Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 8 > No. 1

 
   

Existence Results for a New Fractional Boundary Value Problem by Variational Methods

PP: 123-136
doi:10.18576/pfda/080108
Author(s)
Fatemeh Shirmohammadzadeh, Abdolali Neamaty,
Abstract
In this paper, using techniques from fractional variational calculus and some critical point theorems, we prove the existence of weak solution. Then, we deduce the existence of solution for the following fractional boundary value problem: \begin{equation*} \left\{ \begin{array}{l} _{t}D_{T}^{\alpha }(_{0}D_{t}^{\alpha }k(t))=f(t,~_{0}D_{t}^{\alpha }k(t)),~~a.e.~~t\in \lbrack 0,T], \k^{(j)}(0)=0,~~j = 0, 1, 2, ... , 2(n - 1),\k^{(l)}(T)=0,~~l = 0, 1, 2, ... , n - 1,% \end{array}% \right. \label{a2} \end{equation*} where $_{t}D_{T}^{\alpha }$ and $_{0}D_{t}^{\alpha }$ are the right and left Riemann-Liouville fractional derivatives of order $n-1<\alpha

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved