Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 5 > No. 3

 
   

Liouville-Weyl Fractional Hamiltonian Systems: Existence Result

PP: 207-215
doi:10.18576/pfda/050303
Author(s)
Cesar Torres, Willy Zubiaga,
Abstract
In this work we investigate the following fractional Hamiltonian systems %\begin{eqnarray}\label{eq00} $_{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u(t)) + L(t)u(t) = \nabla W(t,u(t))$, %\end{eqnarray} where $\alpha \in (1/2, 1)$, $L\in C(\mathbb{R}, \mathbb{R}^{n^{2}})$ is a positive definite symmetric matrix, $W(t,u) = a(t)V(t)$ with $a\in C(\mathbb{R},\mathbb{R}^{+})$ and $V\in C^{1}(\mathbb{R}^{n}, \mathbb{R})$. By using the Mountain pass theorem and assuming that there exist $M>0$ such that $(L(t)u,u)\geq M|u|^{2}$ for all $(t,u)\in \mathbb{R}\times \mathbb{R}^{n}$ and $V$ satisfies the global Ambrosetti-Rabinowitz condition and other suitable conditions, we prove that the above mentioned equation at least has one nontrivial weak solution.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved