Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 17 > No. 6

 
   

Symmetric colorings of $\mathbb{Z}_p^n$

PP: 1009-1011
doi:10.18576/amis/170607
Author(s)
Yuliya Zelenyuk,
Abstract
Symmetries on a group $G$ are the mappings $G\ni x\mapsto gx^{-1}g\in G$, where $g\in G$. A coloring $\chi:G\to\{1,\ldots,r\}$ of $G$ is symmetric if it is invariant under some symmetry. We count the number $S_r(\mathbb{Z}_p^n)$ of symmetric $r$-colorings of $\mathbb{Z}_p^n$, the direct product of $n$ copies of the cyclic group of prime order $p$. As a consequence we obtain that $S_r(\mathbb{Z}_p^n)=p^nr^{\frac{p^n+1}{2}}+S_r(\mathbb{Z}_p^{n-1})$.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved