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Abstract: A packing function is a bijection between a subge€ N™ andN, whereN denotes the set of non negative integrs
Packing functions have several applications, e.g. infi@mtng schemes and in text compression. Two categorieaaKipg functions
are Diagonal Polynomials and Box Polynomials. The bijextitor diagonal ad box polynomials have mostly been studiedgrhall
values ofm. In addition to presenting bijections for box and diagonalypomials for any value ofn, we present a bijection using
what we call Greater-Than Polynomial between restrictedlimensional vectors oved™ andN. We give details of two interesting
applications of packing functions: (a) the application oéajer-than polynomials for the manipulation of Coveringaks that are
used in combinatorial interaction testing; and (b) thetieteship between grater-than and diagonal polynomialk wispecial case of
Diophantine equations. A comparison of the bijections fox,lliagonal and greater-than polynomials are presentédvarconclude
that the bijection for box polynomials is efficient becauselirect and inverse methods have orde®@f - m) andO(n®- m) (measured
in terms of bit operations, whereis the number of bits of an integer involved in the methods)

Keywords: Diagonal Polynomials, Box Polynomials, Greater-Than Roiyials

1 Introduction inverse methods (the ones that transform an integer into
the corresponding vector); most of the work found in the
Denoting by N the set of non negative integers, let literature involves vectors of smaII' number of dimensions
f:V — N, whereV C N™ be a function. Therf is a (Comm'only two or three' dimension24, 3, 26}]). The
Packing Function(PF) wheneverf is a bijection. The work is _rather theor_etlcal aqd seldom involves a
function f is aStoring Function(SF) if it is an injection. ~ COMputational complexity analysis.
PFs and SFs have been used to address several In addition to presenting bijections for DP and BP for
combinatorial problems having applications in computerany number of dimensions, we present a new PF derived
science. Two examples of these problems are thdrom the combinatorial numeration system reported
compression of datdl[l] and the generation of extensible in [10]. The new PF is calledreater-Than Polynomial
arrays 5, 3]. (GTP) due to the fact that the vectors satisfy the property
An efficient PF would be one that, when implemented that a vector element is strictly greater than the previous
in a computer system, performs the bijection usingelement. After presenting algorithms for computing the
minimal resources (i.e. requiring less computer time anddirect and inverse methods for DP, BP, and GTP, we
space). The most studied types of PFs areDiegonal  analyze them in terms of their computational complexity.
Polynomial (DP) and theBox Polynomial (BP). The The analysis compares the number of bit operations
research done in this area involves the study of directrequired for each PF to map an integer number to a vector
methods (those that map a vector to an integer) andf N™ and vice versa. Additional contributions of the
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paper are as follows: (a) the application of GTP for thethe addition of it at the end of the array, but the addition
manipulation of Covering Arrays (CAs), that are used in of a column (or a row) requires a reorganization of the
combinatorial interaction testing; and (b) an interestingstored array. The works presented 25,[3] deal with the
bijection between GTP and DP used to generate randomroblem of allocating storage for extensible arrays. In
solutions of Linear Diophantine Equations with Unit these approaches DP and BP can be used as possible
coefficients (LDEU). organization schemes. Similar organization schemes
The remainder of the document is organized asbased on DP and BP have been used i2l, [12] as

follows: Section2 presents some applications of PFs. storage schemes for parallel array access and as a matrix
Sections3, 4, and5 present the description of GTP, DP, storage format for symmetric and triangular matrices.
and BP, for eaCh k|nd of p0|yn0mia|, a formal deﬁnition, Another app”cation of packing functions based on DP
some related work, angl their invg_rse and direct methodss found in [L3]; there, DP support the consecutive
are presented. Sectior8 additionally shows the retrieval organization of files and their queries, i.e., a
application of GTP for manipulating Covering Arrays scheme for the storage of the file on a linear storage
(CAs). Sectiort also presents the application of GTP and medjum such that for each permissible query, there exists
DP to generate random solutions of a LDEU. Secion 5 plock of consecutive locations with exactly those
summarizes the computational complexity of the records that are pertinent to the query. Fraenkel proposed
algorithms proposed in this paper. Finally, Sectidn jn [11] a scheme for combinatorial compression and
presents some conclusions. partitioning for large dictionaries. More recently, DPs

have been used in2f] as a mechanism for accountability

in web computing projects. Finally, the works done by
2 Applications and Related Work Charlier, et al. §) and Lecomte et al. 15, study

arithmetic properties between integer values and some

This section describes several applications of packingiumeration systems. They present abstract numeration
functions. systems which can be used to describe DPs and GTPs.

The remaining sections of this paper describe and

compare the direct and inverse methods for GTP, DP, and

2.1 Applications of Packing Functions BP; also we discuss two applications that can make use of
the GTP and DP packing functions.

There are many ways of representing an integer uniquely

[16, 10]. Some representations rely on vectors and are

useful in tasks related to digital information processing,

representation of a problem solution in meta heuristics 3 Greater-Than Polynomials (GTP)

and memory organization schemes. Of particular interest

are the integer vectorial representations, these

representations include the polynomials DP, GTP, and BPm [10, 16] is presented a numeration system that
which can uniquely represent each non negative integer aﬁssocia’ées avectdr— (Va, ..., vm) with a natural number

m i 1 m
a vector oveiN™. A bijection of N™ to N can be used to a where the entries satisfy < Vi1, v1 > 0. The values

organize glements of am—dmensmqal array Into a 5.6 ysed in binomial coefficients and summed up as in
1-dimensional array. The task is simple: just use a m

bijection like DP, GTP, or BP to transform an element of o = Zl (V'> to uniquely define an integer € N. This
the m—dimensional array into an integer value that =N ]
represents the position in the-tlimensional array. The numeration system will be called Greater-Than
work presented by Rosenber@4] shows an addressing Polynomials (GTP), because the expansion of the
scheme of data graphs. A data graph is a representation &nomial coefficients yields a polynomial ifv;. ..., vm)
data structures. The data graphs are mapped into afnd the components of the vectdrare monotonically
address space using an approach that transforms vectolf(creasing.
into integers. The work mainly discusses the addressing The direct and inverse methods for GTP to perform
of binary trees. the bijection are presented in the next subsections. The
Rosenberg 25 and Brodnik et al. 3] present analysis of the computational cost of using such methods
strategies for the management of extensible arrays, i.eis also presented. In particular the GTP inverse method
arrays where rows and/or columns can be appendegroposed in this paper is compared with the method
dynamically. Usually, arrays are stored by rows orreportedin [L1]. Table 1 shows examples of vectors that
columns, for example, after the first row (or column) hasbelong to GTP. Each cell in this matrix is a vector
been stored in memory, the second row (or column) isV = (vi,v») (the order is (row, column)). The value
stored next. This organization scheme makes it moreappearing in each cell is the integer corresponding to the
expensive to add new rows or columns to the currentvector defined by that cell. Note that only the cells where
array, because adding a row (or a column) just requiregshe column is greater than the row exist.
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Table 1: Enumeration of the vectors defined by a Matrix of size described; this algorithm was first presented by Fraenkel

5x 5 using GTP.
O 1 2 3 4

0

1 3 6
2 4 7

5 8
9

A WDNPEFO

3.1 Direct Method for GTP

The algorithm to transform a vectoV, where
0<Vvi<Vp<...<Vp1<Vnp to an integerar can be
easily derived from its definition 16, 10, 29]. The
pseudocode is presentedAigorithm 1.

Algorithm 1 DirectGTP(V)
a:=0
. fori:=1tomdo

o = a + Binomial(v;, i)
end for
return o

ahwbdR

The method presented iAlgorithm 1 requires the
calculation ofm binomial coefficients. The computational
cost of computing all the binomial coefficients is
proportional to m? multiplications and divisions (see
Algorithm 2). Given that one multiplication requires
O(n?) bit operations, where = [log,(a)] (i.e. the bits of

[11]. The decoding process described for this algorithm
computes the combinatorial representation of an integer
with respect to a valuen (the size of the vector) by
iteratively computing the values as:

(m) <a < (");

() < a—(m) < (i),
(m2) < a—(m) - (im3) < (23"
and so on.

To computey; in (1), fori =1,...,m, the algorithm
proposed by Fraenk_el 1]] calculates in each of its

iterations the valu¢ 2+/+/2mia] as an approximation of
v;. Then, in a maximum ofn steps, each involving a
multiplication and a division, it computes the exact value
of vi. The numbera is updated toa — (¥) in order to
compute the next valugy,_1. The process is repeated
until the value v; is obtained. The number of bit
operations performed by this algorithm @&(n®- m?),
taking into account that ther" root is computed in

O(n3-m) bit operations.

In this paper we propose an alternative method to the
one presented in 1fi]. Our approach uses for initial
solution the integer roat; = /i - a. The calculation o&;
avoids the use of the constaand the division operation.
Also, the valuev; is at mosta + m. An additional
advantage of our approach is that it can be implemented
using only additions, multiplications, and divisions wgin
the integer root algorithm presented in 30]. The
precision issues from using floating point operations are
also eliminated in this approactlgorithm 3 is the
pseudocode of the inverse ofAlgorithm 1. This
pseudocode details each of the elements (with the only

the integera) the direct method for GTP has a temporal €xception of the integer root operation) required for the

complexity proportional to O(n? - m?). The spatial
complexity isO(m).

Algorithm 2 Binomial(k,r)
1. ifk<rthen
2 return O
3: end if

4: b:=1
5
6
7
8

:fori:=1tordo

o bi=(bx(k—i41))/i
. end for

s return b

3.2 Inverse Method for GTP

GTP has been used by Charlier, et @] {o enumerate

computation o¥/, wherem= |V|, from an integen.

The pseudocode &lgorithm 3 is characterized by a
main loop and three main blocks inside it. These blocks
involve calculation of: (a) the initial valug in line 3; (b)
the binomial coefficient in lin&; and (c) the valug; in the
loop starting in line6 (in this loopAlgorithm 4 is used, it
requires one multiplication and one division to compute

(")

Assuming that the valua is calculated by computing
the it integer root ofi! - a using the algorithm FRA
[30], the number of bit operations is bounded®gn® - m)
(mis the maximum value off). The binomial coefficient
(%) requires O(n? - m) bit operations, as described
previously inAlgorithm 2. Finally, the loop in line6 is
repeated at mosi times and each time it performs a
constant number of multiplications and divisions. The

valuey; can be found in at mosd(n?- m) bit operations.
Given that the cosO(n®-m) of computing [V/i!-a|

different words that can be derived from a given languagedominates all the others in the main loopAdforithm 3,
%,. There, an algorithm to perform the inverse of GTP is the computational complexity is bounded ®@yn® - n?).
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Algorithm 3 InverseGTP ¢, m,V)

1. f:=m

2: for i :=mdownto 1do

3 g:=Vf*xa

4. V=@

5. A :=Binomial(v;,i)

6:  while NextBinomialA,v;,i) < a do
7: A = NextBinomialA,v;,i)
8: Vi i=vVvi+1

9:  endwhile

10 a:=a-A
11:  f:=1/i
12: end for
13: return V

Algorithm 4 NextBinomial(p, k, r) Inpup = (¥)

1. ifk+1<rthen
2 return O
3: end if

4: ifk+1=rthen
5: return 1
6
7
8

:endif
: pi=p#(k+1)/(k+1—r) { 2 operations fo(*/1)}
: return b { Output: the value(kfl)}

3.3 GTP and Covering Arrays

that all the possible* t-tuples appear in the CA at least
once f]); and (b) the generation of a random subset of
columns fromk columns (this operation is required in
meta heuristic algorithms to construct CA31]). The
generation of all the possible subsetst @olumns taken
fromk columns can be done by calling the inverse method
for GTP with the numbers in the range..o(f) —1.
Another option is presented #lgorithm 5 that builds all
the vectors in a GTP. In this algorithm the vectostores

a GTP vector of sizé (in which the maximum valid value
of v is k—1). In Algorithm 5 w defines the starting
index for copying the previous element when it occurs
that the last element has reached the maximum value.
The order ofAlgorithm 5is O((¥)).

Algorithm 5 AllSubsetsk,t,V)

1: fori:=1totdo

2. Vi=i-1

3: end for

4: if k=t then

5: w=1

6: else

7. w: =t

8: end if

9: whileVy #kor w+# 1do

10:  {use V to test coverage of GA
11: Vi=Vi+1
12:  ifVy =kand w# 1lthen

Empirical studies in software testing have shown thatl3: V1= Ve-1+1
combinatorial interaction testing is a useful approach tol# for i:=wtotdo
guarantee the functionality of software components; > Vii=Vica+1

[14, 2]. The mathematical object that supports i?: ﬁ”\‘j for s w0 2 then
combinatorial interaction testing is the Covering Array 18- 8{;__1 Tw-
(CA). A CA, denoted byCA(N;t,k,v), is anN x k array, 9 de

where every entry of the array takes values from a set oéo' 0 —t

symbols of sizev, such that everyN x t sub-array : end if

contains all the possibié t-tuples at least once. The test o5. it

cases are represented by the rows, the parameters a$8. end while

represented by the columns, the parameter values are

taken from the set{0,1...,v — 1} which is called
alphabet, andlis the strength or combinatorial interaction
degree between parameters covered by the Figure 1
shows an example of @A(9; 2,4,3).

oooo
OrR Rk
oON NN
RPOoORN
R R NO
RN OGP
NON
NP ON
NN RO

Fig. 1: Transposed matrix of @A(9; 2,4, 3).

The manipulation of CAs requires: (@) the
computation of all the possibles subsetsto€olumns
taken fromk columns (this operation is required to verify

The generation of a random subset of columns can be
computed using the inverse method for GTPs, first we
compute a random number in the range. 0 (¥) — 1 and
then use the inverse method to construct the
corresponding vector (a random subset cblumns taken
from k columns).

The following section presents DP, a widely studied
PF. The methods for the bijection of this PF are described
and the use of GTP and DP to generate random solutions
of an LDEU is presented.

4 Diagonal Polynomials (DP)

The idea ofDiagonal PolynomialdDPs) appears in the
1821 writings of Cauchy about double summations. Later,
Cantor ] uses DP to show the equivalence between
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Algorithm 6 DirectDPW)
1: s:=0,a:=0,m:= |W|

Table 2: Enumeration of the vectors defined by a Matrix of size

5x5 using DP. 2: fori:=1tomdo
| O 1 2 3 4 3. si=s+w
00 1 3 6 10 4:  a:=oa+Binomial(i—1+s,i)
112 4 711 5: end for
215 8 12 6: return a
319 13
4| 14

4.2 Inverse Method for DP

vectors of two dimensions ardl Thediagonal argument

was formally given in Cantor’s inspiring paper5])[in ~ The bijection for DP has been widely studied8] 7].
trying to solve theContinuum ProblemThe diagonal However, to the best of our knowledge, while the direct
argument can be taken a step further through themethods are commonly given, the inverse methods are
definition of an equivalence classover the vector Not. This subsection presents a bijection between DP and

W = (wi,ws). Its equivalence class is defined by GTP.LetW denote a DP vector anda GTP vector, then
(Wi + W), so that vectors are categorized in diagonalsVi = i — 1+ ¥|_4wj transformsW into V; and the
see Table 2 (the order is (row, column)). The direct transformationfrom a GTP vectdf into a DP vectolV
mapping of the vectoW = (wi,Wwp) to a € N is:  is done byw; =v; —vi_1 —1 (with wy = vi), given that

a = w + (1+W%+W2)_ The inverse method (mapping only additions and subtractions are used, the bijections
W = (W1, W») to a € N), can be performed in two steps: €an be computed i®(n-m) bit operations and they use
(1) calculation of the equivalence classthrough the ~ ©O(M) space (hera is the number of bits required for the

. . JIF8a-1. . maximum number being manipulated in the bijection).
expressiond = | *=5"—/; and (2) Calc%";‘(t(ﬁ?) of the Hence, the inverse method for DP is that proposed for

values of wy and wo using wy = a — ~5— and  GTP using the bijection between DP and GTP; therefore,
w2 = d —w;. The simple method proposed by Cantor to the computational complexity of the inverse method for
map 2-dimensional vectors intbl can be generalized to  DP isO(n®- n?) bit operations.

higher dimensions. In the remainder of this section we

discuss the direct and inverse DP methods.

4.3 GTP, DP, and LDEU

4.1 Direct Method for DP As a bonus, GTP and DP can be used in conjunction with
a random number generator for generating random
A wide variety of direct methods for computing the Selutions for an LDEU. It has been show27] that the

integer value of am—dimensional vector are given in the Number of possible ways to arrange a set lof
literature [L9, 20, 17, 18, 23, 22, 32, 9, 8]. Most of them indistinguishable objects into urns is equivalent to the

are named as packing polynomials (or packing functionsproblem of finding the number of distinct non negative

because they are bijections between a vectdffrandN.  nteger value?l vectorsy, Xo, . .., X ) such that the LDEU

Some of these methods result from a naturalVi =1 — 21+ 3j-1W;j holds. The number of non negative
generalization of Cantor's polynomials 2§, 7]. For  solutions for the previous LDEU ié’r“i‘ll), the solutions

instance can be obtained by mapping each value between 0 and

i (75 — 1 to its correspondingr — 1)—dimensional

m o1+ Z Wi vectorV accordingl to the definition of GTP. Then, t_he

a= ( = ‘) resulting (r - 1)—d|mer]S|onaI vector is mapped to its

i; i corresponding vectdV in DP. The entries of the vector

W in DP correspond ta — 1 variables in LDEU. The

maps anm—dimensional vectow = (wy,...,wy) to  entry for the remaining variable Is- 31 w.
o € N. Algorithm 6 presents the pseudocode to compute  Table 3 shows an example of the bijection between
the integer numbem corresponding to the vect®V. The  GTP, DP, and solutions for a particular LDEU. The
algorithm is simple. It adds the values of the vector and inLDEU hasl = 4 andr = 3. The GTP and DP vectors are
each iteration it computes the corresponding binomialof 2 dimensions. Column 1 shows the non negative
coefficient. The space complexity of tidgorithm 6 is integers corresponding to each different solution.
O(m), wherem is the number of dimensions &/. The  Columns 2 and 3 show the GTP and DP vectors
temporal complexity is bounded b®(n? - n?); it is so  associated to that number, respectively. Column 4
since the cost to compute each binomial coefficient ispresents the solution for the LDEU associated to that
O(n? - m) bit operations. number (and derived from the DP vector).
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Table 3: Solutions of the LDEUXy +x + X3 = 4 obtained  reported in the literature2B]; however, to the best of our
through GTP and DP. knowledge, the algorithms for that bijection address only
small values oim. The remainder of this section presents

GTP  DP , the direct and inverse methods for BP; also an analysis of
No W V__ LDEU Solution the computational complexity is presented for each
0 (0,1 (0,0 0+0+4 method.
1 (0,2 (0,1 0+1+3
2 (1,2 (1,0 1+0+3
Z E(ji% E({% iiﬁi 5.1 Direct Method for BP
5 (23) (20 24042
6 (0,4) (0,3 0+3+1 The .method to convert a BP vector to a na?urall number
7 (1,4 (1,2 14241 requires the computation of two contributions: a
8 (24 (21) 24141 contribution from the class to which the vector belongs
9 (34 (30 3+0+1 and a contribution for the specific vector. The class is
10 (0,5 (0,4) 0+4+0 defined by the maximum value of the vector and the index
11 (15 (1,3 1+340 of the first occurrence of the maximum value in the
12 (25 (22 2+2+40 vector. Two vectors belong to the same class if they have
13 (35 (31 3+1+0 the same schemata. A schemata is defined by the first
14 (45 49 4+0+0 occurrence of the maximum value in the vector (and in

this way the class is defined by two values: the maximum
value denoted by and the index for the first occurrence
) of this value in the vector denoted by the Greek symbol
5 Box Polynomials (BP) 1). For instance a vectorB with the schemata:
. ] . . (b1,bp,b3, 3, bs,bg,b7,bg) is characterized by the pair
This section presents another packing function, Blox {B.,1} = {3,4} (given that the maximum value is 3 and its
Polynomial(or BP). This is the most efficient of the three fjrst occurrence is in position 4). Cleatty, ..., b,_1 < B;

packing functions discussed in this paper, according togngp, . ;.. ...by < B.

the number of bit operations required to perform the  The contribution for a class, given the valueswff,
bijection. The enumeration of vectors of a given gnq; is computed by:

dimensionm can be done using box shells. This kind of ) ,

enumeration is called box enumeration and it consists in B+ Z’j;iﬁl_l(ﬁ +1)m

enumerating the vectors according to the maximum value
of components and the index for the first occurrence of
the maximum valueTable 4 shows an example of how Z'j;iﬁj_l(ﬁ +1)™ = (B4+1)"— B B4 1)m L
vectors of two dimensions could be enumerated (the order

is (row, column)). The box enumeration can also be we obtain a simplified form:

described by BP. BNy (B4 1" BI-L(B 4 1)+
The contribution for a specific vector is equivalent to

a number withm— 1 digits in which the first — 1 digits
are of basg8 andm— 1 digits are of bas@ + 1. Given that

and using the identity:

Table 4. Enumeration of the vectors defined by a Matrix of size

5x 5 using BP. ) . S
o 1 2 3 4 this transformation is well known we do not explain it in
0 0 3 7 13 21 more detail.
1 1 2 8 14 22 Table 5 illustrates the use of the direct method of BP
2 4 5 6 15 23 (Algorithm 7) to enumerate the first 27 vectoBswith
3 9 10 11 12 24 cardinalitym = 3. For each vector, it is identified it8
4 16 17 18 19 20 andi values.

Algorithm 7 presents the pseudocode for the direct
method of BP. It takes as input a vectdrand gives as
While in the DP enumeration the clagss defined by  output an integeo. The values of3 andi are computed
the summation of the values of a vector, in the BPin the for loop starting in lin&. In the for loop starting in
enumeration the clasd is defined by two values: the line 8 @, @, and ¢; store each of the terms of
maximum value of the vector components and the indexg™ + (8 + 1)™ — B'~(B + 1)™'*1 respectively. The
of the first occurrence of the maximum value. An contribution of the vector is computed in the while loop
advantage of using BP as a PF over DP and GTP is that istarting in line21 and stored ina. In line 30 the final
BP the transformation between the vector space and thealue is computed as the contribution of the specific
natural numbers requires powers of integers instead ofector plus the contribution of the class (computed as
binomial coefficients. BP enumeration schemes have beep + @ — @).

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 2757-2766 (2015)www.naturalspublishing.com/Journals.asp

2763

N SS ¥

Table 5. The first 27 vectors of dimension 3 and their 5.2 Inverse Method for BP

corresponding integer values. For each vector the valugsaofi

I are given.

Num. B 1 Vector | Num. B 1 Vector
0 0 1 (0,00 14 2 1 (2,20
1 1 1 (1,00 15 2 1 (221
2 1 1 (101 16 2 1 (222
3 1 1 (1,10 17 2 2 (0,20
4 1 1 (111 18 2 2 (0,271
5 1 2 (0,1,0 19 2 2 (0,22
6 1 2 (0,11 20 2 2 (1,20
7 1 3 (0,01 21 2 2 (1,21
8 2 1 (2,00 22 2 2 (1,22
9 2 1 (201 23 2 3 (00,2
10 2 1 (202 24 2 3 (01,2
11 2 1 (210 25 2 3 (1,02
12 2 1 (211 26 2 3 (1,12

13 2 1 (212

The complexity of Algorithm 7 is O(n? - m)
(remember thah is the number of bits of the integer
and a multiplication require®(n?) bit operations). The
space complexity for this algorithm is agam).

Algorithm 7 DirectBP(B, m)

1. B:=by,1:=1

2: for i:=2tomdo

3 if by > b, then
4 B:=b,1:=i
5 end if

6: end for

T =1 =1p:=1
8: fori:=1tomdo
9 @i=@B,@i=@x(B+1)
10 ifi <1 then
11 =@
12 dse

13 Gi=@m*(B+1)
14:  endif

15: end for

16: if 1 = 1then

17 a:=Vpy,i:=3
18: else

19: a:=wv,i:=2
20

21

22

23

24

25

26

27

28

29

30

31

s end if
: whilei < mdo
ifi <1then
a:=axB+hb
end if
ifi >1then
a:=ax*(B+1)+b
end if
i=i+1
: end while
O =0+ O+ @ — @3
D return o

Once we have defined the direct method for BP,
determining an inverse function is simple. First, we
identify the values for3 and After that, the values of
m— 1 components of the vector are computed as the
mapping from a natural number to a number with- 1
digits, where the first — 1 are of basg andm— are of
basef + 1. The missing digit is inserted in theposition
and has the valug.

Algorithm 8 is the pseudocode of the inverse method
for BP. The value of3 is determined in linel. The for
loop in line3 computesp, = M and@ = (B +1)™. The
while loop in line7 determines the value of The value
of the elemenb, must beB. The remaining components
of the vectoB are computed as the transformation of the
numbera — (@ + @ — @) to a number wittm— 1 digits
(first1 — 1 digits are of bas@ andm— 1 digits are of base
B +1). This is done in the for loop in lingL

Algorithm 8 InverseBRa, m,B)

1: B:=[Ya]

22 =1p.=1

: fori:=1tomdo
O=@B, =@ (B+1)

end for

»B=@, =1

s whilegr+@—@=B/(B+1) <ado

U=14+1,¢5:= (@*B)/(B+1)

. end while

ra=a— (it e—@) b =B

11: for i := mdownto 1 do

12:  ifi>1then

13: bi:=amod (B+1),a:=|a/(B+1)]

14: endif

15:  ifi <1 then

16: b :=amod B, a:=|a/B]

17:  endif

18: end for

19: return B

EooNouhsw

The complexity ofAlgorithm 8is O(n®-m). The cost
of computing B < | ¥a] is of order O(n®- m) bit
operations using the algorithrmRA [30]. The loop in
line 3 is repeatedO(m) times. Each time it does 2
multiplications, 1 division, and 1 addition; then, this oo
requires O(n? - m) bit operations. The loop in ling
searches the value of The loop is repeated at ma3{m)
times, each time it does 1 division, 1 multiplication, and 3
additions; then, its computational complexity®$n? - m).
The loop in linell computes 2 divisions and 2 additions
O(m) times, this loop then need(n? - m) bit operations.
In conclusion, given that the cost of computing the integer
m" root dominates the others, the overall computational
complexity of the inverse method for BP &(n®- m).
Again, the spatial complexity i©(m).
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6 Computational Complexity for GTP, DP, method. However, our approach avoids the use of floating
and BP point operations and requires only a basic set of
operations: subtraction, addition, multiplication, and

Table 6 presents the analysis of the computationaldivision. We also have presented two interesting
complexity of DP, GTP, and BP. Column 1 shows the typeapphcathns of PFs: (a) manlpulat]on of Covering Arr_ays
of the polynomial. Column 2 presents the number of bit (CAS) using GTP; and (b) generation of random solutions
operations required to transform a vector into an integerOf @ Linear Diophantine Equation with Unit coefficients
wherem is the size of the vector. Column 3 shows the (LDEU) using GTP and DP. Finally, the development of
number of bit operations used to map an integer into dhe bijection between DP and GTP raises a question
vector ofm dimensions. Each algorithm presented in this concerning the existence of an efficient bijection between
paper has an spatial complexi®m), i.e. linear in the DP and _BP,_ or GTP and BP. If f[hls b|Ject|0n has linear
number of dimensions of the vector. The direct andcomplexity in the number of dimensions, then the
inverse methods proposed irL1] and the one proposed direct qnd inverse mgthods fqr BP would make the
in this paper requireO(n® - n?) and O(n - m) bit calculation of the packing functions DP and GTP more
operations. However, the inverse for GTP proposed in thifficient.

paper avoids the use of floating point operations. Finally,

according to the analysis shown ifable 6, we can

conclude that the direct and inverse method for BP are thé\Cknowledgments

most efficient; since they requi@(n?- m) andO(n®- m)

bit operations respectively. This research was partially funded by the following

projects: 51623-Fondo Mixto CONACyYT y Gobierno del
Estado de Tamaulipas, 238469 - CONACYT Métodos
Exactos para Construir Covering Array®ptimos;
Table 6: Temporal complexity of the direct and inverse methods 232987 - CONACyT Conjuntos de Prueﬁlptimos para
of DP, GTP, and BP. Heran is the number of dimensions of the Métodos Combinatorios (Optimal Test Sets for
associated vectd andn the number of bits of its corresponding Combinatorial Methods); and the project Analisis de la

integera. . . Dificultad del Problema de Minimizacion de Ancho de
Polynomial D'ZeCt In\;erse Banda en Grafos por medio de Pareja de Invariantes
bp O(”z'mz) O(”g'mz) supported by Programa de Mejoramiento al Profesorado
GTP O ) O(n N ) PROMEP/103.5/12/3620. This paper was finished when
BP Oon~m  O(n-m) the first author was a guest researcher in the U.S. National
Institute of Standards and Technology, Gaithersburg MD
20899 USA.
7 Discussion Disclaimer
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