|
|
|
|
|
Symmetric colorings of $\mathbb{Z}_p^n$ |
|
PP: 1009-1011 |
|
doi:10.18576/amis/170607
|
|
Author(s) |
|
Yuliya Zelenyuk,
|
|
Abstract |
|
Symmetries on a group $G$ are the mappings $G\ni x\mapsto gx^{-1}g\in G$, where $g\in G$. A coloring $\chi:G\to\{1,\ldots,r\}$ of $G$ is symmetric if it is invariant under some symmetry. We count the number $S_r(\mathbb{Z}_p^n)$ of symmetric $r$-colorings of $\mathbb{Z}_p^n$, the direct product of $n$ copies of the cyclic group of prime order $p$. As a consequence we obtain that $S_r(\mathbb{Z}_p^n)=p^nr^{\frac{p^n+1}{2}}+S_r(\mathbb{Z}_p^{n-1})$. |
|
|
|
|
|