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Abstract: In this paper, maximum likelihood and Bayes estimators of the scale parameter, survival function and hazard rate function
are obtained for the Rayleigh failure time distribution, when the life test is progressively first-failure censored. Bayes estimators have
been developed using the standard Bayes method under squareerror and LINEX loss functions, using inverted gamma prior for the
parameter. Asymptotic confidence intervals and two bootstrap confidence intervals for the parameter are also proposed.We give an
example to illustrate our proposed methods. Results from simulation studies assessing the performance of our proposedmethod are
included. The Bayes estimates are found to be, generally, better than the maximum likelihood estimates against the proposed prior, in
the sense of having smaller mean square errors.
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1 Introduction

Censoring is very common in life tests. There are survival types of censored tests. One of the most common censored test
is type II censoring. It is noted that one can use type II censoring for saving time and money. However, when the
lifetimes of products are very high, the experimental time of a type II censoring life test can be still too long. A
generalization of type II censoring is the progressive typeII censoring. Johnson [1] described a life test in which the
experimenter might decide to group the test units into several sets, each as an assembly of test units and then run all the
test units simultaneously until occurrence the first failure in each group. Such a censoring scheme is called first-failure
censoring. Wu et al [2] and Wu and Yu [3] obtained MLE, exact confidence intervals and exact confidence regions for the
parameters of the Gompertz and Burr Type XII distributions based on first failure-censored sampling, respectively. Also
one can refer to Wu et al. [4] and Lee et al. [5]. Note that a first-failure-censoring scheme is terminatedwhen the first
failure in each set is observed. The first-failure censoringdoes not allow for sets to be removed from the test at the points
other than the final termination point. however, this allowance will be desirable in practice. This leads us to the area of
progressive censoring. Wu and Kuş. [6] combine the concepts of first-failure censoring and progressive censoring to
develop a new life test plan called a progressive first-failure censoring scheme. Soliman et al. [7] studied the coefficient
of variation of Gompertz distribution under progressive first-failure censoring. Soliman et al. [8,9] introduced MLE,
Bayesian estimates, exact confidence intervals and exact confidence regions for the parameters of Gompertz and Burr
Type XII distributions under progressive first failure-censored sampling.

Suppose thatn independent groups withk items within each group are put in a life test.R1 groups and the group in
which the first failure is observed are randomly removed fromthe test as soon as the first failureXR

1;m,n,k has occurred,
R2 groups and the group in which the second failure is observed are randomly removed from the test as soon as the
second failureXR

2;m,n,k has occurred and finally when them− th failureXR
m;m,n,k is observed, the remaining groupsRm are

removed from the test. Then the observed ordered lifetimesXR
1;m,n,k < XR

2;m,n,k < ... < XR
m;m,n,k are called progressive first-
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failure censored order statistics with the progressive censored schemeR = (R1,R2, ...,Rm). It is clear thatn= m+
m
∑
i=1

Ri .

If the failure times of then× k items originally in the test are from a continuous population with distribution function
F (x) and probability density functionf (x), the joint probability density function forXR

1;m,n,k,X
R
2;m,n,k, ...,X

R
m;m,n,k is given

by

f1,2,...,m(x
R
1;m,n,k,x

R
2;m,n,k, ...,x

R
m;m,n,k) =Ckm

m

∏
i=1

f (xR
i;m,n,k)× [1−F(xR

i;m,n,k)]
k(Ri+1)−1

(1)

0< xR
1;m,n,k < xR

2;m,n,k < ... < xR
m;m,n,k < ∞,

where
C= n(n−R1−1)(n−R1−R2−2)...(n−R1−R2− ...−Rm−1−m+1). (2)

This censoring scheme has advantages in terms of reducing test time, in which more items are used but onlym of n× k
items are failures. Note that using the above notation, somecensoring rules can be accommodated such as the first-failure
censored order statistics when,R = (0,0, ...,0), a progressive type II censored order statistics whenk = 1, a usual type
II censored order statistics whenk = 1 andR = (0,0, ...,n−m) and complete sample case ifk = 1 andR = (0,0, ...,0),
with n = m. Also, it should be noted that the progressive first-failurecensored sampleXR

1;m,n,k,X
R
2;m,n,k, ...,X

R
m;m,n,k with

distribution functionF(x), can be viewed as a progressive type II censored sample from a population with distribution
function 1− (1−F(x))k.

The RD provides a population model which is useful in severalareas of statistics, Rayleigh [10]. References on this
model may be found, among many others in Sinha and Howlader [11] and Anand [12]. Arturo [13] studied a Bayesian
inference from Type-II doubly censored Rayleigh data. Statistical inference on Rayleigh distribution based on record
values can be found in Soliman and AL-Aboud [14].

The probability density function(pd f) , cumulative distribution function (cdf), failure rateH(t), and reliability
functionS(t) of the Rayleigh distribution with parameterλ > 0 respectively, given by

f (x;λ ) =
2x
λ

exp(−x2

λ
), x> 0, λ > 0, (3)

F(x;λ )=1−exp(−x2

λ
), (4)

H(t) =
2t
λ

, (5)

S(t) = exp(−x2

λ
). (6)

The rest of the paper is organized as follows. Section2 introduces the MLE estimators and the asymptotic approximate
confidence interval of the parameter. Two bootstrap confidence interval are discussed in Section3. Section4 describes
Bayes method to estimate parameter as well as reliability and hazard rate functions. Section5 contains the analysis of a
simulate life data set to illustrate our proposed method. Results from simulation studies are given in Section6. Finally we
conclude with some comments in Section7.

2 Maximum Likelihood Estimation

Let Xi = XR
i;m,n,k, i = 1,2, ...,m, be a progressive first-failure censored order statistics from RD, with censored scheme

R = (R1,R2, ...,Rm) . From (1), (3) and (4), the likelihood function is given by

L
(

x−;λ
)
=Ckm2mλ−m

(
m

∏xi
i=1

)
exp

(
−1
λ

m

∑
i=1

x2
i −

1
λ

m

∑
i=1

(k(Ri +1)−1)x2
i

)
, (7)

whereC is given by (2). The logarithm of the likelihood function may then be written as

l
(

x−;λ
)
= Log(Ckm2m)−mLogλ +Log(

m

∏
i=1

xi)−
1
λ

m

∑
i=1

k(Ri +1)x2
i . (8)
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Calculating the first partial derivatives of (8) with respect toλ and equating to zero, we obtain the likelihood equation

∂ℓ(x;λ )
∂λ

=−m
λ
+

k
λ 2

m

∑
i=1

(Ri +1)x2
i = 0,

hence, the MLE ofλ is

λ̂MLE =

k
m
∑

i=1
(Ri +1)x2

i

m
(9)

By the invariance property of the MLE, we can obtain the MLEs of H(t) andS(t) by replacingλ by λ̂MLE in (5) and
(6), respectively.

2.1 Approximate Confidence Interval

From the log-likelihood function in (8), we have

∂ 2ℓ(x;λ )
∂λ 2 =

m
λ 2 −

2k
λ 3

m

∑
i=1

(Ri +1)x2
i (10)

whereXi ≡ XR
i;m,n,k. The Fisher informationI (λ ) is then obtained by taking expectation of minus eqs. (10). In practice ,

we usually estimateI (λ ) by I0 (λ̂ ) where

I (λ ) =−E
[

∂ 2ℓ(x;λ )
∂λ 2

]
(11)

I 0(λ̂ ) =−
[

m

λ̂ 2
− 2k

λ̂ 2

m

∑
i=1

(Ri +1)

]
(12)

Under some mild regularity conditions,λ̂ is approximately normally distributed with mean(λ ) and varianceI (λ ), i.e.

(λ̂ )∼ N
(

λ , I0(λ̂ )
)
,

Thus, the 100(1-γ)% approximate confidence interval forλ is
(

λ̂ − zγ
2

√
I0(λ̂ ), λ̂ + zγ

2

√
I0(λ̂ )

)
(13)

wherezγ
2

is the percentile of the standard normal distribution with right-tail probability γ
2.

3 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence intervals. More
survey of the nonparametric and parametric bootstrap methods can be found in Davison and Hinkley [15], Efron and
Tibshirani [16]. In this section, we use the parametric bootstrap method toconstruct Confidence Intervals (CI) for the
unknown parameter. Two parametric bootstrap methods are used: (i) Studentized-t bootstrap (Boot-t) CI suggested by
Hall (1988). (ii) Percentile bootstrap (Boot-p) CI suggested by Efron (1982).

The following steps are followed to obtain bootstrap samplefrom RD with parameterλ and based on simulated
progressive first-failure-censoring order statistics.

1.From an original data setx≡ xR
1;m,n,k,x

R
2;m,n,k, ...,x

R
m;m,n,k, compute the MLE of parametersλ sayλ̂ from equations (9)

.
2.Usêλ to generate a bootstrap samplex∗with the same values ofRi , (i = 1,2, ...,m) using the algorithm of Balakrishnan

and Sandhu [17].
3.As in step 1 based onx∗ compute the bootstrap sample estimates ofλ sayλ̂ ∗.
4.Repeat steps 2-3 N times representing N bootstrap MLE,s of λ based on N different bootstrap samples.
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5.Arrange all̂λ ∗i in an ascending order to obtain bootstrap sample(
ϕ [1],ϕ [2], ...,ϕ [N]

)
, where (ϕ = λ̂ ∗).

I- Percentile bootstrap method (Boot-p)
Let G(x) = P(ϕ̂∗ ≤ x) be the cumulative distribution function of̂ϕ∗

l . Defineϕlboot−p = G−1(x) for given x. The
approximate bootstrap 100(1− γ)% confidence interval ofϕ is given by

[
ϕBoot−p(

γ
2
),ϕBoot−p(1−

γ
2
)
]
. (14)

II- Bootstrap-t method (Boot-t)
Compute the following statistic:

T∗ =

√
m(ϕ̂∗− ϕ̂)√
Var(ϕ̂∗)

,

whereVar(ϕ̂∗) are obtained using the observed Fisher information matrix obtained in (12) . UsingT∗ values, determine
the upper and lower bounds of the 100(1−γ)% confidence interval ofϕ as follows: letH(x)=P(T∗≤ x) be the cumulative
distribution function ofT∗. For a givenx, define

ϕ̂Boot−t(x) = ϕ̂ +m−1/2
√

Var(ϕ̂)H−1(x).

Here also,Var(ϕ̂) can be computed as same as computing theVar(ϕ̂∗). The approximate 100(1−γ)% confidence interval
of ϕ are given by

(
ϕ̂Boot−t(

γ
2
), ϕ̂Boot−t(1−

γ
2
)
)
. (15)

4 Bayes Estimation

The Bayesian approach to reliability analysis allows priorsubjective knowledge on lifetime parameters and technical
information on the failure mechanism, as well as experimental data, to be incorporated into the inferential procedure.
Hence Bayesian methods usually require less sample data to achieve the same quality of inferences than methods based
on sampling theory, which becomes extremely important in case of expensive testing procedures. In this section, we
discuss the Bayesian estimation of the RD based on progressive first-failure censored data.

4.1 Loss Functions

A wide variety of loss functions have been developed in literature to describe various types of loss structures. The
symmetric squared error loss (SE) is one of the most popular loss functions. It is widely employed in inference, but its
application is motivated by its good mathematical properties, not by its applicability to representing a true loss structure.
A loss function should represent the consequences of different errors. There are situations where over- and
under-estimation can lead to different consequences. For example, when we estimate the average reliable working life of
the components of a spaceship or an aircraft, over-estimation is usually more serious than under-estimation. The SE loss
equally penalizes over- and under-estimation of the same magnitude. The SE depend on the scalar error(ũ−u), which
represents the distance between an unknown parameteru and the decisioñu. Another way to measure this error is the
expressioñu/u. A value of this quotient close to 1 corresponds to a situation where the estimator is close to the unknown
parameter. This expression is less than 1 in the case of over-estimation and greater than 1 for under-estimation. A useful
asymmetric loss function of this type is known as the generalentropy (GE) loss with the following form

L1(ũ,u) ∝
(

ũ
u

)q

−qlog

(
ũ
u

)
−1, (16)

whose minimum occurs at̃u = u. This loss function is a generalization of the Entropy-lossused in several papers
whereq= 1, see for example, Day et al. [18] and Day and Liu [19]. Whenq> 0, a positive error (̃u> u) causes more
serious consequences than a negative error. The Bayes estimateũBG of u under GE loss (16) is

ũBG = (Eu[u
−q])−1/q, (17)

provided thatEu[u−q] exists, and is finite, whereEu is the posterior expectation.
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4.2 Prior Distribution and Posterior Analysis

In this subsection we first describe the prior information needed for the Bayesian analysis of the unknown parameter.
When the parametersλ is assumed to be unknown, we can use the conjugate inverted gamma(α,β ) prior given by

g(λ ) =
β α

Γ (α)
λ

−(α+1)
exp

(−β
λ

)
,λ > 0, α > 0, β > 0. (18)

By using the Bayes theorem, the conditional posterior density function of the parameterλ take the form

π (λ | x) =
L(x;λ )g(λ )∫

λ L(x;λ )g(λ )dλ
, (19)

using (7) and (18), the conditional posterior density function of the parameterλ is the inverted gamma given by

π (λ | x) =
BA

Γ (A)
λ−(A+1)exp

(
−B

λ

)
, (20)

where

A= α +mand B=k
m

∑
i=1

(Ri +1)x2
i +β (21)

4.2.1Bayes Estimation Under a Squared Error Loss function

Based on progressively first-failure censored data, the Bayes estimator for the parameterλ under SE loss function, can be
derived as

λ̂BS = E (λ | x) =
∫

λ
λ .π (λ | x)dλ =

B
A−1

. (22)

Similarly, the Bayes estimatorŝSBS(t) andĤBS(t), at mission timet of the reliability functionS(t) and hazard function
H(t) are given, respectively, by

ŜBS(t) =

[
B

B+ t2

]A

, (23)

and

ĤBS(t) =
2At
B

(24)

whereA andB are as given by (21).

4.2.2Bayes Estimation Under General Entropy loss Function

Under GE loss function, the Bayes estimate of the parameterλ is

λ̂BG =
(
E(λ−q | x

)
)

−1
q = B

[
Γ (A+q)

Γ (A)

]−1
q (25)

Similarly, the Bayes estimatorŝSBG(t) andĤBG(t) of S(t) andH(t) are given respectively, by

ŜBG(t) =

[
B

B−q t2

]−A
q , (26)

and

ĤBG(t) =

[
Γ (A−q)

Γ (A)

]−1
q
[

2t
B

]
, (27)
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4.3 Bayesian Two-Sided Equitailed Probability Intervals

To construct 100(1− γ)% Bayesian two-sided equitailed probability intervals, weneed to solve the following two
equations ∫ L

0
π (λ | x)dλ =

γ
2

and
∫ ∞

U
π (λ | x)dλ =

γ
2
, (28)

hence
Γ (A, B

L )

Γ (A)
=

γ
2
, (29)

(
B
U

)A Γ (A, B
U )

Γ (A)
= 1− γ

2
, (30)

where for given value ofγ, the lowerL and the upperU bounds are obtained from (29) and (30) numerically.

5 Illustrative Example

To illustrate the use of the estimation methods proposed in this article, a progressively first-failure-censored sample is
generated from a RD using the algorithm of Balakrishnan and Sandhu [17]. We use:λ =2, k= 3, n=30 andm=15.Table
1 lists the generated data. Concerning the hyperparametersof the prior, we consider two cases: prior1 (noninfarmative
prior with α = β = 0) and proir2: ( informative prior withα = 4,β = 3). The point estimates of the parameter, reliability
and failure rate functions using the ML, bootostrap and Bayes methods are presented in Table 2. The 90%and 95%
approximate confidence intervals (CIs), using maximum likelihood, bootstrap (Boot-p and Boot-t), as well as Bayes
probability interval of paramterλ are presented in Table 3.

