| +fguhxu—7x 9 .
9. (18)
+Dj(W) [W -+ ] This conservation law has been published?é] |
ij

2. Let us apply Theorerg to the nonlinearly self-adjoint
where W and¥? are defined as follows:

equation

1
. U = kauP + = [X'kouP 1], (21)
W=n-¢&lu, Z=vF(XUuug,...Ug). (19) X X
whereg = kouP~1, f = ksuP andc = X'. In this caseh =

We will write generators of point transformation group h(x) must satlsfy

admitted by Eq.%) in the form

hsr hr hksp
Xy hyy =
v—El—+520 ;u x Tty T =0

, 1 2 : _ whose solution in terms of Bessel is:
by settingt = x*, x = x=. The conservation law will be

written R S i) 2 [kap

D (C) + Dx(C?) = 0. (20) h=cx2721J (z V=175 /5%
We will obtain the conservation laws fg(u) # constant +oox3tTY (% [(r—1)?, /$x> '
and by using the generators given in table 1. 2

1- Let us apply Theorer to the nonlinearly self-adjoint Let us find the conservation law provided by generator
Eq. (2) with g(u), c(x) arbitrary functions and =a [ gdu
thatis Vo = 2(1— p)té + 2udu,
1
U = f(u)+ 3] (CO)g(u)ux)y. in this case we have

(@© 2015 NSP
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We simplify the conserved vector by transferring the terms
W =2u—2(1- p)ty of the formDy(...) from C* to C? and obtain

and Eqgs. 18) yield the conservation lan2() with C! — hyquxthqu+ 2hu,

C! =2hu+D«(B),

2hkprudtl
C? = —hekoquiugx— ——=—— —hkoquiuy
2h p 2hy ko uP
2 koru ohlouP-ly, 4 2MkeY _Di(B) X
pX p —2hkeuuy + 2hykouttt,
and e For generator
B _2hk;:(tup N 2h kzxrtup © 2hkopt Lu, vz = e g, 4 keek%ugy,
2h. kot UP we obtain a trivial conservation law.
2hkot P Ly X2 op kot

4. Let us apply Theorerg to the nonlinearly self-adjoint

We simplify the conserved vector by transferring the terms€duation
of the formDy(...) from C* to C? and obtain

1 -1
' _ohy U = ksuP + & [€™kauP U], , (23)
where f = kauP, g = kouP~! andc = €*. Hereh = h(x)
Cc2= _2hleruf 2hkouP Ly + 2hx k2“p. must satisfyh = h(x) satisfies {3)
pXx p
hksp _
3. Let us apply Theorerg to the nonlinearly self-adjoint —hwr o =0,
equation L whose solution is
U = kau+ = [X'kouuy], , (22) i
X [ X]X (C1X—|—C2) e? A=0
_ _ q ~_— _ icfi r+vA)x r—vA)x
wheref = kau, g = kou9, c=x" andh = h(x) satisfies h— Cle( +va) —|—Cze( va) A0
h +ksh=0, e? (clsin(@)jtczcos(@)) A<O
her  hr . _ 2 4ksp . .
— =+ — +hy, with A =r - Let us find the conservation law
o X provided by generatov, = dy, we haveW = —uy and
whose solution is Egs. (L8) yield the conservation law2() with
h = (cix+ cox' e, C! = hyu+ Dy (B),
e For generator
C% = —hekouP~tuy — hksuP — Dy (B)
Vo = QX0x + 2Ud,
2= QOxt+ 2w, and
we have
B=—-hu
W= 2u—axk We simplify the conserved vector by transferring the terms
and Egs. 18) yield the conservation law2Q) with of the formDy(...) from C* to C? and obtain
1_
C! = hyqux+hqu+2hu+Dy(B), C =hu,
C?2 = —hykouPtuy— hkguP.
g+1 x K2 X 3
C2 = _hxkzququXX_ 2hk27)r('u —hkzququx

1 5. Let us apply Theoremn to the nonlinearly self-adjoint
—2hkouduy + 2hycko US* — Dy (B) equation

and 1 ko
_ ut:KauﬂL—{e”‘—U] , (24)
B=—hqux gx w2,

(© 2015 NSP
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wheref =kau, g = % andc = €*. Hereh(x,t) satisfies whose solution is
2rx rx
h +ksh =0, h=cie3 +cpes.
hyx —rhyx =0,

o e For generatov, = dy, we havew = —uy and Eqs. 18)
whose solution is yield the conservation law2Q) with

h=(c1€*+cp)e s,

C! = hyu+Dy(B),
e For generatov, = d, we havew = —u, and Egs. 18) X x(B)

yield the conservation law2Q) with

2 qu
C? = _hykoetty,— 21RTET g
C! = hyu+ Dy(B), 9q
and
C2 _ hxkgux B Dt(B)
u B=-hu.
and
B=—hu. We simplify the conserved vector by transferring the terms

of the formDy(...) from C! to C? and obtain
We simplify the conserved vector by transferring the terms ()

of the formDy(...) from C* to C? and obtain

Cl - hxu,
Cl == hxu
’ 2hkyr2edl
C? = —hykpe9uy — kzi
C2 _ th2 Ux gq
B U2 ’ —Ix
—3q0e3 —rx
—IX e For generatov; = Ox+e73 gy, we have
« For generatovs = ——d,+ e ™ud,, we have 2
3 e‘% _rx
e X W= q2r thte 3
W=ue - Uy

and Eqgs. 18) yield the conservation law2() with
and Eqs. 198) yield the conservation lan2() with

houe"™ . 3hque3 hque? i
Cl= 22— 1 DyB), C=-——2 5 the 3 +Dx(B),
—rX —rX U= u-3 qu-13
c2— hyko e _hkasze —Dt(B) C2:3hxk2q2uxeq _hkqukeq _hkzl’e
u ru r 2 3
and hue'x +hxkz evs — D (B)
B=-— .
r and
We simplify the conserved vector by transferring the terms .
of the formDy(...) from C* to C? and obtain B 3hque 3
o2r
—rX
ct= hkue , We simplify the conserved vector by transferring the terms
r of the formDy(...) from C* to C? and obtain
h kzefrx hxkqueirX
Cz = X — . _rx _IXx
2 3 3 rx
u ru C1:_3hxqztl:e +hqu2 the s
6. Let us apply Theorerg to the nonlinearly self-adjoint , 3hxk2quxeq“*L3X hkzqu(eq”’% hkpredt-%
equation Cc = or - 2 - 3

1
= ke + [, (25) Thekoe %,

2 qu
where f = 2k25qeq , g=kyed" and c = €*. Here h(x) o For generatovg = —qtd; + d,, we have
satisfies

2h 1% — 9hyr + 9hyx =0, W =qtu+1

(@© 2015 NSP
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and Eqgs. 18) yield the conservation lan2() with

~ 2hkeq r2tedlu, x B 2hykortedix

1_
= 9 9
_hxx+ hkzqrteqqu_ hxkzqté]qu‘i— Dx(B),
o2 2hko?qr2te?aUuy,,x N 2hko202r2te?au (uy)2x
9 9
2hk?qrite®®u,x  4hko?rite?dUx  2hkor2edix
+ 9 81 + 9

— hko20rt &MUy + hyko?qte? e, — hko20Prte? (uy)?
+hyka?0Pte? ™ () — hko2qrite?aUuy + heko2qrte?Uuy

2hlo?r3te?dU  2hk,2r2te?au
- +
9 9
—D¢(B)

— hlore® 4 hykoe™

and

B 2hkor2tedix

9 +hx+hkqgteuy.

Here

~ 7] 7] 7] 7]
E[u ;= — —D{— — Dy— + D2
| ou  ou Xo“’ux+ Xduxx+

The conserved current must satisfy
A =E[uo!

and the flux®* is given by B0|

ot oot
"= -DYAG) - D
HAG) duXG+G X(é‘uxx)+

The conservation law will be written
Di(®') + Dy(®*) = 0.

For Eq. @) by using the Maple package GeM, we get the
following multipliers. Each multiplier determines a
corresponding conserved density and flux.

1.For f(u) =u, g(u) = u9, ¢(x) = €.

We get that multiplie\ must satisfy {2) and the solution
is
N= kleH + kze_t.

We simplify the conserved vector by transferring the terms

of the formDy(...) from C* to C? and obtain

~ 2hkeq r2tedlu, x B 2hykortedix

1_
= 9 9
_hxx+ h kzq rt eqqu - hxkzqté]qu,
o2 2hky?qr2te?aUuy,,x N 2hko202r2te?au (uy)2x
9 9
2hko?qrite®®u,x  4hko?rite?dUx  2hkor2efix
+ 9 81 + 9

— hko?qrte? MUy + heko2ot 9y — hko?qPrte? (uy)?
+hyka?0Pte? ™ () — hko2qrite?aUuy + heko2qrte?Uuy
_ 2hig?r3te? N 2hyko?r2te?a

We get the the following multipliers and the corresponding
conserved densities and fluxes:

N =t N=¢et,
¢ =ety, ¢ =ety,
@ = —e Uy, = —etulux— ef(;ﬂqfl.
2. For f(uy=u,guy=ud c(x)=x. We get that

multiplier A must satisfy {2) and the solution is
A =kXet +koxe .

We get the the following multipliers and the corresponding
conserved densities and fluxes:

— hlore® 4 hykoe!.
9 9 A=xet, A =xet,
¢ =xeluy, ¢ = Xe—tu’
. L ) [P S W ety ((—Detudtt
4.2 Direct multipliers method for Equatio) e e GRS
In [17] Anco and Bluman gave a general treatment of a3. For f (u) = auP, g(u) = puP-b, ¢(x) = &*
direct conservation law method for partial differential . .
equations expressed in a standard Cauchy-KovaIeska;)é/e get thar\ must satisfy conditioni(3)
form, in particular for evolution equations A T A+ 8 =0, (26)
U = G(X, U, Ux, Uxx, - - -, Unx)- the solutions withA = r2 — 4a are:
The nontrivial conservation laws are characterized by a kyXe*/2 4 koe'*/2 A=0
inli i i i VA1) x r—vA)x
multiplier A with no dependence an satisfying A~ kle( 2+) +k2e( t ) A>0
E[u] (At — AG(X, U, Uy, Uy, . .., Unx)) = O. e? (kl Si“(@) +k COS(@)) A<O

(© 2015 NSP
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e For A = 0 we obtain the following multipliers and the

eFor A = 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes: i
X

corresponding conserved densities and fluxes:
N =xez, x
(pt = xe% u, N = xe?
. 2auPxe? 4auwPe? ¢ =xetu,
g =—puPluxe? - ——+ — Dopu TXEZTPY
and @ = —puxez T+e2
A—e? and
(pt ue%, IX
1. 1x 2aulez A= €
(px__pup uxez — (pt :ue_z_,
rx
e For A > 0 we obtain the foIIowmg multipliers and the o —puxe%“)“— rez+pu
corresponding conserved densities and fluxes: 2
(VE+r)x e For A > 0 we obtain the following multipliers and the
AN=e 7z corresponding conserved densities and fluxes:
(VA+r)x
(pt e z u, ix A (r+vVA)x
VEX 41X rx =e )
(\/Z—r) uPe2" "2 _pu- T (VB+1)x
and o _puxe%+f%x+pu I’e2+2 pu n Vhezt 5 A
(r=v'4)x
N=e 2z | and
r—VA)x
¢=ue" 7", . . P =t
' rx _VAX rx_ VAX = e_2_7
(px = _pup*luxei @ _ \/Zupe;Z 2 rupeT2 e ' (pt (VA
e For A < 0 we obtain the following multipliers and the —° b
. a giﬂeru \/— rx ‘Ferpu
corresponding conserved densities and fluxes: _ XVl p, Fez _ VAez™
P = —pue? 3 3 :
A=e2? sin( V-4 X) , e For A < 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:
¢ =ue? sin —Ax
2 ) A =% sin( V24X
ruPez sin( *ZAX) V—=AuPez cos(@‘) - 2 )
_ + x . vV —A
2 2 ¢t =uez? sm( X) ,
pfl £2>§ . Vv —AX 2
—PUT ke sin| 5 re2+p”sm( Ax) \/_e2+p“cos( *Ax)
and g=- 2 +
X4pu o vV —=AX
rx v/ —AX —puez sm(
A =ez cos ) ; 2
and
rx \V —AX
¢ =uez cos( 5 > ,
rx vV —=AX
—_A rx —A =ez
\/—Aupez sm( X) ruPez cos(\/?x) A =ez cos 2 ,
o rx \V —AX
rx2 MX 2 (pt:U87 COS( )’
—puP~lucez cos( . N 2
2 re7+p”cos(@‘) V= e2+p”sm( *Ax)
4. For f(u) = ae™, g(u) = pe®", c(x) = &*. o=
rx v—AX
. . . —puez PUcos .
We get thatA must satisfy condition26) with
A=r’—4a

5.Forf(u) =auP, g(u) = puP, c(x) =X".
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%N =) 2791

We get thatA must satisfy condition1(3) and the solution
is
= k1x2+2rJ< Ir—1|, \/5x>
Fhox2t2TyY ( Ir—1, \/éx)

We get the the following multipliers and the

corresponding conserved densities and fluxes:
_ 1
J(‘rzl‘,\/éx) x2+3,
¢ = (‘r 4 \/éx) X223 U,

1 r 1 r
o= E\/éuprr% B7 — iﬁupx?+% Bs

ro1 r r_1 1 r_1
—pup‘luxx2+284—iupx2‘2B4+§upx2‘2B4

L
2
4/

+Z/XL5§upB4(r2—2r+1)dx

—Bs— 2B, — Bg)dx

+%/\/5upx5‘1 (2B — 2J,) dx,

with
B =3 (52, vax), B=3(52 vax),
By =3 (154, vax), By=3('5H vax).
Bs=J (=14 ax), Bg=J “;21‘+1,\/ax),
By =J( 1\/éx)

A=y (2, vax)xdrdr,
qo‘:Y(@,\/éx)x%Jr%’u,
1 r+1 1 r+1
¢X:§\/5upx2 2B7—§\/5upx2 2Bg
p-1 ril r p 51 1 py5—3
—puP Uk x2 284—§u X2 2B4+§u X2 2By

L
2
4/

+‘—1/xr‘5§ uPBy (r? — 2r + 1) dx

(—Bs — 2B, — Bg) dx

1 ¢
+Z/\/aupx?*l (2B — 2By) dx

with

B =Y (I=5*2 /ax), B,=
Bo=Y (=l ax), By=Y @,\/ax),
Bs=Y (=14 ax), Bs=Y “;21‘+1,\/5x),
B, =Y @—1,\/&).

Y (522, vax),

5 Conclusions

We have found for the Fisher equation with variable
coefficients 2) conservation laws using two different
approaches. First he have determined the subclasses of
equations which are nonlinearly self-adjoint and in order
to derive the conservation laws associated to symmetry
generators we have applied the classical Lie method to
Eq. @). By using the property of nonlinear
self-adjointness of 2) and the general theorem of
conservation laws due to Ibragimov, we have constructed
some nontrivial conservation laws for this equation
associated with symmetries of the differential equation. |
has been proved3[], that the multiplier A(x,t,u) is
identical to the substitutionh(x,t,u) of nonlinear
self-adjointness, taking this fact into account, we have
obtained the corresponding conserved densities and fluxes
by using the direct method of the multipliers of Anco and
Bluman. The conservation laws by multiplier method are
obtained by integral formulae while the conservation laws
via nonlinear self-adjointness method are constructed by
the formulae in Theorer? which avoids the integrals of
functions.
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