|
|
|
|
|
Finding Multiple Roots of Systems of Nonlinear Equations by a Hybrid Harmony Search-Based Multistart Method |
|
PP: 21-32 |
|
doi:10.18576/amis/120102
|
|
Author(s) |
|
Gisela C. V. Ramadas,
Edite M. G. P. Fernandes,
Ana Maria A. C. Rocha,
|
|
Abstract |
|
A multistart (MS) clustering technique to compute multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function is presented. The search procedure that is invoked to converge to a root, starting from a randomly generated point inside the search space, is a new variant of the harmony search (HS) metaheuristic. The HS draws its inspiration from an artistic process, the improvisation process of musicians seeking a wonderful harmony. The new hybrid HS algorithm is based on an improvisation operator that mimics the best harmony and uses the idea of a differential variation, borrowed from the differential evolution algorithm. Computational experiments involving a benchmark set of small and large dimensional problems with multiple roots are presented. The results show that the proposed hybrid HS-based MS algorithm is effective in locating multiple roots and competitive when compared with other metaheuristics. |
|
|
|
|
|