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Abstract: We propose an iterative graphical data visualisation algorithm for optimal model selection. The 

algorithm is implemented on three domain-partitioning techniques - decision trees, neural networks and support 

vector machines. Each model is trained and tested on the Pima Indians and Bupa Liver Disorders datasets with 

the performance being assessed in a multi-step process. Firstly, the conventional ROC curves and the Youden 

Indexare applied to determine the optimal model then sequential moving differences involving the fitted 

parameters - true and false positives – are extracted and their respective probability density estimations are used 

to track their variability using the proposed algorithm. The algorithm allows the use of data-dependent density 

bandwidths as tuning parameters in determining class separation across applications. Our results suggest that 

this novel approach yields robust predictions and minimizes data obscurity and over-fitting. The algorithm’s 

simple mechanics which derive from the standard confusion matrix and built-ingraphical data visualisationand 
adaptive bandwidth featuresmake it multidisciplinary compliant and easily comprehensible to non-specialists. 

The paper’s main outcomes are two-fold. Firstly, it combines the power of domain partitioning techniques on 

Bayesian foundations with graphical data visualisation to provide a dynamic, discernible and comprehensible 

information representation. Secondly, it demonstrates that by converting mathematical formulation into visual 

objects, multi-disciplinary teams can jointly enhance the knowledge of concepts and positively contribute 

towards global consistency in the data-based characterisation of various phenomena across disciplines. 

 

 

Keywords:Bayesian Error, Data Mining, Decision Trees, Domain Partitioning, Data Visualisation, Neural 

Networks, Optimal Bandwidth, ROC Curves, Support Vector Machines, Youden Index 

 

1 Introduction 

Enhancements in data acquisition, manipulation and transmission are constantly increasing the 

appetite for data, information and knowledge consumption across applications. However, these 

developments also entail sophistications in capturing of the underlying rules upon which the data 

attributes interact as well as in the way modelling results are interpreted and shared across 

applications. In classification, for instance, the accuracy and reliability of, say, a medical testwill 

depend not only on the diagnostic tools but also on the definition of the state of the condition 

being tested. Typical applications employ unsupervised and supervised modelling techniques to 

detect meaningful data patterns based on information in data attributes – a process, generally 

described as data mining or knowledge discovery from data (KDD). Applications of data mining 

algorithms such as Neural Networks, Decision Trees, Support Vector Machines and other 

adaptive methods are well documented – see, for example, Kirkos et al., (200) and Sangita (2011). 

Applications of the methods support multi-disciplinary research in that the models can readily be 

applied across fields. For instance, the classification of wind speed in Sangita (2011) can be useful 
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not only in the field of power and energy, but also in environmental studies such as tracking the 

movement of particulates and other air pollutants in a specified region. The overall performance 

of a typical data modelling technique depends on the chosen model, the sampled data and the 

available knowledge for the underlying problem domain. In other words, knowledge extraction 

from data relies on a combination of factors which together determine the selection of the optimal 

model and its performance. 

 

With most applications relying on disparate data sources, repositories and modelling tools it is 

quite imperative to try and work out a unifying environment with the potential to yield consistent 

results across applications(Mwitondi and Said, 2011). This paper applies disparate data modelling 

techniques to setsreal and simulated binary target datasets to highlight the inherent modelling 

complexities. It then goes on to use the conventional results as inputs into a novel application 

independent strategy for model optimisation and practically demonstrate the algorithm’s multi-

disciplinary compliance.  

 

The paper’s main objective is to contribute to the development of a data modelling 

environment in which information extracted from data is communicated to users via rigorous, 

unambiguous and universally comprehensible representation methods. Its main outcomes are two-

fold. Firstly, it provides a discernible and comprehensible information representation through 

dynamic visualisation of modelling results - helping to enhance knowledge of concepts and 

parameters. Secondly, it shows that by converting mathematical formulation into visual objects, 

multi-disciplinary teams can jointly contribute towards global consistency in the data-based 

characterisation of phenomena in real-life applications. The paper is organised as follows. 

Section  0provides a general overview of the Bayesian rule; outlines the fundamental mechanics of 

selected predictive modellingtechniques and highlights their suitability to harmonisation. 

 

 

2 Methods 

The methods derive from the following key elements of data mining - as data (quite 

heterogeneous in nature), tools and techniques (with disparate mechanics and functionalities) and 

analytical and interpretational skills (quite often multi-disciplinary in nature). To illustrate the 

different forms of randomness in model training and testing, we use two datasets – the Pima 

Indians Diabetes and the Bupa Liver Disorders data. The former consists of 768 observations on 9 

variables (NIDDK, 1990) relating to females of at least 21 years old - and the latter consists of 

345 observations on 7 variables (Forsyth, 1990) - the first 5 relating to blood tests for liver 

sensitivity to excessive alcohol consumption. The ultimate goals are to illustrate the nature of 

randomness in predictive accuracy and reliability and propose a novel strategy for striking a 

balance between the two. The modelling strategy derives from the Bayesian rule as in Berger 

(1985) and the modelling techniques are adapted from Valiant (1984), Breimanet al., (1984) and 

Egan (1975).  

 

2.1 Bayesian foundations of allocation rules in predictive modelling 

Analogical to the type I and type II errors in hypothesis testing, predictive modelling is 

associated with a loss function or a measure of the discrepancy between the true and estimated 

probabilities. Assuming that a correct classification incurs no loss, a prediction rule can be 

defined as where  are the class priors and represent the cost of 

incorrectly allocating an observation to a class which also implies that  Webb 
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(2005) shows that the Bayesian decision rule for minimum risk or the total loss is the weighted 

sum in Equation 1where  are the probabilities of misclassifying  respectively.  

    (1) 

 

If the parameters in Equation 1 were known, computation of the loss function would be trivial. 

However, in most applications these parameters are estimated from data and as such they 

inevitably affect in different ways. As shown in Table 1, this is because the total empirical 

erroris affected by randomness due to the allocation region and randomness due to assessing the 

rule by random training and validation data(Mwitondi, 2003). 

 

Table 1: Error types associated with DP modelling (Source: Mwitondi, 2003) 
ALLOCATION RULE ERRORS DUE TO DATA RANDOMNESS 

POPULATION TRAINING CROSS VALIDATION TEST 

    

 

Whether we know the parameters or we estimate them from data the Bayesian logic stipulates 

that we update currently available (prior) information into new (posterior) information. Thus, 

given that there are  data points in different classes, the overall misclassification 

error is computed as the sum of the weighted probabilities of observing data belonging to a 

particular class given that we are not in that class. That is, 

 

     (2) 

where and represent the partition region and the class priors respectively.Minimising the 

Bayesian error has always been central to predictive modelling – see, for instance, Reilly and 

Patino-Leal(1981), Wan (1990), Freund and Schapire (1997) and Mwitondiet al. (2002). If we let 

the Bayesian error from a notional population in Table 1 on which the performance of the model 

is assessed to be  then  

 

      (3) 

Our focus can then be on minimising the unknown quantity and measuring and tracking its 

reliability across applications – a generic task applying to all data-dependent domain-partitioning 

models. In most applications a commonly acceptable practice is to vary the allocation rule in 

order to address specific requirements of an application. The applications in this paper derive 

from this convention. In the next exposition we examine some of the fundamental mechanics of 

the paper’s adopted modelling methods.  

 

2.2 Predictive modelling and performance assessment 

Class allocation and associated loss are two of the key elements of predictive modelling. We 

illustrate them via Decision Trees, Neural Networks, Support Vector Machines. 

 

2.2.1 Decision Trees (DT) 

Given training data  and growing a tree amounts to 

sequentially splitting the data into the two subsets A and B based on, typically, a single predictor 

at a time. If we denote the observations at any arbitrary tree node by  and the number of cases 

at the node by  then given the choice of a variable, say,  and the threshold on it, say, 

m, split the data into A and B such that  
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       (4) 

The observations in A and B lie on either side of the hyper-plane  chosen in such a way 

that a given measure of impurity is minimised. Without attempting to optimise the whole tree, this 

splitting continues until an adopted stopping criterion is reached.Selecting an optimal model is 

one of the major challenges data scientists face. Breimanet al., (1984) propose an automated cost-

complexity measure described as follows. Let the complexity of any sub-tree  be defined by 

its number of terminal nodes, . Then if we define the cost-complexity parameter , 

the cost-complexity measure can be defined as  

 

     (5) 

Let  be any branch of the sub-tree  and define where  represents 

the set of all terminal nodes in . They further show that given tany non-terminal node in , 

the inequality  holds. It can be shown that for any sub-tree  we can define a 

measure of impurity as a function of  as 

 

     (6) 

Our description of the mechanics of decision trees modelling seeks to highlight the main issues 

which data scientists must be aware of. In particular, growing a large tree will yield high accuracy 

but risks over-fitting the data while growing a small tree yields low accuracy and may under-fit 

the data. The measure of impurity in Equation 6 returns different estimates for different values of 

 directly impinging on accuracy and reliability. 

 

2.2.2 Neural Networks (NN) 

A neural networks model can generally be viewed as a multi-stage predictive system that 

adapts its structurein accordance with the flow of data inputs and their associated weights through 

the structure (Ripley, 1996). Typically, the model consists of an input and output layer with one or 

more hidden layers between them. Mathematically, an NN model consists of a sequence of nested 

functions each being defined by the preceding one via a weighted sum and activation function. 

We adopt a simple description of neural networks as a sophisticated version of non-linear 

statistical models (Hastie et al., 2001) and illustrate the mechanics of NN from a binary target 

classification perspective as follows. Given a training dataset and 

, we can initialise a set of weights and iteratively keep updating them in 

search of a set that fits the training data well. Theseconventional mechanics of NN – also known 

as the perceptron learning rule (Ripley, 1996) - entail adapting the weights to the differences 

between the desired and actual model target output. Cross-entropy or deviance is a commonly 

used measure of impurity for determining the error and, for the binary case, it can be defined as  

 

      (7) 

with the corresponding NN classifier being Typically, NN 

minimise the measure via back-propagation which entails propagating prediction errors 

backwards from the output nodes into the input nodes. That is, the network calculates its error 

gradient based on the updated weights:  where  is the learning rate and 

 are the expected and actual target outcomes respectively. NN modelling is associated 
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with a number of issues – mainly the initial set of weights and data over-fitting which is the 

subject of subsequent sections in this paper.  

2.2.3 Support Vector Machines (SVM) 

Support Vector Machines (Vapnik, 1995; Cortes and Vapnik, 1995) represent another set of 

domain-partitioning methods which relies on training information to allocate new cases to known 

groups. Its basic idea is to map data examples as points in multi-space dimension separated by a 

hyper-plane or set of hyper-planes such that gap of disparity between distinct groups is as wide as 

possible. Group allocations are carried out by mapping all new cases onto the same space in 

accordance to which group they are predicted to belong. Generally, given a set of data 

 and   define a hyper-plane 

where  is a unit vector and  – implying that the distance 

from the origin to  is unit. The general allocation rule is therefore 

 

     (8) 

which gives the signed distance from  to the hyper-plane defined above. For separable classes 

we can find a hyper-plane   with making it possible to find a 

hyper-plane with the widest gap between the two classes. Consequently, subject to 

the corresponding optimisation problem is defined as 

 

(9) 

 

Note that lies on either side of the plane – hence the gap is  wide. In the 

case of overlapping classes the above constraint can be modified either as  

  (10) 

 

wherethe slack variable Typically, the two formulations 

in Equation 10 yield different solutions. The mechanics of SVM derive from 

 in which  is the proportion of incorrect predictions (Hastie et al., 

2001). Since predictions errors arise when bounding the sum of epsilon will bound 

. Hence, the choices of  and  are crucial to the overall performance of SVM and 

therefore the subsequent sections address performance-related issues.   

 

2.3 Performance assessment using ROC curves analysis 

The performance of all the foregoing techniques can be assessed by using ROC curves (Egan, 

1975) which can be described using a simple binary medical diagnostic test scenario. If N patients 

are tested for a particular disease and there are four possible outcomes – true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) - then the ROC curve can be 

constructed based on the proportionsin Equation 11. 

 

      (11) 

whereSSTand SPTdenote the sensitivity and specificity respectively and NTP and 

NFNdenote the number of those with the disease and who are diagnosed with it and those having 

the disease but cleared by the test respectively. Similarly, NTN and NFP are the number of those 

without the disease who test negative and those testing positive without having the disease 
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respectively. As with type I and II errors, the usefulness of a test cannot be determined by 

SST/SPT alone – and so a ROC analysis trade-off is needed. 

 

2.3.1 Maximising accuracy (minimising error)  

ROC curves are used in selecting potential optimal (or discard non-optimal) models based only 

on the parameters  and  in Equation 1 and not on the cost and class distribution parameters. 

Krzanowski and Hand (2009) demonstrate various ways in which ROC curves can be used as 

performance measures by focusing on inter-alia statistical tests for ROC curves and their 

summary statistics.Assuming that a model will yield four possible outcomes – true positive, false 

positive, true negative and false negative the ROC accuracy (ACCR) and the corresponding error 

(ERR) are defined as in Equation 12. 

 

     (12) 

If we denote the data by X and the class labels by the probability of 

accuracy/accuracy can be computed as shown below where the integral is over both classes. 

 

  (13) 

The main goal of predictive modelling is to maximise  or, equivalently, 

minimise consistently across applications which is basically model optimisation. 

 

2.3.2 Area under the curve (AUC), model optimalityand Youden indices 

The area under the ROC curve represents a measure of discriminatory performance with 1 

corresponding to a perfect fit and 0.5 (below the baseline - no better than a random guess).One 

way of determining the optimal cut-off point for the ROC curves is to use the Youden index 

(Youden, 1950). Its main idea is that for any binary classification model with corresponding 

cumulative distribution functions and , say, then for any threshold t,the relationship 

 holds. We can then compute the index  as the maximum 

difference between the two functions as shown below. 

 

   (14) 

Within a model, the Youden index is the maximum differences between the true and false 

positives values and between competing models ordering of the indices highlights performance 

order. Thus, the index provides a handy tool in a shared data environment. 

 

3 Implementation and proposed modelling strategy 

To facilitate the selection of optimal models based on consistency of performance, we 

implement a two-stage analytical process. That is, we apply the three models and assess their 

performance using conventional methods followed by an implementation of the proposed model 

selection strategy based on the methods described in Section  0.  

 

3.1 Conventional implementation 

Implementation was based on three different decision tree sizes, three different architectures 

of feed-forward neural networks and three different support vector machines models. For the 

purpose of making an optimal choice from a set of competing models, we adopted simple 

distinguishing features in each set of models. We adapt the increasingly common approach to the 

representation of attributes - data visualisation as defined in Steele and Iliinsky (2010). 
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Implementation was in R2.1.3.0 (2011) and ROCR (Sing et al., 2005) procedures and so the 

models’ distinguishing features derive from the conventions embedded in those procedures. The 

adopted features were the minimum number of splits (DT), the number of units in the hidden layer 

(feed-forward NN)and the cost of constraints violation which represents the constant of the 

regularisation term in the Lagrange formulation (SVM). The ROC performances of the three sets 

are presented inFigure 1.  

 

 

Figure 1: Combined DT, NN and SVM ROC curves for the Pima Indians data 

 

The plots were generated using R2.1.3.0 (2011) code and ROCR (Sing et al., 2005) embedded 

procedures. Each of the ROC curves measures the probability that the corresponding model will 

rank higher a randomly chosen positive instance than it will rank a randomly chosen negative 

case. The diagonal line is the baseline – the decision that could be taken without relying on the 

model which amounts to a random guess. In this case, the NN models were consistently out-

performed by the other two. The Youden indices and areas under the curve (AUC) corresponding 

to the ROC curves in Figure 1 are given in Table 2. Based on AUC, the models are ranked DT1, 

SVM2, DT2, SVM3, SVM1, DT3, NN3, NN2 and NN1 while the Youden Index 

( ) ranks them as DT1, DT2, DT3, SVM3, SVM1, NN3, SVM2, NN1 and 

NN2. 

 

Table 2: Model performance parameters for the Pima Indians data 
MODEL MAXIMUM (TPR-FPR) AREA UNDER THE CURVE 

Decision Tree – 1 (DT1) 0.7838209 0.9272873 

Decision Tree – 2 (DT2) 0.7391642 0.9086045 

Decision Tree – 3 (DT3) 0.5906866 0.8555858 
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Neural Networks – 1 (NN1) 0.377791 0.7087612 

Neural Networks – 2 (NN2) 0.3649254 0.7171828 

Neural Networks – 3 (NN3) 0.3935224 0.7446828 

Support Vector Machines – 1 (SVM1) 0.4082687 0.8937571 

Support Vector Machines – 2 (SVM2) 0.3863284 0.9201000 

Support Vector Machines – 3 (SVM3) 0.4255821 0.8955286 

 

Models with exactly the same settings were trained and tested on the Bupa Liver Disorders data. 

Unlike in the previous case in which we had a much larger dataset with class priors 

and , the Bupa dataset was almost half the size of the Pima data but 

with slightly balanced priors at  and  The combined outputs from 

the three sets of models are graphically presented inFigure 2. 

 

Figure 2: Combined DT, NN and SVM ROC curves for the Bupa Liver Disorders data 

 

The model performance parameters - Youden indices and AUCs corresponding to the ROC 

curves in Figure 2 are given inTable 3. Based on AUC, the models are ranked in the order DT1, 

SVM1, DT2, SVM2, SVM3, NN1, DT3, NN3 and NN2while the Youden Index ranks them as 

DT1, DT2, SVM1, SVM2, SVM3, DT3, NN1, NN2 and NN3. 
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Table 3: Model performance parameters for the Bupa Liver Disorders data 
MODEL MAXIMUM (TPR-FPR) AREA UNDER THE CURVE 

Decision Tree – 1 (DT1) 0.7820896 0.9492241 

Decision Tree – 2 (DT2) 0.7391642 0.9205172 

Decision Tree – 3 (DT3) 0.5906866 0.7486724 

Neural Networks – 1 (NN1) 0.4508621 0.7810517 

Neural Networks – 2 (NN2) 0.3955172 0.7210345 

Neural Networks – 3 (NN3) 0.3672414 0.7251034 

Support Vector Machines – 1 (SVM1) 0.7266667 0.9290667 

Support Vector Machines – 2 (SVM2) 0.7133333 0.9172444 

Support Vector Machines – 3 (SVM3) 0.6600000 0.8863111 

 

Due to the heterogeneous nature of the mechanics of each model, the rankings can only 

highlight the issue of training and testing models on inherently random data discussed earlier. 

Although it is imperative to assume that good training data will be used, it is always possible for 

this assumption to be violated due to factors such as variations in data sources and modelling 

practices which may lead to variations in drawn conclusions. In a multiple simulation binary 

example with balanced class priors, a 25% change in the standard deviation of the training data 

led to an average of 14% in the Youden indices and 10% in the ROC cut-off points. The two 

panels in Figure 3 exhibit comparisons between the NN and SVM models (LHS) and a DT within 

model comparison (RHS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Error rates versus cut-off points for the Pima Indians data 

 

Such variations make model complexity a natural challenge to data modelling (Mwitondi and 

Said, 2011) and impinge on the model accuracy (error) and reliability as shown inEquations 12,13 

and3. Typically, repeated runs will vary depending on factors such as data sources and specific 
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model settings and so the over/fitting patterns may provide a good starting point in the search for 

optimality. In the following exposition, we propose a novel strategy aimed at enhancing the 

generic formulation in Equation 3. 

 

4 Implementation of the proposed strategy 

Our strategy for implementing the aforementioned domain-partitioning models and the procedure 

for selecting the optimal modelare based on simple mechanics. The main idea is to fit multiple 

models and select the model which yields consistent density plots from the step-wise differences 

in the ROC parameters. The algorithm's mechanics are as follows. 

 

Given a set of competing classifiers  

Extract the vectors  

Set  

For j:=1:K 

For  

 

 

 

 

 
Store AUC and the differences DIFFS, TP and FP 

End For 

Set a long bandwidth vector (typically Gaussian)  

While NOT END of Do 

Compute and plot the densities of DIFFS  and  

End While 

Examine the resulting plots and select  with the best group separation patterns. 

 

End. 
The algorithm tracks the sequential differences between fitted TPs and FPs from which the 

Youden Index derives. The Gaussian kernel is used to approximate the differences in the 

algorithm with the optimal choice based on Silverman's optimal bandwidth criterion (Silverman, 

1984) where is the standard deviation of the samples N. The foregoing algorithm adapts to 

specific applications via the adopted loss function.  

 

The algorithm was tested on the best model from each of the three sets. For the Pima data those 

were DT1, NN1 and SVM2 while for the Bupa data it was DT1, NN1 and SVM1. At higher 

bandwidths the algorithms are indistinguishable as they reveal predominantly uni-modal features 

of the sequential differences. Graphical density patterns corresponding to each of the three models 

at bandwidth 0.085 are shown in Figure 4.TP and FP in the legend correspond to "true" and 

"false" positives respectively, DT, NN and SVM represent the models while YD highlights the 



K.  S. Mwitondi,  R. A. T.  Said:  A Data-based Method for Harmonising…                                                               303 

 

correspondence to the Youden Index. The greyed block at the foot of each plot (or TPs/FPs in the 

legend) represents a sorted vector of true and false positives as detected by all three models. These 

plots suggest that in both cases DT out-performs NN and SVM in capturing the natural data 

structures.  

 

Figure 4: Density patterns for the Pima and Bupa sequential differences at bandwidth 

0.085 

 

As the bandwidth decreases the multi-modal features become more prominent and the 

performances of the three models become increasingly distinguishable. The graphical patterns in 

Figure 5detected at bandwidth 0.025 confirm the superiority of DT in both applications. These 

features are interesting because of their departure from the highly indistinguishable features 

between DT and SVM on Pima data with heavily unbalanced priors. Repeated runs of the models 

on simulated data confirmed this behaviour.  

 

 

 

Figure 5: Density patterns for the Pima and Bupa sequential differences at bandwidth 

0.025 
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The patterns in both panels of Figure 5provide an insight into the level of class separation and 

can be used to guide model selection. Further, ROC curves exhibit classifier performance 

irrespective of the parameters in Equation 1 which, in most applications, are unknown and must 

be estimated from the data. Thus, the algorithm is adaptable to all situations in which we can 

simultaneously train and test multiple models on available data. Note that we have confined 

applications to a two-class scenario. Extensions to multi-class scenarioscan be done in a number 

of ways. For example, for largely non-overlapping small number of classes, an indicator variable 

splitting the multi-classes into two supersets can be used. Alternatively, internal branching as in 

Zhu et al., (2006) can be used. 

 

5 Concluding remarks and potential future directions 

This paper dwelled on the behaviour of fitted parameters from DT, NN, SVM and related 

performance assessment techniques - namely, ROC curves and the Youden Index. The rationale 

for proposed strategy derived from the context of the conceptual framework in Section  0. 

Typically, all three models yield a target output of the probability that the new observation is 

allocated to the correct class and so not only the probability target output must fulfill the 

conditions and . However, the magnitudes of these probabilities and other 

parameters vary with model complexity.  

 

Our proposed algorithm sought to address the foregoing issues. Following implementation on 

the Pima and Bupa datasets, repeated simulations (at different bandwidths) revealed discernible 

class separations making it easy to interpret the results.It was shown that variability of delta can 

be used in conjunction with other measures of performance such as the ROC curves and we 

demonstrated the algorithm’s capabilities in trackingit across models which helps minimise data 

obscurity and data over-fitting. While its mechanics rely on learningallocation rules from data, the 

rules generated will continue to require human intervention – preferably in the form of 

quantifiable human expert knowledge.  

 

Over the last few decades, these developments have led to new data intensive multi-discipline 

applications in bioinformatics, business intelligence, data science etc. Yet, model optimisation 

will continue to be a major challenge among the data mining and data science communities. The 

strategy proposed in this paper can easily be extended to accommodate needs of a wide of 

applications. Since error costing differs across applications, the decisions relating to model 

selection remains application-specific. Thus, we see novel paths towards tackling new challenges 

in remote sensing, seismology, oceanography, ionosphere and many others. In space science, for 

instance, the relationships between the variations in the ionosphere and the climate can only be 

confirmed through rigorous and reliable predictions. We hope that this study will supplement 

previous studies on model selection methods and contribute towards cross-disciplinary research 

and help towards successful delivery of complex information to non-technical 

audiences.Extensions of this work also relies on the developments in data and modelling archives, 

which may provide scope for automating the selection criteria of C and the algorithm’s tuning 

parameters.  
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