Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 8 > No. 1

 
   

Iterative Methods for Solving Seventh-Order Nonlinear Time Fractional Equations

PP: 147-175
doi:10.18576/pfda/080110
Author(s)
Lanre Akinyemi, Olaniyi S. Iyiola, Isaac Owusu-Mensah,
Abstract
The present paper aims to investigate the numerical solutions of the seventh order Caputo fractional time Kaup-Kupershmidt, Sawada-Kotera and Lax’s Korteweg-de Vries equations using two reliable techniques, namely, the fractional reduced differential transform method and q-homotopy analysis transform method. These equations are the mathematical formulation of physical phenomena that arise in chemistry, engineering and physics. For instance, in the motions of long waves in shallow water under gravity, nonlinear optics, quantum mechanics, plasma physics, fluid mechanics and so on. With these two methods, we construct series solution to these problems in the recurrence relation form. We present error estimates to further investigate the accuracy and reliability of the proposed techniques. The outcome of the study reveals that the two techniques used are computationally accurate, reliable and easy to implement when solving fractional nonlinear complex phenomena that arise in physics, biology, chemistry and mathematics.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved