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Abstract: In this paper, we study a generalized Fisher equation with variable coefficients which has applications governing the
spatiotemporal dynamics of the bacterial population and tumor growth. Conservation laws for this equation are constructed for the
first time by using the new conservation theorem due to Ibragimov as well as the Lie symmetries. Furthermore, some conservation laws
are derived by employing the direct multipliers method of Anco and Bluman.
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1 Introduction

The classic simplest case of a nonlinear reaction-diffusion
is the Fisher-Kolmogorov equation. This equation was
introduced by Fisher in 1937 to model the advance of an
advantageous gene through a geographic region. It is
given by:

∂P
∂ t

= D
∂ 2P
∂x2 +ρ

(

1− P

P̃

)

, (1)

whereP(x, t) represents the gene frequency at locationx
and timet, D is the diffusion coefficient,̃P is the carrying
capacity, that is, the saturation value beyond which the
population cannot grow anymore andρ is the
proliferation. D, P̃ and ρ are positives constants.
Reaction-diffusion equations such as Fisher equation

appear in a variety of problems ranging from population
genetics to neurobiology and pattern formation [3]. The
Fisher equation and its extensions are a family of
reaction-diffusion models arising in population dynamics
problems [1,2], most prominently in cancer modelling [4,
5], applications to brain tumor dynamics [6], in the
description of propagating crystallization/polymerization
fronts [7], chemical kinetics [8], geochemistry [9] and
many others fields.

Lie symmetry analysis of differential equations provides a
powerful and fundamental framework to the exploitation
of systematic procedures leading to the integration by
quadrature of ordinary differential equations, to the

determination of invariant solutions of initial and
boundary value problems and to the derivation of
conservation laws.

The equation analyzed in this paper is a generalized Fisher
equation with variable coefficients

ut = f (u)+
1

c(x)
(c(x)g(u)ux)x , (2)

whereg(u) is the diffusion coefficient depending on the
variableu, beingx andt the independent variables,f (u) an
arbitrary function andc(x) an arbitrary function depending
on the space variablex. Let u(x, t) denote the density of
tumor cells. In some particular cases this equation has been
studied by other authors.
The Kolmogorov-Petrovskii-Piskunov equation [10] given
by

ut = uxx+ f (u), (3)

provides a different generalization to the Fisher equation.
This equation is reduced to the well known Huxley
equation for f (u) = u2(1− u) and has been studied by
Hodgkin and Huxley and Kolmogorov. Another important
equation of this class is forf (u) = u(1 − u2), the
Fitzhugh-Nagumo equation which arises in the study of
nerve cells [11,12]. Over the last two decades a lot of
attention has been paid on using Lie point symmetry
methods to exploit the invariance of the generalized
equation

ut = (A(u)ux)x+B(u)ux+C(u). (4)
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A complete Lie symmetry classification for the non-linear
heat equation (4) with B=C= 0 was described by [13].
Equation (4) with B(u) = 0 becomes the so called density
dependent equation

ut = f (u)+ (g(u)ux)x , (5)

which has been considered in [1]. The integrability
properties of a generalized Fisher equation as well as
explicit and numerical solutions for specific cases of
nonintegrable systems were derived in [14]. In [15] the
authors have considered equation (2) with c(x) = x,
however they stated that a classification of (2) can only be
achieved wheng is linear in u. In [16] Eq. (2) with
c(x) = x has been studied from the point of view of the
theory of symmetry reductions in partial differential
equations and a group classification was obtained. All the
reductions were derived from the optimal system of
subalgebras. Some of the reduced equations admit Lie
symmetries which yield to further reductions.

The idea of a conservation law has its origin in mechanics
and physics. Since a large number of physical theories,
including some of the ‘laws of nature’, are usually
expressed as systems of nonlinear differential equations,
it follows that conservation laws are useful in both
general theory and the analysis of concrete systems. The
classical Noether’s theorem provides an elegant and
constructive way to obtain conservation laws of PDEs
which admit a variational principle. However, a limitation
of Noether’s theorem is that it restricts to variational
systems, or says it depends on existence of Lagrangian,
where the majority of the PDEs arising in applications do
not hold this property. In [17] Anco and Bluman gave a
general treatment of a direct conservation law method for
partial differential equations expressed in a standard
Cauchy-Kovaleskaya form, in particular for evolution
equations

ut = G(x,u,ux,uxx, . . . ,unx).

In [18] a general theorem on conservation laws for
arbitrary differential equations which do not require the
existence of Lagrangians was proved. Eq. (2) cannot be
derived from a variational principle and Noether’s
theorem cannot be applied.
Due to the great interest in getting conservation laws and
conserved quantities in recent papers [19,20,21,22,23,
24,25,26] applying the concept of nonlinear
self-adjointness and a theorem related to conservation
laws due to Ibragimov [27], conservation laws have been
derived for some generalized Fisher equations.
The aim of this paper is to derive nontrivial conservation
laws for Eq. (2) by using two different approaches. First,
we determine for equation (2) the subclasses of equations
which are nonlinearly self-adjoint and we construct, by
using the Lie generators admitted by (2) and the theorem
in conservation laws [18], some non-trivial conservation
laws. Then, taking into account that the multipliers of
Anco and Bluman method without containing derivatives

are just the substitutions of nonlinear self-adjointness we
also derive some conservation laws of Eq. (2) by using
the multipliers direct method [17].

2 Nonlinearly self-adjoint equations

We will prove now by explicit constructions that equation
(2) is nonlinearly self-adjoint in the sense of [27].
Equation (2) is written in the form

F ≡ ut − f (u)− 1
c(x)

[c(x)g(u)ux]x = 0. (6)

The adjoint equation to equation (6) has the form

F∗ ≡ δ (vF)
δu

= 0, (7)

where

δ
δu

=
∂

∂u
−Dt(

∂
∂ut

)−Dx(
∂

∂ux
)+D2

x(
∂

∂uxx
)−·· · , (8)

denotes the variational derivatives (the Euler-Lagrange
operator) andv is a new dependent variable. HereDt , Dx
are the total differentiations.

Definition 1. Equation (6) is said to be nonlinearly
self-adjoint if the equation obtained from its adjoint
equation by the substitution v= h(x, t,u,ux, . . .), with a
certain function h(x, t,u,ux, . . .) such that
h(x, t,u,ux, . . .) 6= 0 is identical to the original equation
(6), i.e:

F∗
|v=h = λF.

In the particular case, in which v= h(x, t,u) with
hu 6= 0, equation (6) is called weak self-adjoint [28].
If v = h(u) with hu 6= 0, equation (6) is called quasi self-
adjoint [29].

2.1 The subclass of nonlinearly self-adjoint
equations

Let us single out nonlinearly self-adjoint equations from
the equations of the form (2). Eq. (7) yields

F∗ ≡ δ
δu

[v(ut − f (u)− 1
c(x)

(c(x)g(u)ux)x)]

=−gvxx+
cxgvx

c
− vt +

cxxgv
c

− (cx)
2 gv

c2 − fuv.

(9)

Settingv= h(x, t,u) in (9), we get

−ghuuxx−ghuu (ux)
2−2ghuxux+

cx ghuux

c
−huut

−ghxx+
cxghx

c
−ht +

cxxgh
c

− (cx)
2 gh

c2 − fuh= 0,
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which yields:

F∗−λ (ut − f (u)− 1
c(x)

(c(x)g(u)ux)x) =

guxxλ +gu (ux)
2 λ +

cxgux λ
c

−ut λ + f λ −ghuuxx

−ghuu (ux)
2−2ghuxux+

cxghuux

c
−huut −ghxx

+
cxghx

c
−ht +

cxxgh
c

− (cx)
2 gh

c2 − fuh.

From the coefficients for the different derivatives ofu we
obtain that the following conditions must be satisfied:

−hu−λ = 0, (10)

λ g−ghu = 0,

−2ghux+
cxghu

c
+

λ cx g
c

= 0,

λ gu−ghuu = 0,

−ghxx+
cx ghx

c
−ht +

cxxgh
c

− (cx)
2 gh

c2

− fu h+λ f = 0.

and solving this system, we can state the following result:

Theorem 1. Eq. (2) is neither quasi self-adjoint nor
weak self-adjoint, however Eq.(2) is nonlinearly
self-adjoint, upon the substitution

h= h(x, t)

for any functions f= f (u), g = g(u) and c= c(x) with
h= h(x, t) verifying the following equation

ghxx−
cx ghx

c
+ht −

cxxgh
c

+
(cx)

2 gh
c2 + fuh = 0. (11)

For f , g andc different from constant we can distinguish
the following two cases:

Case 1-For g = g(u) arbitrary, c = c(x) arbitrary and
f (u) = au+b. Thenh= h(x, t) must satisfy the following
two conditions

hxx−
(cx

c
h
)

x
= 0,

ht +ah= 0.
(12)

whose solution is

h= c

(

α +β
∫

1
c

dx

)

e−at,

whereα andβ are integration constants.

Case 2-Forc= c(x) arbitrary,g= g(u) arbitrary andf =
a
∫

gduwith a constant. Thenh = h(x, t) must satisfy the
following conditions

hxx−
(cx

c
h
)

x
+ah= 0,

ht = 0.
(13)

We point out that the substitutionsh(x, t) derived by using
the condition of nonlinear self-adjointness correspond to
the multipliers of Anco and Bluman method proposed in
[17].

3 Lie symmetries

In this section, we perform Lie symmetry analysis for Eq.
(2). Let us consider a one-parameter Lie group of
infinitesimal transformations in(x, t,u) given by

x∗ = x+ εξ (x, t,u)+O(ε2),

t∗ = t + ετ(x, t,u)+O(ε2),

u∗ = u+ εφ(x, t,u)+O(ε2),

(14)

whereε is the group parameter. Then one requires that this
transformation leaves invariant the set of solutions of Eq.
(2) . This yields to the overdetermined, linear system of
eleven equations for the infinitesimalsξ (x, t,u), τ(x, t,u)
andφ(x, t,u). The associated Lie algebra of infinitesimal
symmetries is the set of vector fields of the form

v = ξ
∂
∂x

+ τ
∂
∂ t

+φ
∂
∂u

. (15)

Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface
condition

Φ ≡ ξ
∂u
∂x

+ τ
∂u
∂ t

−φ = 0. (16)

After solving the determining equations, we can
distinguish nine different cases in which the symmetries
are admitted by Eq. (2). The functional forms ofc(x),
f (u) andg(u) as well as the corresponding generators are
given in Table 1.
Table 1: Functionsci , gi , fi with i = 1· · ·9 and generators
vk with k= 1· · ·9.

i ci gi fi vk

1 arbitrary arbitrary arbitrary v1
2 k1xr k2uq k3up v1,v2
3 k1xr k2uq k3u v1,v2,v3
4 k1erx k2uq k3up v1,v4

5 k1erx k2
u2 k3u v1,v3,v4,v5

6 k1erx k2 k3up v1,v4,v6
7 k1erx k2equ k3epu v1,v4 (p 6= q)

8 k1erx k2equ 2k2equr2

9q v1,v4,v7,v8

9 k1erx k2 k3epu v1,v4,v9
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where,

v1 = ∂t ,
v2 = (q+1− p)x∂x+2(1− p)t∂t +2u∂u,

v3 = e−k3qt∂t + k3e−k3qtu∂u,
v4 = ∂x,

v5 =
e−rx

r
∂x+e−rxu∂u,

v6 =
(−x+ k2rt )(p−1)

2
∂x− (p−1)t∂t +u∂u,

v7 =
−3qe

−rx
3

2r ∂x+e
−rx
3 ∂u,

v8 =−qt∂t + ∂u,

v9 =
p(−x+ k2rt )

2
∂x− pt∂t + ∂u.

4 Conservation laws

4.1 General theorem for Equation (2)

We use the following theorem on conservation laws proved
in [18].

Theorem 2. Any Lie point, Lie-B̈acklund or non-local
symmetry

v = ξ i(x,u,u(1), . . .)
∂

∂xi +η(x,u,u(1), . . .)
∂

∂u
(17)

of equation (6) provides a conservation law Di(Ci) = 0 for
the system (6), (7). The conserved vector is given by

Ci = ξ iL +W

[

∂L

∂ui
−D j

(

∂L

∂ui j

)

+ · · ·
]

+D j(W)

[

∂L

∂ui j
−+ · · ·

] (18)

where W andL are defined as follows:

W = η − ξ ju j , L = vF
(

x,u,u(1), . . . ,u(s)
)

. (19)

We will write generators of point transformation group
admitted by Eq. (2) in the form

v = ξ 1 ∂
∂ t

+ ξ 2 ∂
∂x

+η
∂

∂u
,

by settingt = x1, x = x2. The conservation law will be
written

Dt(C
1)+Dx(C

2) = 0. (20)

We will obtain the conservation laws forg(u) 6= constant
and by using the generators given in table 1.

1- Let us apply Theorem2 to the nonlinearly self-adjoint
Eq. (2) with g(u), c(x) arbitrary functions andf = a

∫

gdu,
that is

ut = f (u)+
1

c(x)
(c(x)g(u)ux)x ,

whereh= h(x) must satisfy (13).
We get the conservation law (20) provided by generator

v1 = ∂t ,

with

C1 =−guhxuux+
cx guhuux

c
+

ghu
k

− f h+Dx(B),

C2 = gguhxuuxx−
cx gguhuuxx

c
+(gu)

2 hx u (ux)
2

−cx (gu)
2 hu(ux)

2

c
+

cx gguhx uux

c
− (cx)

2 gguhuux

c2

+ f guhx u− cx f guhu
c

−Dt(B),

where

B=

(

ghxk1−
cx ghk1

c

)

u−ghk1ux.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) fromC1 to C2 and obtain

C1 =−guhxuux+
cx guhuux

c
+

ghu
k

− f h,

C2 = gguhxuuxx−
cx gguhuuxx,

c
+(gu)

2 hx u (ux)
2

−cx (gu)
2 hu(ux)

2

c
+

cx gguhx uux

c
− (cx)

2 gguhuux

c2

+ f guhx u− cx f guhu
c

.

This conservation law has been published in [20].

2. Let us apply Theorem2 to the nonlinearly self-adjoint

equation

ut = k3up+
1
xr

[

xrk2up−1ux
]

x , (21)

whereg = k2up−1, f = k3up andc = xr . In this caseh =
h(x) must satisfy

−hx r
x

+
hr
x2 +

hk3 p
k2

+hxx = 0,

whose solution in terms of Bessel is:

h= c1x
1
2+

1
2 rJ

(

1
2

√

(r −1)2,
√

k3 p
k2

x

)

+c2x
1
2+

1
2 rY

(

1
2

√

(r −1)2,
√

k3 p
k2

x

)

.

Let us find the conservation law provided by generator

v2 = 2(1− p)t∂t +2u∂u,

in this case we have

c© 2015 NSP
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W = 2u−2(1− p)tut

and Eqs. (18) yield the conservation law (20) with

C1 = 2hu+Dx(B) ,

C2 =−2hk2 rup

px
−2hk2up−1ux+

2hxk2up

p
−Dt (B)

and

B=−2hk2r t up

px
+

2hk2 r t up

x
+2hk2 pt up−1ux

−2hk2t up−1ux+
2hxk2 t up

p
−2hxk2 t up.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) from C1 to C2 and obtain

C1 = 2hu,

C2 =−2hk2 rup

px
−2hk2up−1ux+

2hxk2up

p
.

3. Let us apply Theorem2 to the nonlinearly self-adjoint

equation

ut = k3u+
1
xr [x

rk2uqux]x , (22)

where f = k3u, g= k2uq, c= xr andh= h(x) satisfies

ht + k3h= 0,

−hx r
x

+
hr
x2 +hxx,

whose solution is

h= (c1x+ c2x
r)e−k3t .

• For generator

v2 = qx∂x+2u∂u,

we have

W = 2u−qxux

and Eqs. (18) yield the conservation law (20) with

C1 = hxqux+hqu+2hu+Dx(B) ,

C2 =−hxk2ququxx− 2hk2 ruq+1

x
−hk2ququx

−2hk2uqux+2hxk2uq+1−Dt (B)

and
B=−hqux.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) fromC1 to C2 and obtain

C1 = hxqux+hqu+2hu,

C2 =−hxk2ququxx− 2hk2 ruq+1

x
−hk2ququx

−2hk2uqux+2hxk2uq+1.

• For generator

v3 = e−k3qt∂t + k3e−k3qtu∂u,

we obtain a trivial conservation law.

4. Let us apply Theorem2 to the nonlinearly self-adjoint

equation

ut = k3up+
1

erx

[

erxk2up−1ux
]

x , (23)

where f = k3up, g = k2up−1 andc = erx. Hereh = h(x)
must satisfyh= h(x) satisfies (13)

−hx r +
hk3 p

k2
+hxx = 0,

whose solution is

h=















(c1x+ c2) e
r x
2 ∆ = 0

c1e
(r+

√
∆)x

2 + c2e
(r−

√
∆)x

2 ∆ > 0

e
r x
2

(

c1 sin
(√

∆ x
2

)

+ c2 cos
(√

−∆ x
2

))

∆ < 0

with ∆ = r2 − 4k3 p
k2

. Let us find the conservation law
provided by generatorv4 = ∂x, we haveW = −ux and
Eqs. (18) yield the conservation law (20) with

C1 = hxu+Dx(B) ,

C2 =−hxk2up−1ux−hk3up−Dt (B)

and

B=−hu.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) fromC1 to C2 and obtain

C1 = hxu,

C2 =−hxk2up−1ux−hk3up.

5. Let us apply Theorem2 to the nonlinearly self-adjoint

equation

ut = k3u+
1

erx

[

erx k2

u2 ux

]

x
, (24)
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where f = k3u, g= k2
u2 andc= erx. Hereh(x, t) satisfies

ht + k3h= 0,
hxx− rhx = 0,

whose solution is

h= (c1er x + c2)e−k3t .

• For generatorv4 = ∂x, we haveW = −ux and Eqs. (18)
yield the conservation law (20) with

C1 = hxu+Dx(B),

C2 =−hxk2ux

u2 −Dt(B)

and
B=−hu.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) from C1 to C2 and obtain

C1 = hxu,

C2 =−hxk2ux

u2 .

• For generatorv5 =
e−rx

r
∂x+e−rxu∂u, we have

W = ue−r x − e−r x

r
ux

and Eqs. (18) yield the conservation law (20) with

C1 =
hxue−r x

r
+Dx(B),

C2 =
hxk2e−r x

u
− hxk2ux e−r x

ru2 −Dt(B)

and

B=−hue−r x

r
.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) from C1 to C2 and obtain

C1 =
hx ue−r x

r
,

C2 =
hx k2e−r x

u
− hxk2uxe−r x

ru2 .

6. Let us apply Theorem2 to the nonlinearly self-adjoint

equation

ut = kequ+
1

erx [e
rxequux]x , (25)

where f = 2k2 r2 equ

9q , g = k2equ and c = erx. Here h(x)
satisfies

2hr2−9hx r +9hxx = 0,

whose solution is

h= c1e
2r x
3 + c2e

r x
3 .

• For generatorv4 = ∂x, we haveW = −ux and Eqs. (18)
yield the conservation law (20) with

C1 = hxu+Dx(B) ,

C2 =−hxk2equux−
2hk2 r2 equ

9q
−Dt (B)

and

B=−hu.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) fromC1 to C2 and obtain

C1 = hx u,

C2 =−hxk2equux−
2hk2 r2equ

9q
.

• For generatorv7 =
−3qe

−rx
3

2r
∂x+e

−rx
3 ∂u, we have

W =
3qe−

r x
3

2r
ux+e−

r x
3

and Eqs. (18) yield the conservation law (20) with

C1 =−3hxque−
r x
3

2r
+

hque−
r x
3

2
+he−

r x
3 +Dx(B) ,

C2 =
3hx k2quxequ− r x

3

2r
− hk2quxequ− r x

3

2
− hk2 requ− r x

3

3

+hxk2equ− r x
3 −Dt (B)

and

B=
3hque−

r x
3

2r
.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) fromC1 to C2 and obtain

C1 =−3hxque−
r x
3

2r
+

hque−
r x
3

2
+he−

r x
3 ,

C2 =
3hx k2quxequ− r x

3

2r
− hk2quxequ− r x

3

2
− hk2 requ− r x

3

3

+hxk2equ− r x
3 .

• For generatorv8 =−qt∂t + ∂u, we have

W = qt ut +1
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and Eqs. (18) yield the conservation law (20) with

C1 =−2hk2qr2 t equux x
9

− 2hxk2 r2 t equx
9

−hxx+hk2qrt equux−hxk2qt equux+Dx(B) ,

C2 =
2hk2

2qr2te2quuxxx
9

+
2hk2

2q2r2te2qu(ux)
2x

9

+
2hk2

2qr3te2quuxx
9

+
4hk2

2r4te2qux
81

+
2hk2r2equx

9
−hk2

2qrte2quuxx+hxk2
2qte2quuxx−hk2

2q2rte2qu(ux)
2

+hxk2
2q2te2qu(ux)

2−hk2
2qr2te2quux+hxk2

2qrte2quux

−2hk2
2r3te2qu

9
+

2hxk2
2r2te2qu

9
−hk2re

qu+hxk2equ

−Dt (B)

and

B=
2hk2 r2 t equx

9
+hx+hk2qt equux.

We simplify the conserved vector by transferring the terms
of the formDx(. . .) from C1 to C2 and obtain

C1 =−2hk2qr2 t equux x
9

− 2hxk2 r2 t equx
9

−hxx+hk2qrt equux−hxk2qt equux,

C2 =
2hk2

2qr2te2quuxxx
9

+
2hk2

2q2r2te2qu(ux)
2x

9

+
2hk2

2qr3te2quuxx
9

+
4hk2

2r4te2qux
81

+
2hk2r2equx

9
−hk2

2qrte2quuxx+hxk2
2qte2quuxx−hk2

2q2rte2qu(ux)
2

+hxk2
2q2te2qu(ux)

2−hk2
2qr2te2quux+hxk2

2qrte2quux

−2hk2
2r3te2qu

9
+

2hxk2
2r2te2qu

9
−hk2re

qu+hxk2equ.

4.2 Direct multipliers method for Equation (2)

In [17] Anco and Bluman gave a general treatment of a
direct conservation law method for partial differential
equations expressed in a standard Cauchy-Kovaleskaya
form, in particular for evolution equations

ut = G(x,u,ux,uxx, . . . ,unx).

The nontrivial conservation laws are characterized by a
multiplier λ with no dependence onut satisfying

Ê[u] (Λut −ΛG(x,u,ux,uxx, . . . ,unx)) = 0.

Here

Ê[u] :=
∂

∂u
−Dt

∂
∂ut

−Dx
∂

∂ux
+D2

x
∂

∂uxx
+ . . . .

The conserved current must satisfy

Λ = Ê[u]Φt

and the fluxΦx is given by [30]

Φx =−D−1
x (ΛG)− ∂Φt

∂ux
G+GDx

(

∂Φt

∂uxx

)

+ . . . .

The conservation law will be written

Dt(Φt )+Dx(Φx) = 0.

For Eq. (2) by using the Maple package GeM, we get the
following multipliers. Each multiplier determines a
corresponding conserved density and flux.

1. For f (u) = u, g(u) = uq, c(x) = ex.

We get that multiplierΛ must satisfy (12) and the solution
is

Λ = k1ex−t + k2e
−t .

We get the the following multipliers and the corresponding
conserved densities and fluxes:







Λ = ex−t , Λ = e−t ,
φ t = ex−tu, φ t = e−tu,

φx =−ex−tuqux, φx =−e−t uqux− e−t uq+1

q+1 .

2. For f (u) = u, g(u) = uq, c(x) = xr . We get that

multiplier Λ must satisfy (12) and the solution is

Λ = k1xre−t + k2xe−t .

We get the the following multipliers and the corresponding
conserved densities and fluxes:










Λ = xre−t , Λ = xe−t ,
φ t = xre−tu, φ t = xe−tu,

φx =−e−t uquxxr , φx =−e−tuquxx− (r−1)e−tuq+1

q+1 .

3. For f (u) = aup, g(u) = pu(p−1), c(x) = erx

We get thatΛ must satisfy condition (13)

Λxx− rΛx+aΛ = 0, (26)

the solutions with∆ = r2−4a are:

Λ =















k1xerx/2+ k2erx/2 ∆ = 0

k1e
(
√

∆+r)x
2 + k2e

(r−
√

∆)x
2 ∆ > 0

e
r x
2

(

k1 sin
(√

−∆ x
2

)

+ k2 cos
(√

−∆ x
2

))

∆ < 0
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• For ∆ = 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:














Λ = xe
rx
2 ,

φ t = xe
x
2 u,

φx =−pup−1uxxe
r x
2 − 2aupxe

r x
2

r
+

4aupe
r x
2

r2

.

and














Λ = e
rx
2 ,

φ t = ue
r x
2 ,

φx =−pup−1uxe
r x
2 − 2aupe

r x
2

r
.

• For ∆ > 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:























Λ = e
(
√

∆+r)x
2 ,

φ t = e
(
√

∆+r)x
2 u,

φx =

(√
∆ − r

)

upe
√

∆ x
2 + r x

2

2a
− pup−1uxe

√
∆ x
2 + r x

2

a
and


















Λ = e
(r−

√
∆)x

2 ,

φ t = ue
(r−

√
∆)x

2 ,

φx =−pup−1uxe
r x
2 −

√
∆ x
2 −

√
∆ upe

r x
2 −

√
∆ x
2

2 − rup e
r x
2 −

√
∆ x
2

2 .

• For ∆ < 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:


















































Λ = e
r x
2 sin

(
√
−∆ x
2

)

,

φ t = ue
r x
2 sin

(
√
−∆ x
2

)

,

φx =−
rupe

r x
2 sin

(√
−∆ x
2

)

2
+

√
−∆ upe

r x
2 cos

(√
−∆ x
2

)

2

−pup−1ux e
r x
2 sin

(
√
−∆ x
2

)

and


















































Λ = e
r x
2 cos

(
√
−∆ x
2

)

,

φ t = ue
r x
2 cos

(
√
−∆ x
2

)

,

φx =−
√
−∆ upe

r x
2 sin

(√
−∆ x
2

)

2
−

rupe
r x
2 cos

(√
−∆ x
2

)

2

−pup−1ux e
r x
2 cos

(
√
−∆ x
2

)

.

4. For f (u) = aepu, g(u) = pepu, c(x) = erx.

We get thatΛ must satisfy condition (26) with
∆ = r2−4a.

•For ∆ = 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:















Λ = xe
rx
2 ,

φ t = xe
x
2 u,

φx =−puxxe
r x
2 +pu− r xe

r x
2 +pu

2
+e

r x
2 +pu

and















Λ = e
rx
2 ,

φ t = ue
r x
2 ,

φx =−puxe
r x
2 +pu− re

r x
2 +pu

2
.

• For ∆ > 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:























Λ = e
(r+

√
∆)x

2 ,

φ t = e
(
√

∆+r)x
2 u,

φx =−puxe
rx
2 +

√
∆x
2 +pu− re

rx
2 +

√
∆x
2 +pu

2
+

√
∆e

rx
2 +

√
∆x
2 +pu

2

and























Λ = e
(r−

√
∆)x

2 ,

φ t = e
(r−

√
∆)x

2 u,

φx =−puxe
rx
2 −

√
∆x
2 +pu− re

rx
2 −

√
∆x
2 +pu

2
−

√
∆e

rx
2 −

√
∆x
2 +pu

2
.

• For ∆ < 0 we obtain the following multipliers and the
corresponding conserved densities and fluxes:



















































Λ = e
r x
2 sin

(
√
−∆ x
2

)

,

φ t = ue
r x
2 sin

(
√
−∆ x
2

)

,

φx =−
re

r x
2 +pu sin

(√
− ∆ x
2

)

2
+

√
−∆ e

r x
2 +pu cos

(√
−∆ x
2

)

2

−puxe
r x
2 +pu sin

(
√
−∆ x
2

)

and



















































Λ = e
r x
2 cos

(
√
−∆ x
2

)

,

φ t = ue
r x
2 cos

(
√
−∆ x
2

)

,

φx =−
re

r x
2 +pu cos

(√
−∆ x
2

)

2
−

√
−∆ e

r x
2 +pu sin

(√
−∆ x
2

)

2

−puxe
r x
2 +pu cos

(
√
− ∆ x
2

)

.

5. For f (u) = aup, g(u) = pup, c(x) = xr .
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We get thatΛ must satisfy condition (13) and the solution
is

Λ = k1x
1
2+

1
2 rJ

(

1
2
|r −1| ,

√
ax

)

+k2x
1
2+

1
2 rY

(

1
2
|r −1| ,

√
ax

)

.

We get the the following multipliers and the
corresponding conserved densities and fluxes:

Λ = J
(

|r−1|
2 ,

√
ax

)

x
r
2+

1
2 ,

φ t = J
(

|r−1|
2 ,

√
ax

)

x
r
2+

1
2 u,

φx =
1
2

√
aupx

r
2+

1
2 B7 −

1
2

√
aupx

r
2+

1
2 B6

−pup−1uxx
r
2+

1
2 B4−

r
2

upx
r
2− 1

2 B4+
1
2

upx
r
2− 1

2 B4

+
1
4

∫

x
r+1

2 upa(−B5−2B4−B3)dx

+
1
4

∫

x
r−3

2 upB4
(

r2−2r +1
)

dx

+
1
4

∫ √
aupx

r
2−1 (2B1−2J2)dx,

with

B1 = J
(

|r−1|+2
2 ,

√
ax

)

, B2 = J
(

|r−1|−2
2 ,

√
ax

)

,

B3 = J
(

|r−1|+4
2 ,

√
ax

)

, B4 = J
(

|r−1|
2 ,

√
ax

)

,

B5 = J
(

|r−1|−4
2 ,

√
ax

)

, B6 = J
(

|r−1|
2 +1,

√
ax

)

,

B7 = J
(

|r−1|
2 −1,

√
ax

)

.

Λ = Y
(

|r−1|
2 ,

√
ax
)

x
1
2+

1
2 r ,

φ t = Y
(

|r−1|
2 ,

√
ax
)

x
1
2+

1
2 ru,

φx =
1
2

√
aupx

r
2+

1
2 B7 −

1
2

√
aupx

r
2+

1
2 B6

−pup−1ux x
r
2+

1
2 B4−

r
2

upx
r
2− 1

2 B4+
1
2

upx
r
2− 1

2 B4

+
1
4

∫

x
r+1

2 upa(−B5−2B4−B3)dx

+
1
4

∫

x
r−3

2 upB4
(

r2−2r +1
)

dx

+
1
4

∫ √
aupx

r
2−1 (2B1−2B2)dx

with

B1 = Y
(

|r−1|+2
2 ,

√
ax

)

, B2 = Y
(

|r−1|−2
2 ,

√
ax

)

,

B3 = Y
(

|r−1|+4
2 ,

√
ax

)

, B4 = Y
(

|r−1|
2 ,

√
ax

)

,

B5 = Y
(

|r−1|−4
2 ,

√
ax

)

, B6 = Y
(

|r−1|
2 +1,

√
ax

)

,

B7 = Y
(

|r−1|
2 −1,

√
ax

)

.

5 Conclusions

We have found for the Fisher equation with variable
coefficients (2) conservation laws using two different
approaches. First he have determined the subclasses of
equations which are nonlinearly self-adjoint and in order
to derive the conservation laws associated to symmetry
generators we have applied the classical Lie method to
Eq. (2). By using the property of nonlinear
self-adjointness of (2) and the general theorem of
conservation laws due to Ibragimov, we have constructed
some nontrivial conservation laws for this equation
associated with symmetries of the differential equation. It
has been proved [31], that the multiplier Λ(x, t,u) is
identical to the substitutionh(x, t,u) of nonlinear
self-adjointness, taking this fact into account, we have
obtained the corresponding conserved densities and fluxes
by using the direct method of the multipliers of Anco and
Bluman. The conservation laws by multiplier method are
obtained by integral formulae while the conservation laws
via nonlinear self-adjointness method are constructed by
the formulae in Theorem2 which avoids the integrals of
functions.
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