Table1: Simulated progressively first-failure-censored sample.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ri 3 0 2 0 0 2 0 0 0 1 0 0 3 0 4

Xi:15:30:3 0.092 0.098 0.231 0.325 0.388 0.389 0.458 0.464 0.487 0.571 0.685 0.774 0.854 0.863 894

Table2: The ML, Boot-p and Bayes estimates ofλ , S(t) andH(t), t = 0.8
(.)ML (.)Boot (.)BS (.)BG (.)BG (.)BS (.)BG (.)BG

Prior1 Prior2
q=-1 q=2 q=-1 q=2

λ 1.9347 1.9072 2.11228 2.03594 1.84597 1.66892 1.77895 1.64265
S(t) 0.71835 0.71419 0.6866 0.717172 0.70926 0.6701 0.6866 0.6787
h(t) 0.82698 0.83893 0.94937 0.840077 0.758295 0.89013 0.949370.87407

Table 3:Two-sided 90% and 95% confidence/probability intervals of λ
Method 95% C.I. Length 90% C.I. Length
MLE (1.6959, 2.1939) 0.498 (1.7603, 2.3941) 0.6092
Boot-p (1.2112, 2.8891) 1.6778 (1.1113, 3.0221) 1.9107
Boot-t (0.8859, 3.5052) 2.6193 (0.9209, 3.5245) 2.6036
Bayes (1.7098, 2.1446) 0.4348 (1.7944, 2.3065) 0.5121

6 Simulation Study

In this section we report some numerical experiments performed to evaluate the behavior of the proposed methods for
different effective sample sizes, different sampling schemes, different parameter values and different priors. Using the
fact that the progressive first-failure censored sample with distribution functionF(x), can be viewed as a progressive type
II censored sample from a population with distribution function 1− (1−F(x))k, we generate a progressively first-falure
censored samples from the CRD using the algorithm describedin Balakrishnan and Sandhu [17], with λ = 0.5, λ = 2. We
used the sample size(n= 30), with effective sample sizes(m= 15 and 20), differentk (k= 1 and 5), different values of
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the hyper parametersα andβ , and different sampling schemes (i.e., differentRi values). For computing Bayes estimates,
we used two informative priors, the first one is the prior 1, with (α = 0.5, β = 0.5), the second is the prior 2, with (α = 2,
β = 2). In each case, we compute the MLE and Bayes estimates ofλ , S(t) andH(t).We replicate the process 1000 times
and compute the average values of the estimates and mean squared error (MSE). The results, up to four decimal places, are
reported in Tables (4-7). It should be noted that in tables (4-7), Corresponding to each scheme, the first figure represents
the average estimates, with the corresponding MSEs reported below.

7 Conclusions

Censoring is a common phenomenon in life-testing, and reliability studies. The subject of progressive censoring has
received considerable attention in the past few years, due in part to the availability of high speed computing resources,
which make it both a feasible topic for simulation studies for researchers and a feasible method of gathering lifetime
data for practitioners. It has been illustrated by Viveros and Balakrishnan [20] that the inference is feasible and practical
when the sample data are gathered according to a Type-II progressively censored experimental scheme. Combining the
concept of first-failure censoring and the concept of progressive censoring, a progressive first-failure censoring scheme
has been introduced by Wu and Kuş [6]. This censoring scheme has advantages in terms of reducingtest cost and test
time, in which more items are used but onlymof n×k items are failures. Based on this new censoring scheme, the present
paper shows how the things can be routinely managed for the Rayleigh model in a Bayesian and classical frameworks.
We have considered the ML and Bayes estimates for survival time parameter, reliability and hazard functions, as well as
the parameter of the Rayleigh model using progressively first-failure censored data. The Bayes estimators are discussed
under symmetric and asymmetric loss functions. A simulation study was conducted to examine the performance of the
different estimators. From the results, we observe the following:

1.Tables 4 and 6 shows that the Bayes estimates relative to the general entropy loss function has the smallest (MSE) if
compared with both quadratic Bayes estimates or the MLEs fordifferent choices ofk, n, m and censoring schemeR.

2.If we adopt Bayesian approach in estimating reliability and hazard functions for different prior under symmetric and
asymmetric loss functions, one would expect that estimators to be better ( in the sense of MSE’s) than the MLEs. In
general, this can be seen in the results in Tables 5 and 6 for censoring schemeR . Also, the MSE’s of the asymmetric
Bayes estimates of reliability and hazard functions are smaller than MSE’s of the symmetric Bayes estimates.

3.When the effective sample proportionm/n increases, the MSE of different Bayes estimators and MLEs are reduced.
The censoring schemeR = (n−m, ...,0) is most efficient for all choices, it seems to usually providethe smallest MSE
for all estimators.

4.The results establish that for optimum decision making, important should be given on the choice of loss function and
not just the choice of prior distribution only.
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Table 4: Average values of the different estimates and the corresponding MSE whenλ =0.5

k m (scheme) MLE Bayes
Prior1

Bayes
Prior2

q=0.5 q=2 q=0.5 q=2
λML λBS λBG λBG λBS λBG λBG

1 15 (15,140) 0.4995 0.5512 0.5241 0.5036 0.5893 0.5628 0.5467
0.0177 0.0215 0.0176 0.0145 0.0225 0.0172 0.0139

(151) 0.5025 0.5544 0.5173 0.5026 0.5799 0.5678 0.5439
0.0161 0.0202 0.0160 0.0142 0.0196 0.0177 0.0146

(140,15) 0.5007 0.5524 0.5252 0.4976 0.5979 0.5687 0.5469
0.0164 0.0165 0.0165 0.0147 0.0246 0.0183 0.0148

20 (10,190) 0.4986 0.537 0.5171 0.5026 0.5751 0.5552 0.5329
0.012 0.014 0.012 0.0108 0.0173 0.0139 0.0104

(1,0, · · ·,1,0) 0.5033 0.5418 0.5217 0.5032 0.5753 0.5493 0.5371
0.0141 0.0165 0.0140 0.0114 0.0104 0.0125 0.0104

(190,10) 0.5058 0.5444 0.5242 0.5031 0.5694 0.5490 0.5316
0.0124 0.0149 0.0123 0.0118 0.0155 0.0123 0.0103

5 15 (15,140) 0.5034 0.6931 0.5278 0.5036 0.5633 0.5711 0.5445
0.0174 0.0559 0.0176 0.0153 0.0194 0.0176 0.0144

(151) 0.5012 0.6909 0.5257 0.4961 0.5761 0.5646 0.5393
0.0158 0.0533 0.0158 0.0148 0.0211 0.0171 0.0145

(140,15) 0.5008 0.6905 0.5253 0.5006 0.5691 0.5645 0.5448
0.0171 0.0546 0.0171 0.0143 0.0196 0.0168 0.0138

20 (10,190) 0.5044 0.6456 0.5214 0.5044 0.5500 0.5522 0.5313
0.0114 0.0332 0.0124 0.0104 0.0131 0.0137 0.0114

(1,0, · · ·,1,0) 0.4923 0.6332 0.5139 0.4928 0.5549 0.5536 0.5347
0.0122 0.0305 0.0124 0.0111 0.0177 0.0135 0.0117

(190,10) 0.4934 0.6342 0.5171 0.4938 0.5504 0.5497 0.5306
0.0111 0.0297 0.0127 0.0101 0.0141 0.0127 0.0105
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Table 5. Average values of the different estimates and the corresponding MSE
whenλ = 0.5,S(0.8) = 0.278037,H (0.8) .= 3.2

k m scheme MLE Bayes
Prior1

q = 0.5 q= 2
SML HML SBS HBS SBG HBG SBG HBG

1 15 (15,140) 0.2696 3.4426 0.2953 3.3033 0.2727 3.1452 0.2544 2.9454
0.0082 0.9897 0.0073 0.7394 0.0068 0.6206 0.0081 0.6079

(151) 0.2724 3.408 0.2978 3.2726 0.2700 3.1795 0.2539 2.9540
0.0076 0.9474 0.0082 0.7083 0.0072 0.6866 0.0082 0.6333

(140,15) 0.2710 3.4179 0.2966 3.2819 0.2754 3.1235 0.2499 2.9938
0.0076 0.9333 0.0086 0.6936 0.0070 0.6281 0.0087 0.6756

20 (10,190) 0.2713 3.3687 0.2909 3.2723 0.2747 3.1529 0.2603 3.0072
0.0057 0.6135 0.0052 0.4969 0.0054 0.4586 0.0059 0.4494

(1,0, · · ·,1,0) 0.2737 3.3608 0.2931 3.264 0.2770 3.1448 0.2605 3.0100
0.0065 0.6824 0.0060 0.5567 0.0062 0.5161 0.0062 0.4739

(190,10) 0.2763 3.3258 0.2955 3.2322 0.2795 3.1142 0.2602 3.0177
0.0058 0.6269 0.0055 0.5124 0.0055 0.4821 0.0065 0.4966

5 15 (15,140) 0.2724 3.4078 0.2979 3.2727 0.2768 3.1148 0.2541 2.9536
0.0079 0.9286 0.0071 0.6981 0.0073 0.6349 0.0085 0.6285

(151) 0.2715 3.4014 0.2971 3.2687 0.2759 3.1110 0.2486 2.9924
0.0073 0.8244 0.0066 0.6239 0.0068 0.5688 0.0086 0.5891

(140,15) 0.2706 3.4268 0.2963 3.2897 0.2751 3.1309 0.2523 2.9647
0.0080 0.9462 0.0071 0.7095 0.0074 0.6402 0.0083 0.6192

20 (10,190) 0.2757 3.3215 0.295 2.9917 0.2776 3.1334 0.2618 2.9917
0.0054 0.5681 0.0051 0.4418 0.0055 0.4977 0.0057 0.4418

(1,0, · · ·,1,0) 0.2668 3.4208 0.2866 3.3196 0.2722 3.1804 0.2529 3.0756
0.006 0.7001 0.0053 0.5576 0.0056 0.4933 0.0065 0.4818

(190,10) 0.268 3.3993 0.2878 3.3006 0.2744 3.1625 0.2541 3.0580
0.0056 0.6255 0.0049 0.501 0.0057 0.5011 0.0060 0.4415
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Table 6: Average values of the different estimates and the corresponding MSE whenλ =2

k m (scheme) MLE Bayes
Prior1

Bayes
Prior2

q=0.5 q=2 q=0.5 q=2
λML λBS λBG λBG λBS λBG λBG

1 15 (15,140) 1.9900 2.0931 1.9899 1.9053 2.0141 1.9237 1.8265
0.2641 0.2912 0.2554 0.2490 0.2395 0.2242 0.2218

(151) 1.9899 2.0930 1.9898 1.9253 2.0056 1.9156 1.8211
0.2736 0.3013 0.2646 0.2425 0.2239 0.2113 0.2065

(140,15) 1.9997 2.1032 1.9995 1.9457 1.9672 1.9030 1.7993
0.2714 0.3011 0.2625 0.2507 0.2253 0.2105 0.2278

20 (10,190) 1.9842 2.0607 1.9842 1.9171 2.0005 1.9055 1.8676
0.2008 0.2147 0.1959 0.1988 0.1807 0.1753 0.1750

(1,0, · · ·,1,0) 1.9697 2.0458 1.9699 1.9242 2.0044 1.9351 1.8689
0.1953 0.2066 0.1905 0.1896 0.1747 0.1670 0.1827

(190,10) 1.985 2.0615 1.9850 1.9451 2.0008 1.9317 1.8726
0.1935 0.2071 0.1888 0.1776 0.1677 0.1610 0.1802

5 15 (15,140) 1.9954 2.2366 1.9952 1.9093 2.5162 1.9257 1.8501
0.2569 0.3309 0.2485 0.2331 0.5168 0.2339 0.2210

(151) 1.9959 2.2372 1.9957 1.8847 2.4938 1.9043 1.8315
0.2711 0.3464 0.2622 0.2473 0.4675 0.2132 0.2169

(140,15) 1.9821 2.2228 1.9821 1.8758 2.5224 1.9316 1.8134
0.2748 0.3434 0.2658 0.2562 0.5108 0.2217 0.2357

20 (10,190) 2.0007 2.1802 2.0006 1.9352 2.374 1.9246 1.8906
0.1869 0.2291 0.1823 0.1823 0.3174 0.1708 0.1694

(1,0, · · ·,1,0) 1.9813 2.1603 1.9814 1.9353 2.3812 1.9083 1.8674
0.1956 0.2311 0.1908 0.1978 0.3235 0.1871 0.1729

(190,10) 1.9855 2.1646 1.9855 1.9056 2.3621 1.9127 1.8538
0.1890 0.2257 0.1843 0.1721 0.2995 0.1646 0.1779
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Table 7. Average values of the different estimates and the corresponding MSE
whenλ =2,S(0.8) =0.726149, H(0.8) =0.8

k m scheme MLE Bayes
Prior1

q=0.5 q=2
SML HMLE SBS HBS SBG HBG SBG HBG

1 15 (15,140) 0.7114 0.8628 0.7108 0.8746 0.7066 0.8324 0.7032 0.7860
0.0045 0.0635 0.0043 0.0641 0.0047 0.0541 0.0050 0.0466

(151) 0.7110 0.8654 0.7104 0.8771 0.7061 0.8347 0.7012 0.7916
0.0048 0.0724 0.0045 0.0719 0.0049 0.8347 0.0050 0.0445

(140,15) 0.7122 0.8601 0.7116 0.8719 0.7074 0.8298 0.7083 0.7703
0.0046 0.0647 0.0044 0.0652 0.0048 0.0553 0.0048 0.0468

20 (10,190) 0.7141 0.8497 0.7135 0.8589 0.7104 0.8276 0.7117 0.7808
0.0032 0.0431 0.0031 0.0437 0.0033 0.0381 0.0032 0.0308

(1,0, · · ·,1,0) 0.7123 0.8563 0.7118 0.8655 0.7086 0.8339 0.7088 0.7905
0.0034 0.0455 0.0033 0.0462 0.0035 0.0401 0.0034 0.0326

(190,10) 0.7147 0.8474 0.7140 0.8567 0.7110 0.8254 0.7119 0.7802
0.0031 0.0410 0.0030 0.0416 0.0032 0.0363 0.0031 0.0314

5 15 (15,140) 0.7126 0.8578 0.7119 0.8697 0.7077 0.8277 0.7045 0.7814
0.0043 0.0586 0.0040 0.0593 0.0044 0.0500 0.0047 0.0438

(151) 0.7120 0.8605 0.7114 0.8723 0.7072 0.8302 0.7000 0.7963
0.0045 0.0629 0.0043 0.0634 0.0047 0.0536 0.0054 0.0498

(140,15) 0.7101 0.8678 0.7095 0.8796 0.7053 0.8371 0.699 0.7989
0.0047 0.0673 0.0044 0.0677 0.0049 0.057 0.0053 0.0478

20 (10,190) 0.7169 0.839 0.7163 0.8483 0.7132 0.8173 0.7105 0.7850
0.0029 0.0374 0.0028 0.0379 0.0030 0.0334 0.0032 0.0317

(1,0, · · ·,1,0) 0.7138 0.8513 0.7132 0.8605 0.7101 0.8290 0.7095 0.7890
0.0034 0.0459 0.0032 0.0465 0.0035 0.0406 0.0037 0.0362

(190,10) 0.7146 0.8482 0.7140 0.8574 0.7109 0.8261 0.7070 0.7959
0.0033 0.0443 0.0031 0.0448 0.0033 0.0392 0.0034 0.0321
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