Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 14 > No. 6

 
   

Compensator Design for Non-autonomous Linear Control Systems

PP: 1047-1055
doi:10.18576/amis/140612
Author(s)
Sutrima Sutrima, Christiana Rini Indrati, Lina Aryati,
Abstract
This paper contributes to a design of stabilizing compensators for the stabilizable systems in the class. A strongly continuous quasi semigroup approach is implemented as a generalization of a strongly continuous semigroup for autonomous systems. Stability of the non-autonomous linear control system is identified by a uniformly exponential stability of a strongly continuous quasi semigroup on the state space. The results showed that in the infinite-dimensional state space, if the closed-loop non-autonomous linear control system was stabilizable and detectable, there existed an infinite-dimensional stabilizing compensators for the system. The assigned controller is given by u = Fxˆ where xˆ is the Luenberger observer. In any non-autonomous Riesz-spectral system, there exists a finite- dimensional compensator for the system. The construction of the compensator is based on the separation of the unstable eigenvalues of the corresponding Riesz-spectral operator. The numbers of the unstable eigenvalues are defined to be an order of the compensator. An example of the non-autonomous heat equation is given to assert the theoretical results.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved