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Abstract: A packing function is a bijection between a subsetV ⊆ Nm andN, whereN denotes the set of non negative integersN.
Packing functions have several applications, e.g. in partitioning schemes and in text compression. Two categories of packing functions
are Diagonal Polynomials and Box Polynomials. The bijections for diagonal ad box polynomials have mostly been studied for small
values ofm. In addition to presenting bijections for box and diagonal polynomials for any value ofm, we present a bijection using
what we call Greater-Than Polynomial between restrictedm−dimensional vectors overNm andN. We give details of two interesting
applications of packing functions: (a) the application of greater-than polynomials for the manipulation of Covering Arrays that are
used in combinatorial interaction testing; and (b) the relationship between grater-than and diagonal polynomials with a special case of
Diophantine equations. A comparison of the bijections for box, diagonal and greater-than polynomials are presented and we conclude
that the bijection for box polynomials is efficient because its direct and inverse methods have orders ofO(n2 ·m) andO(n3 ·m) (measured
in terms of bit operations, wheren is the number of bits of an integer involved in the methods)
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1 Introduction

Denoting by N the set of non negative integers, let
f : V → N, whereV ⊆ Nm be a function. Thenf is a
Packing Function(PF) wheneverf is a bijection. The
function f is aStoring Function(SF) if it is an injection.
PFs and SFs have been used to address several
combinatorial problems having applications in computer
science. Two examples of these problems are the
compression of data [11] and the generation of extensible
arrays [25, 3].

An efficient PF would be one that, when implemented
in a computer system, performs the bijection using
minimal resources (i.e. requiring less computer time and
space). The most studied types of PFs are theDiagonal
Polynomial (DP) and theBox Polynomial (BP). The
research done in this area involves the study of direct
methods (those that map a vector to an integer) and

inverse methods (the ones that transform an integer into
the corresponding vector); most of the work found in the
literature involves vectors of small number of dimensions
(commonly two or three dimensions [25, 3, 26]). The
work is rather theoretical and seldom involves a
computational complexity analysis.

In addition to presenting bijections for DP and BP for
any number of dimensions, we present a new PF derived
from the combinatorial numeration system reported
in [10]. The new PF is calledGreater-Than Polynomial
(GTP) due to the fact that the vectors satisfy the property
that a vector element is strictly greater than the previous
element. After presenting algorithms for computing the
direct and inverse methods for DP, BP, and GTP, we
analyze them in terms of their computational complexity.
The analysis compares the number of bit operations
required for each PF to map an integer number to a vector
of Nm and vice versa. Additional contributions of the
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paper are as follows: (a) the application of GTP for the
manipulation of Covering Arrays (CAs), that are used in
combinatorial interaction testing; and (b) an interesting
bijection between GTP and DP used to generate random
solutions of Linear Diophantine Equations with Unit
coefficients (LDEU).

The remainder of the document is organized as
follows: Section2 presents some applications of PFs.
Sections3, 4, and5 present the description of GTP, DP,
and BP; for each kind of polynomial, a formal definition,
some related work, and their inverse and direct methods
are presented. Section3 additionally shows the
application of GTP for manipulating Covering Arrays
(CAs). Section4 also presents the application of GTP and
DP to generate random solutions of a LDEU. Section6
summarizes the computational complexity of the
algorithms proposed in this paper. Finally, Section7
presents some conclusions.

2 Applications and Related Work

This section describes several applications of packing
functions.

2.1 Applications of Packing Functions

There are many ways of representing an integer uniquely
[16, 10]. Some representations rely on vectors and are
useful in tasks related to digital information processing,
representation of a problem solution in meta heuristics,
and memory organization schemes. Of particular interest
are the integer vectorial representations, these
representations include the polynomials DP, GTP, and BP,
which can uniquely represent each non negative integer as
a vector overNm. A bijection of Nm to N can be used to
organize elements of anm−dimensional array into a
1−dimensional array. The task is simple: just use a
bijection like DP, GTP, or BP to transform an element of
the m−dimensional array into an integer value that
represents the position in the 1−dimensional array. The
work presented by Rosenberg [24] shows an addressing
scheme of data graphs. A data graph is a representation of
data structures. The data graphs are mapped into an
address space using an approach that transforms vectors
into integers. The work mainly discusses the addressing
of binary trees.

Rosenberg [25] and Brodnik et al. [3] present
strategies for the management of extensible arrays, i.e.
arrays where rows and/or columns can be appended
dynamically. Usually, arrays are stored by rows or
columns, for example, after the first row (or column) has
been stored in memory, the second row (or column) is
stored next. This organization scheme makes it more
expensive to add new rows or columns to the current
array, because adding a row (or a column) just requires

the addition of it at the end of the array, but the addition
of a column (or a row) requires a reorganization of the
stored array. The works presented in [25, 3] deal with the
problem of allocating storage for extensible arrays. In
these approaches DP and BP can be used as possible
organization schemes. Similar organization schemes
based on DP and BP have been used in [21, 12] as
storage schemes for parallel array access and as a matrix
storage format for symmetric and triangular matrices.

Another application of packing functions based on DP
is found in [13]; there, DP support the consecutive
retrieval organization of files and their queries, i.e., a
scheme for the storage of the file on a linear storage
medium such that for each permissible query, there exists
a block of consecutive locations with exactly those
records that are pertinent to the query. Fraenkel proposed
in [11] a scheme for combinatorial compression and
partitioning for large dictionaries. More recently, DPs
have been used in [26] as a mechanism for accountability
in web computing projects. Finally, the works done by
Charlier, et al. [6] and Lecomte et al. [15], study
arithmetic properties between integer values and some
numeration systems. They present abstract numeration
systems which can be used to describe DPs and GTPs.

The remaining sections of this paper describe and
compare the direct and inverse methods for GTP, DP, and
BP; also we discuss two applications that can make use of
the GTP and DP packing functions.

3 Greater-Than Polynomials (GTP)

In [10, 16] is presented a numeration system that
associates a vectorV = (v1, . . . ,vm) with a natural number
α where the entries satisfyvi < vi+1, v1≥ 0. The valuesvi
are used in binomial coefficients and summed up as in

α =
m

∑
i=1

(

vi

i

)

to uniquely define an integerα ∈ N. This

numeration system will be called Greater-Than
Polynomials (GTP), because the expansion of the
binomial coefficients yields a polynomial in(v1, . . . ,vm)
and the components of the vectorV are monotonically
increasing.

The direct and inverse methods for GTP to perform
the bijection are presented in the next subsections. The
analysis of the computational cost of using such methods
is also presented. In particular the GTP inverse method
proposed in this paper is compared with the method
reported in [11]. Table 1 shows examples of vectors that
belong to GTP. Each cell in this matrix is a vector
V = (v1,v2) (the order is (row, column)). The value
appearing in each cell is the integer corresponding to the
vector defined by that cell. Note that only the cells where
the column is greater than the row exist.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 2757-2766 (2015) /www.naturalspublishing.com/Journals.asp 2759

Table 1: Enumeration of the vectors defined by a Matrix of size
5×5 using GTP.

0 1 2 3 4
0 0 1 3 6
1 2 4 7
2 5 8
3 9
4

3.1 Direct Method for GTP

The algorithm to transform a vectorV, where
0 ≤ v1 < v2 < .. . < vm−1 < vm, to an integerα can be
easily derived from its definition [16, 10, 29]. The
pseudocode is presented inAlgorithm 1.

Algorithm 1 DirectGTP(V)
1: α := 0
2: for i := 1 to m do
3: α := α +Binomial(vi , i)
4: end for
5: return α

The method presented inAlgorithm 1 requires the
calculation ofm binomial coefficients. The computational
cost of computing all the binomial coefficients is
proportional to m2 multiplications and divisions (see
Algorithm 2). Given that one multiplication requires
O(n2) bit operations, wheren= ⌈log2(α)⌉ (i.e. the bits of
the integerα) the direct method for GTP has a temporal
complexity proportional to O(n2 · m2). The spatial
complexity isO(m).

Algorithm 2 Binomial(k,r)
1: if k< r then
2: return 0
3: end if
4: b := 1
5: for i := 1 to r do
6: b := (b∗ (k− i+1))/i
7: end for
8: return b

3.2 Inverse Method for GTP

GTP has been used by Charlier, et al. [6] to enumerate
different words that can be derived from a given language
Bl . There, an algorithm to perform the inverse of GTP is

described; this algorithm was first presented by Fraenkel
[11]. The decoding process described for this algorithm
computes the combinatorial representation of an integerα
with respect to a valuem (the size of the vector) by
iteratively computing the valuesvi as:
(vm

m

)

≤ α <
(vm+1

m

)

;
(vm−1

m−1

)

≤ α−
(vm

m

)

<
(vm−1+1

m−1

)

;
(vm−2

m−2

)

≤ α−
(vm

m

)

−
(vm−1

m−1

)

<
(vm−2+1

m−2

)

;
and so on.

To computevi in
(vi

i

)

, for i = 1, . . . ,m, the algorithm
proposed by Fraenkel [11] calculates in each of its

iterations the value⌈α
e

i
√√

2π iα⌉ as an approximation of
vi . Then, in a maximum ofm steps, each involving a
multiplication and a division, it computes the exact value
of vi . The numberα is updated toα −

(vi
i

)

in order to
compute the next valuevm−1. The process is repeated
until the value v1 is obtained. The number of bit
operations performed by this algorithm isO(n3 · m2),
taking into account that themth root is computed in
O(n3 ·m) bit operations.

In this paper we propose an alternative method to the
one presented in [11]. Our approach uses for initial
solution the integer rootai =

i
√

i! ·α. The calculation ofai
avoids the use of the constanteand the division operation.
Also, the valuevi is at most ai + m. An additional
advantage of our approach is that it can be implemented
using only additions, multiplications, and divisions using
the integer root algorithm presented in [30]. The
precision issues from using floating point operations are
also eliminated in this approach.Algorithm 3 is the
pseudocode of the inverse ofAlgorithm 1. This
pseudocode details each of the elements (with the only
exception of the integer root operation) required for the
computation ofV, wherem= |V|, from an integerα.

The pseudocode ofAlgorithm 3 is characterized by a
main loop and three main blocks inside it. These blocks
involve calculation of: (a) the initial valueai in line 3; (b)
the binomial coefficient in line5; and (c) the valuevi in the
loop starting in line6 (in this loopAlgorithm 4 is used, it
requires one multiplication and one division to compute
(vi+1

i

)

).

Assuming that the valueai is calculated by computing
the ith integer root ofi! · α using the algorithm FηRA
[30], the number of bit operations is bounded byO(n3 ·m)
(m is the maximum value ofi). The binomial coefficient
(ai

i

)

requires O(n2 · m) bit operations, as described
previously inAlgorithm 2. Finally, the loop in line6 is
repeated at mostm times and each time it performs a
constant number of multiplications and divisions. The
valuevi can be found in at mostO(n2 ·m) bit operations.
Given that the costO(n3 · m) of computing ⌊ i

√
i! ·α⌋

dominates all the others in the main loop ofAlgorithm 3,
the computational complexity is bounded byO(n3 ·m2).
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Algorithm 3 InverseGTP (α,m,V)
1: f := m!
2: for i := m downto 1 do
3: ai := i

√
f ∗α

4: vi := ai
5: ∆ := Binomial(vi , i)
6: while NextBinomial(∆ ,vi, i)≤ α do
7: ∆ := NextBinomial(∆ ,vi , i)
8: vi := vi +1
9: end while

10: α := α−∆
11: f := f /i
12: end for
13: return V

Algorithm 4 NextBinomial(p, k, r) Inputp=
(k

r

)

1: if k+1< r then
2: return 0
3: end if
4: if k+1= r then
5: return 1
6: end if
7: p := p∗ (k+1)/(k+1− r) { 2 operations for

(k+1
r

)

}

8: return b { Output: the value
(k+1

r

)

}

3.3 GTP and Covering Arrays

Empirical studies in software testing have shown that
combinatorial interaction testing is a useful approach to
guarantee the functionality of software components
[14, 2]. The mathematical object that supports
combinatorial interaction testing is the Covering Array
(CA). A CA, denoted byCA(N; t,k,v), is anN× k array,
where every entry of the array takes values from a set of
symbols of sizev, such that everyN × t sub-array
contains all the possiblevt t-tuples at least once. The test
cases are represented by the rows, the parameters are
represented by the columns, the parameter values are
taken from the set{0,1. . . ,v − 1} which is called
alphabet, andt is the strength or combinatorial interaction
degree between parameters covered by the CA.Figure 1
shows an example of aCA(9;2,4,3).

0 1 2 2 0 1 1 2 0
0 1 2 1 2 0 2 0 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2

Fig. 1: Transposed matrix of aCA(9;2,4,3).

The manipulation of CAs requires: (a) the
computation of all the possibles subsets oft columns
taken fromk columns (this operation is required to verify

that all the possiblevt t-tuples appear in the CA at least
once [1]); and (b) the generation of a random subset oft
columns fromk columns (this operation is required in
meta heuristic algorithms to construct CAs [31]). The
generation of all the possible subsets oft columns taken
from k columns can be done by calling the inverse method
for GTP with the numbers in the range 0, ..,

(k
t

)

− 1.
Another option is presented inAlgorithm 5 that builds all
the vectors in a GTP. In this algorithm the vectorV stores
a GTP vector of sizet (in which the maximum valid value
of vt is k− 1). In Algorithm 5 ω defines the starting
index for copying the previous element when it occurs
that the last elementvt has reached the maximum value.
The order ofAlgorithm 5 is O(

(k
t

)

).

Algorithm 5 AllSubsets(k, t,V)
1: for i := 1 to t do
2: Vi := i−1
3: end for
4: if k= t then
5: ω := 1
6: else
7: ω := t
8: end if
9: while Vt 6= k or ω 6= 1 do

10: {use V to test coverage of CA}
11: Vt :=Vt +1
12: if Vt = k and ω 6= 1 then
13: Vω−1 :=Vω−1+1
14: for i := ω to t do
15: Vi :=Vi−1+1
16: end for
17: if Vω−1 = k− t +ω−2 then
18: ω := ω−1
19: else
20: ω := t
21: end if
22: end if
23: end while

The generation of a random subset of columns can be
computed using the inverse method for GTPs, first we
compute a random number in the range 0, . . . ,

(k
t

)

−1 and
then use the inverse method to construct the
corresponding vector (a random subset oft columns taken
from k columns).

The following section presents DP, a widely studied
PF. The methods for the bijection of this PF are described
and the use of GTP and DP to generate random solutions
of an LDEU is presented.

4 Diagonal Polynomials (DP)

The idea ofDiagonal Polynomials(DPs) appears in the
1821 writings of Cauchy about double summations. Later,
Cantor [4] uses DP to show the equivalence between
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Table 2: Enumeration of the vectors defined by a Matrix of size
5×5 using DP.

0 1 2 3 4
0 0 1 3 6 10
1 2 4 7 11
2 5 8 12
3 9 13
4 14

vectors of two dimensions andN. Thediagonal argument
was formally given in Cantor’s inspiring paper [5], in
trying to solve theContinuum Problem. The diagonal
argument can be taken a step further through the
definition of an equivalence classover the vector
W = (w1,w2). Its equivalence class is defined by
(w1 + w2), so that vectors are categorized in diagonals,
see Table 2 (the order is (row, column)). The direct
mapping of the vectorW = (w1,w2) to α ∈ N is:
α = w1 +

(1+w1+w2
2

)

. The inverse method (mapping
W = (w1,w2) to α ∈ N), can be performed in two steps:
(1) calculation of the equivalence classd through the

expressiond = ⌊
√

1+8α−1
2 ⌋; and (2) calculation of the

values of w1 and w2 using w1 = α − (d)(d+1)
2 and

w2 = d−w1. The simple method proposed by Cantor to
map 2−dimensional vectors intoN can be generalized to
higher dimensions. In the remainder of this section we
discuss the direct and inverse DP methods.

4.1 Direct Method for DP

A wide variety of direct methods for computing the
integer value of anm−dimensional vector are given in the
literature [19, 20, 17, 18, 23, 22, 32, 9, 8]. Most of them
are named as packing polynomials (or packing functions)
because they are bijections between a vector inNm andN.
Some of these methods result from a natural
generalization of Cantor’s polynomials [28, 7]. For
instance

α =
m

∑
i=1

(i−1+
i

∑
j=1

wj

i

)

maps anm−dimensional vectorW = (w1, . . . ,wm) to
α ∈ N. Algorithm 6 presents the pseudocode to compute
the integer numberα corresponding to the vectorW. The
algorithm is simple. It adds the values of the vector and in
each iteration it computes the corresponding binomial
coefficient. The space complexity of theAlgorithm 6 is
O(m), wherem is the number of dimensions ofW. The
temporal complexity is bounded byO(n2 ·m2); it is so
since the cost to compute each binomial coefficient is
O(n2 ·m) bit operations.

Algorithm 6 DirectDP(W)
1: s := 0,α := 0,m := |W|
2: for i := 1 to mdo
3: s := s+wi
4: α := α +Binomial(i−1+s, i)
5: end for
6: return α

4.2 Inverse Method for DP

The bijection for DP has been widely studied [28, 7].
However, to the best of our knowledge, while the direct
methods are commonly given, the inverse methods are
not. This subsection presents a bijection between DP and
GTP. LetW denote a DP vector andV a GTP vector, then
vi = i − 1 + ∑i

j=1wj transformsW into V; and the
transformation from a GTP vectorV into a DP vectorW
is done bywi = vi − vi−1− 1 (with w1 = v1), given that
only additions and subtractions are used, the bijections
can be computed inO(n ·m) bit operations and they use
O(m) space (heren is the number of bits required for the
maximum number being manipulated in the bijection).
Hence, the inverse method for DP is that proposed for
GTP using the bijection between DP and GTP; therefore,
the computational complexity of the inverse method for
DP isO(n3 ·m2) bit operations.

4.3 GTP, DP, and LDEU

As a bonus, GTP and DP can be used in conjunction with
a random number generator for generating random
solutions for an LDEU. It has been shown [27] that the
number of possible ways to arrange a set ofl
indistinguishable objects intor urns is equivalent to the
problem of finding the number of distinct non negative
integer valued vectors(x1,x2, . . . ,xr) such that the LDEU
vi = i − 1+∑i

j=1wj holds. The number of non negative

solutions for the previous LDEU is
(l+r−1

r−1

)

, the solutions
can be obtained by mapping each value between 0 and
(l+r−1

r−1

)

− 1 to its corresponding(r − 1)−dimensional
vector V according to the definition of GTP. Then, the
resulting (r − 1)−dimensional vector is mapped to its
corresponding vectorW in DP. The entries of the vector
W in DP correspond tor − 1 variables in LDEU. The
entry for the remaining variable isl −∑r−1

i=1 wi .
Table 3 shows an example of the bijection between

GTP, DP, and solutions for a particular LDEU. The
LDEU hasl = 4 andr = 3. The GTP and DP vectors are
of 2 dimensions. Column 1 shows the non negative
integers corresponding to each different solution.
Columns 2 and 3 show the GTP and DP vectors
associated to that number, respectively. Column 4
presents the solution for the LDEU associated to that
number (and derived from the DP vector).
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Table 3: Solutions of the LDEUx1 + x2 + x3 = 4 obtained
through GTP and DP.

GTP DP
No W V LDEU Solution
0 (0,1) (0,0) 0+0+4
1 (0,2) (0,1) 0+1+3
2 (1,2) (1,0) 1+0+3
3 (0,3) (0,2) 0+2+2
4 (1,3) (1,1) 1+1+2
5 (2,3) (2,0) 2+0+2
6 (0,4) (0,3) 0+3+1
7 (1,4) (1,2) 1+2+1
8 (2,4) (2,1) 2+1+1
9 (3,4) (3,0) 3+0+1
10 (0,5) (0,4) 0+4+0
11 (1,5) (1,3) 1+3+0
12 (2,5) (2,2) 2+2+0
13 (3,5) (3,1) 3+1+0
14 (4,5) (4,0) 4+0+0

5 Box Polynomials (BP)

This section presents another packing function, theBox
Polynomial(or BP). This is the most efficient of the three
packing functions discussed in this paper, according to
the number of bit operations required to perform the
bijection. The enumeration of vectors of a given
dimensionm can be done using box shells. This kind of
enumeration is called box enumeration and it consists in
enumerating the vectors according to the maximum value
of components and the index for the first occurrence of
the maximum value.Table 4 shows an example of how
vectors of two dimensions could be enumerated (the order
is (row, column)). The box enumeration can also be
described by BP.

Table 4: Enumeration of the vectors defined by a Matrix of size
5×5 using BP.

0 1 2 3 4
0 0 3 7 13 21
1 1 2 8 14 22
2 4 5 6 15 23
3 9 10 11 12 24
4 16 17 18 19 20

While in the DP enumeration the classd is defined by
the summation of the values of a vector, in the BP
enumeration the classd is defined by two values: the
maximum value of the vector components and the index
of the first occurrence of the maximum value. An
advantage of using BP as a PF over DP and GTP is that in
BP the transformation between the vector space and the
natural numbers requires powers of integers instead of
binomial coefficients. BP enumeration schemes have been

reported in the literature [28]; however, to the best of our
knowledge, the algorithms for that bijection address only
small values ofm. The remainder of this section presents
the direct and inverse methods for BP; also an analysis of
the computational complexity is presented for each
method.

5.1 Direct Method for BP

The method to convert a BP vector to a natural number
requires the computation of two contributions: a
contribution from the class to which the vector belongs
and a contribution for the specific vector. The class is
defined by the maximum value of the vector and the index
of the first occurrence of the maximum value in the
vector. Two vectors belong to the same class if they have
the same schemata. A schemata is defined by the first
occurrence of the maximum value in the vector (and in
this way the class is defined by two values: the maximum
value denoted byβ and the index for the first occurrence
of this value in the vector denoted by the Greek symbol
ι). For instance a vectorB with the schemata:
(b1,b2,b3, 3, b5,b6,b7,b8) is characterized by the pair
{β , ι}= {3,4} (given that the maximum value is 3 and its
first occurrence is in position 4). Clearlyb1, . . . ,bι−1 < β ;
andbι+1, . . . ,bm≤ β .

The contribution for a class, given the values ofm, β ,
andι is computed by:

β m+∑ι−1
j=1β j−1(β +1)m− j

and using the identity:

∑ι−1
j=1β j−1(β +1)m− j ≡ (β +1)m−β ι−1(β +1)m−ι+1

we obtain a simplified form:

β m+(β +1)m−β ι−1(β +1)m−ι+1

The contribution for a specific vector is equivalent to
a number withm− 1 digits in which the firstι − 1 digits
are of baseβ andm− ι digits are of baseβ +1. Given that
this transformation is well known we do not explain it in
more detail.

Table 5 illustrates the use of the direct method of BP
(Algorithm 7) to enumerate the first 27 vectorsB with
cardinality m= 3. For each vector, it is identified itsβ
andι values.

Algorithm 7 presents the pseudocode for the direct
method of BP. It takes as input a vectorB and gives as
output an integerα. The values ofβ andι are computed
in the for loop starting in line2. In the for loop starting in
line 8 φ1, φ2, and φ3 store each of the terms of
β m + (β + 1)m − β ι−1(β + 1)m−ι+1 respectively. The
contribution of the vector is computed in the while loop
starting in line21 and stored inα. In line 30 the final
value is computed as the contribution of the specific
vector plus the contribution of the class (computed as
φ1+φ2−φ3).
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Table 5: The first 27 vectors of dimension 3 and their
corresponding integer values. For each vector the values ofβ and
ι are given.

Num. β ι Vector Num. β ι Vector
0 0 1 (0,0,0) 14 2 1 (2,2,0)
1 1 1 (1,0,0) 15 2 1 (2,2,1)
2 1 1 (1,0,1) 16 2 1 (2,2,2)
3 1 1 (1,1,0) 17 2 2 (0,2,0)
4 1 1 (1,1,1) 18 2 2 (0,2,1)
5 1 2 (0,1,0) 19 2 2 (0,2,2)
6 1 2 (0,1,1) 20 2 2 (1,2,0)
7 1 3 (0,0,1) 21 2 2 (1,2,1)
8 2 1 (2,0,0) 22 2 2 (1,2,2)
9 2 1 (2,0,1) 23 2 3 (0,0,2)
10 2 1 (2,0,2) 24 2 3 (0,1,2)
11 2 1 (2,1,0) 25 2 3 (1,0,2)
12 2 1 (2,1,1) 26 2 3 (1,1,2)
13 2 1 (2,1,2)

The complexity of Algorithm 7 is O(n2 · m)
(remember thatn is the number of bits of the integerα
and a multiplication requiresO(n2) bit operations). The
space complexity for this algorithm is againO(m).

Algorithm 7 DirectBP(B, m)
1: β := b1, ι := 1
2: for i := 2 to mdo
3: if bi > bι then
4: β := bi , ι := i
5: end if
6: end for
7: φ1 := 1,φ2 := 1,φ3 := 1
8: for i := 1 to m do
9: φ1 := φ1 ∗β ,φ2 := φ2∗ (β +1)

10: if i < ι then
11: φ3 := φ3 ∗β
12: else
13: φ3 := φ3 ∗ (β +1)
14: end if
15: end for
16: if ι = 1 then
17: α := v2, i := 3
18: else
19: α := v1, i := 2
20: end if
21: while i < mdo
22: if i < ι then
23: α := α ∗β +bi
24: end if
25: if i > ι then
26: α := α ∗ (β +1)+bi
27: end if
28: i := i+1
29: end while
30: α := α +φ1+φ2−φ3
31: return α

5.2 Inverse Method for BP

Once we have defined the direct method for BP,
determining an inverse function is simple. First, we
identify the values forβ and ι After that, the values of
m− 1 components of the vector are computed as the
mapping from a natural number to a number withm− 1
digits, where the firstι−1 are of baseβ andm− ι are of
baseβ +1. The missing digit is inserted in theι position
and has the valueβ .

Algorithm 8 is the pseudocode of the inverse method
for BP. The value ofβ is determined in line1. The for
loop in line3 computesφ1 = β m andφ2 = (β +1)m. The
while loop in line7 determines the value ofι. The value
of the elementbι must beβ . The remaining components
of the vectorB are computed as the transformation of the
numberα − (φ1+ φ2− φ3) to a number withm−1 digits
(first ι−1 digits are of baseβ andm− ι digits are of base
β +1). This is done in the for loop in line11.

Algorithm 8 InverseBP(α,m,B)

1: β := ⌊ m
√

α⌋
2: φ1 := 1,φ2 := 1
3: for i := 1 to mdo
4: φ1 := φ1 ∗β ,φ2 := φ2∗ (β +1)
5: end for
6: φ3 := φ2, ι := 1
7: while φ1+φ2−φ3 ∗β/(β +1)< α do
8: ι := ι +1, φ3 := (φ3 ∗β )/(β +1)
9: end while

10: α := α− (φ1+φ2−φ3), bι := β
11: for i := mdownto 1 do
12: if i > ι then
13: bi := α mod (β +1),α := ⌊α/(β +1)⌋
14: end if
15: if i < ι then
16: bi := α mod β , α := ⌊α/β⌋
17: end if
18: end for
19: return B

The complexity ofAlgorithm 8 is O(n3 ·m). The cost
of computing β ← ⌊ m

√
α⌋ is of order O(n3 · m) bit

operations using the algorithm FηRA [30]. The loop in
line 3 is repeatedO(m) times. Each time it does 2
multiplications, 1 division, and 1 addition; then, this loop
requires O(n2 · m) bit operations. The loop in line7
searches the value ofι. The loop is repeated at mostO(m)
times, each time it does 1 division, 1 multiplication, and 3
additions; then, its computational complexity isO(n2 ·m).
The loop in line11 computes 2 divisions and 2 additions
O(m) times, this loop then needsO(n2 ·m) bit operations.
In conclusion, given that the cost of computing the integer
mth root dominates the others, the overall computational
complexity of the inverse method for BP isO(n3 ·m).
Again, the spatial complexity isO(m).
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6 Computational Complexity for GTP, DP,
and BP

Table 6 presents the analysis of the computational
complexity of DP, GTP, and BP. Column 1 shows the type
of the polynomial. Column 2 presents the number of bit
operations required to transform a vector into an integer,
wherem is the size of the vector. Column 3 shows the
number of bit operations used to map an integer into a
vector ofm dimensions. Each algorithm presented in this
paper has an spatial complexityO(m), i.e. linear in the
number of dimensions of the vector. The direct and
inverse methods proposed in [11] and the one proposed
in this paper requireO(n3 · m2) and O(n2 · m) bit
operations. However, the inverse for GTP proposed in this
paper avoids the use of floating point operations. Finally,
according to the analysis shown inTable 6, we can
conclude that the direct and inverse method for BP are the
most efficient; since they requireO(n2 ·m) andO(n3 ·m)
bit operations respectively.

Table 6: Temporal complexity of the direct and inverse methods
of DP, GTP, and BP. Here,m is the number of dimensions of the
associated vectorV andn the number of bits of its corresponding
integerα.

Polynomial Direct Inverse
DP O(n2 ·m2) O(n3 ·m2)

GTP O(n2 ·m2) O(n3 ·m2)
BP O(n2 ·m) O(n3 ·m)

7 Discussion

This paper studied from a combinatorial viewpoint three
packing functions: DP, BP, and GTP. Basically, we have
presented a pseudocode to perform the bijections between
each of these polynomials (represented as vectors over
Nm) and the non negative integers. Also, we have
included a theoretical analysis about the performance of
each method. The analysis shows that BP represents the
most efficient approach for a PF. Its direct method
requiresO(n2 ·m) bit operations. The inverse method
requiresO(n3 ·m) bit operations. Here,n denotes the
number of bits of the integer being involved. With respect
to GTP and DP, methods for their bijections were
proposed. These methods can map a vector of dimension
m into an integer value and vice versa, for both the order
of the required bit operations isO(n2 ·m2) for the direct
method andO(n3 · m2) for the inverse method. The
inverse method for GTP proposed in this paper was
compared to the method proposed by Fraenkel [11]
which, to the best of our knowledge, is the only general
inverse method previously reported for a PF. Both
methods requireO(n3 ·m2) bit operations for the inverse

method. However, our approach avoids the use of floating
point operations and requires only a basic set of
operations: subtraction, addition, multiplication, and
division. We also have presented two interesting
applications of PFs: (a) manipulation of Covering Arrays
(CAs) using GTP; and (b) generation of random solutions
of a Linear Diophantine Equation with Unit coefficients
(LDEU) using GTP and DP. Finally, the development of
the bijection between DP and GTP raises a question
concerning the existence of an efficient bijection between
DP and BP, or GTP and BP. If this bijection has linear
complexity in the number of dimensionsm, then the
direct and inverse methods for BP would make the
calculation of the packing functions DP and GTP more
efficient.

Acknowledgments

This research was partially funded by the following
projects: 51623-Fondo Mixto CONACyT y Gobierno del
Estado de Tamaulipas, 238469 - CONACyT Métodos
Exactos para Construir Covering ArrayśOptimos;
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