Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 17 > No. 3

 
   

Legendre Polynomials’ Second Derivative Tau Method for Solving Lane-Emden and Ricatti Equations

PP: 437-445
doi:10.18576/amis/170305
Author(s)
M. Abdelhakem, Mona Fawzy, M. El-Kady, Hanaa Moussa,
Abstract
This paper investigates a highly efficient method that depends on the Tau method for solving initial and boundary value problems. The second derivatives of Legendre polynomials (SDLPs) have been used as novel basis functions. A linearization relation for the presented basis functions has been introduced and proved to avoid any issues arising during tau’s integration, especially for the nonlinear problems. Consequently, some essential integrations have been determined. Moreover, we used those relations to construct explicit forms for approximating the solutions of Lane-Emden and the Recatti equations. In addition, the presented strategy’s converge and error analysis are discussed carefully and in-depth. Finally, the mentioned IVPs have been solved via the proposed method. The results have been compared with the others’ methods, which showed our technique’s accuracy, efficiency, and stability.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved