Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 19 > No. 1

 
   

Buoyancy-Driven Heat and Mass Transfer in Magnetized Nanofluid with Dissipative Porous Media

PP: 1-14
doi:10.18576/amis/190101
Author(s)
Mohammed Modather Mohammed Abdou, Refah Mohammed Masfar Al-Wtheeh,
Abstract
A nanofluid of electrically conducting, viscous, incompressible Cu-water is being studied to determine the effect of Joule heating and viscous dissipation on its flow along a vertical surface. Despite the presence of suction/injection and velocity slip, the flow takes place in a porous medium that is non Darcian. Heat and mass transport in mixed convective boundary layer flow are considered in the study, along with the combined effects of buoyancy force and magneto-hydrodynamics (MHD). The governing partial differential equations were simplified into similarity boundary layer equations using appropriate transformations. After then, the equations were resolved by combining the shooting technique with the Runge-Kutta numerical integration method. Local skin friction coefficient, Nusselt number, Sherwood number, concentration, temperature, and velocity are all shown graphically, along with the effects of all flow parameters. Whether the fluid is being injected or suctioned, the results showed that a decrease in fluid temperature and concentration occurs when the thermal buoyancy ratio parameter Nr is increased. Nevertheless, as Nr. rises, the fluid’s velocity also increases.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved