Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 17 > No. 5

 
   

Compatibility of Clique Clustering Algorithm with Dimensionality Reduction

PP: 839-849
Author(s)
Ug ̆ur Madran, Duygu Soyog ̆lu,
Abstract
In our previous work, we introduced a clustering algorithm based on clique formation. Cliques, the obtained clusters, are constructed by choosing the most dense complete subgraphs by using similarity values between instances. The clique algorithm successfully reduces the number of instances in a data set without substantially changing the accuracy rate. In this current work, we focused on reducing the number of features. For this purpose, the effect of the clique clustering algorithm on dimensionality reduction has been analyzed. We propose a novel algorithm for support vector machine classification by combining these two techniques and applying different strategies by differentiating the clique structures. The results obtained from well known data sets confirm the compatibility of clique clustering algorithm with dimensionality reduction.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved