Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 07 > No. 3

 
   

A Novel Method of Data Stream Clustering Based on Wavelet Timing Series Tree Synopsis

PP: 1077-1085
Author(s)
Dongsheng Liu, Chonghuan Xu, Shujiang Fan,
Abstract
For the difficulty of obtaining cluster result fast and effectively under the limitations of bounded memory and time, this paper proposes a novel data stream clustering method based on wavelet timing series tree synopsis to solve the problem. The proposed method considers the attenuation characteristic of data stream, which combines the dynamic maintenance of wavelet coefficient and attenuation feature of wavelet coefficients of data stream, and can achieve approximate representation of data stream fragment information and dynamic maintenance of its synopsis structure. The proposed method employs wavelet timing series tree synopsis method to compress data stream fragment, then adopts two-phase density clustering algorithm to cluster. Detailed experiments show that the proposed method can get high compression quality, good space and time efficiency and good clustering results.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved