Login New user?  
02- Progress in Fractional Differentiation and Applications
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Vol. 2 > No. 2

 
   

Spectral Solutions for Multi-Term Fractional Initial Value Problems Using a New Fibonacci Operational Matrix of Fractional Integration

PP: 141-151
doi:10.18576/pfda/020207
Author(s)
Youssri H. Youssri, Waleed M. Abd-Elhameed,
Abstract
This paper is concerned with deriving an operational matrix of fractional-order integration of Fibonacci polynomials. As an application of this matrix, a spectral algorithm for solving some fractional-order initial value problems is exhibited and implemented. The key idea for obtaining the suggested spectral numerical solutions for these equations is actually based on utilizing the developed Fibonacci operational matrix along with the application of tau method in order to reduce the fractional-order differential equation with its initial conditions into a system of linear algebraic equations in the unknown expansion coefficients which can be efficiently solved. Some illustrative examples are included aiming to ascertain the efficiency and applicability of the presented algorithm. The numerical results reveal that the proposed algorithm is easy and applicable.

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved