Login New user?  
Journal of Statistics Applications & Probability
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 14 > No. 3

 
   

Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models

PP: 337-352
doi:10.18576/jsap/140302
Author(s)
Xiao Zhang,
Abstract
In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields. Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE).

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved