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Abstract. Two-dimensional modified Peierls-Nabarro dislocation equation concern-
ing the discreteness of crystals is reduced to one-dimensional equation to determined
the core structure of partial dislocation in Ag. The generalized stacking fault energy
along the Burgers vectors of partial dislocation is a skewed sinusoidal force law, which
is related to the intrinsic stacking fault energy and the unstable stacking fault energy.
A trial solution appropriate for arbitrary dislocation angle is presented within the vari-
ational method. The results show that the half core width increases as the increase of
dislocation angle. Moreover, the core width decreases with the increase of the unsta-
ble stacking fault energy and the intrinsic stacking fault energy. Peierls stress for 60◦
partial dislocation is in agreement with the experimental results.
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1 Introduction

It is widely accepted that extended defects such as dislocations play an important role in
defining the mechanical properties of materials [1–5]. In face-centered-cubic (fcc) crystals
(such as Ag), the glide dislocations should be dissociated into two Heidenreich-Shockley
partial dislocations bounding a stacking fault ribbon among them [6,7]. The dissociation
properties make the procedure to determine the mobility of dislocations (Peierls stress)
more complex and questionable. Two types of theoretical approaches have been applied
to examine the Peierls stress of dissociated dislocations. The first type is based on the
direct atomistic simulation using empirical interatomic potentials [8–11]. The second one
employs the Peierls stress of single partial dislocation to replace that of the dissociated
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dislocation within the framework of Peierls-Nabarro (P-N) model. The atomistic simu-
lations may not be reliable as the empirical potentials are used. On the other hand, the
P-N model provides a conceptual framework for the prediction of the size and mobil-
ity of dislocations, namely core structure and Peierls stress [6]. However, a quantitative
agreement with experiments has been lacking as the model is essentially a continuum
treatment.

Recently, the boundary problem of the half-infinite lattice has been solved by using
the lattice Green function method. By virtue of the solution obtained in the bound-
ary problem, a set of dislocation equations have been derived explicitly for the two-
dimensional triangular lattice. The dislocation equation only related to displacement of
the atoms on the border. Because the displacement field of a dislocation varies slowly in
the space, the discrete dislocation equation can be changed into the integro-differential
equation, namely the modified P-N dislocation equation [12–14].

In this paper, we focus on the core structure properties and Peierls stress for 60◦ partial
dislocation in Ag. We choose to study 60◦ partial dislocation in Ag for two reasons: (i)
the intrinsic stacking fault energy (γI =0.021 Jm−2) is small and dissociation equilibrium
distance is large enough so that two partial dislocation should not overlap too much, (ii)
the edge dislocation dissociates into two 60◦ partial dislocations and the Peierls stress of
single partial dislocation used to replace the dissociated dislocation is more reasonable
[15]. In Section 2, the core structure properties of partial dislocation are investigated with
the modified P-N equation. Peierls stress for 60◦ partial dislocation in Ag is presented in
Section 3. Finally, conclusions are made in Section 4.

2 Core structure of partial dislocations with skewed sinusoidal
force law

The 2D modified P-N dislocation equation for straight dislocations that describe the bal-
ance of atoms on the border based on the lattice dynamics and the symmetry principle
takes the following form [14]
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where Ke and Ks are the energy factors of the edge and screw dislocations, ux and uy are
the edge and screw components of displacements. For the isotropic solid, Ke = µσ/(1−
ν) and Ks = µσ, with µ being shear modulus and ν Poisson’s ratio, σ is the area of the
primitive cell of the misfit plane. The coefficients of the second-order derivations βe and
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βs relate with the acoustic phonon velocity and the lattice geometry structure

βe =
3
4

Ωµ
(2−2ν

1−2ν
−tan2 θcos2 φ

)
, (3)

βs =
3
4

Ωµ(1−tan2 θsin2 φ), (4)

where θ and φ are the orientation angles of the relative position of a pair of neighbor
atoms in the intrinsic frame with the axes given by the polarization directions, and θ =
π/4 and φ = π/6 for fcc crystals, Ω is the volume of the primitive cell. By comparing
with the generalized 2D P-N equation in P-N model, there are two extra second-order
derivations that represent the discreteness effect of crystal in the new equation. While βe
and βs are taken to be zero, namely the discreteness effect is neglected, the generalized
2D P-N equation can be obtained [16].

In order to obtain the core structure of partial dislocations, the dislocation equation
for partial dislocation or for the mixed dislocation should be deduced. As we know, the
dislocation equation in lattice theory is the equilibrium equation of atoms on the bor-
der. The force subjected by atoms along the Burger vector of partial dislocation can be
obtained easily, and that can be balanced by the restoring force resulted from the gener-
alized stacking fault energy curve along the Burgers vector. The dislocation equation for
partial dislocation can be written as

−βb
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d2u
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Kb

2π
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where βb and Kb can be represented as

βb = βe sin2 ϕ+βs cos2 ϕ, (6)
Kb =Ke sin2 ϕ+Ks cos2 ϕ, (7)

and u and f (u) are the displacement and the restoring force of atoms on the border along
Burgers vector of partial dislocation, and ϕ is the dislocation angle of partial dislocation
the included angle between dislocation line and Burgers vector of partial dislocation .
For the isotropic solid,

Kb =µσ
(
(1−ν)−1sin2 ϕ+cos2 ϕ

)
.

While βb is taken to be zero, Eq. (5) is the same as the equation deduced by Joós et al. in
continuum theory that has been extensively used [17–20]. Eq. (5) for partial dislocations
is only related to the dislocation angle of the partial dislocation based on the assumption
that the direction of the displacement u is always along the direction of the Burgers vector
b according to purely geometrical considerations. We can express the assumption by
[21, 22]

ux

uy = tanϕ.
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The restoring force f (u) is defined as the gradient of the so-called generalized stack-
ing fault energy γ(u) along the Burgers vector of partial dislocation

f (u)=−∂γ(u)
∂u

.

The generalized stacking fault energy curve can be represented by the following Fourier
series

γ(u)=γ0+γ1cos(πu/b)+γ2cos(2πu/b)+··· (8)

While the relative displacement between two half-infinite crystal is 0, the stacking fault
energy is given by γ(u)|u=0 = 0 which refers to a perfect crystal. The intrinsic stacking
fault energy γI is resulted from displacement b along the Burgers vector of partial dislo-
cations, i.e. an intrinsic stacking fault is formed in the fcc crystal. Therefore, the following
mathematical relations can be obtained

γ0+γ1+γ2 =0, (9)
γ0−γ1+γ2 =γI . (10)

Generally, the actual displacement for γus is deviated from the geometrically symmetric
displacement point u = b/2 due to the skewed properties of generalized stacking fault
energy curve (γI 6=0). However, the deviation is small for Ag due to the large γus/γI [15].
Here, the deviation is neglected and we have

γ0−γ2 =γus. (11)

Combining Eqs. (9)-(11), the coefficients of generalized stacking fault energy curve can
be obtained and the GSF energy curve can be written as

γ(u)=
γI

2
(1−cos(πu/b))− (γI−2γus)

4
(1−cos(2πu/b)). (12)

The expression (12) is only related to the unstable stacking fault energy γus and the in-
trinsic stacking fault energy γI . While the displacement u=b, the stacking fault energy is
not equals to zero, but γ(b)= γI . Thus, the above expression is termed as skewed sinu-
soidal force law. For fcc Ag with lattice parameters a0=0.409 nm, the shear modulus and
Poisson’s ratio are µ = 3.38×1010 GPa and ν = 0.354, respectively. The intrinsic stacking
fault energy and the unstable stacking fault energy along <112> direction in {111} slip
plane are 0.021 Jm−2 and 0.219 Jm−2.

According to the definition of the restoring force, one obtains

f (u)=−πγI

2b
sin(πu/b)+

π(γI−2γus)
2b

sin(2πu/b). (13)

It is transparent that the skewed sinusoidal force law reduces to the sinusoidal force law
while γI = 0. In Fig.1, the skewed sinusoidal shape force law is pictured. The unstable
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Figure 1: Skewed sinusoidal force law related to intrinsic stacking fault energy γI and the unstable stacking
fault energy γus, (a)generalized stacking fault energy (in Jm−2), (b) the restoring force law (in GPa).

stacking fault energy is nearly the same (0.219 Jm−2) for the intrinsic stacking fault energy
γI = 0 and γI = 0.021 Jm−2 (as show in Fig. 1a). The difference of two restoring force is
delimitated while u>b/2, see Fig. 1b.

In P-N model, the method of residua in the complex plane introduced by Lejček is
used to construct the planar dissociated dislocation core for arbitrary form of the GSF
energy [23] . However, the Eq. (5) with a second order derivation term can no longer be
considered as an example of a Hilbert transformation. Hereafter, the variational method
is used to deal with the nonlinear integro-differential dislocation equation. It can be easily
verified that the variational functional of the dislocation equation takes the following
form [24]
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The trial solution of the variational problem can take the following form

u(x)=
b
π

(
arctanp+

cp
1+p2

)
+

b
2

, (15)

where p = κx. Eq. (15) must assure the correct asymptotic behavior far from the core
region as obtained in the continuum elastic theory. Consequently, we have

κ =κ0(1−c), (16)

with

κ0 =
2
d

(sin2 ϕ

1−ν
+cos2 ϕ

)−1
. (17)

The trial solution is appropriate for describing edge, mixed and screw dislocations with
different dislocation angle.
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By substituting the trial solution Eq. (15) into the variational functional Eq. (14), the
results of the first two terms can be easily obtained by contour integration

J1 =
βbκb2

4π

(
1+c+

c2

2

)
, (18)

J2 =
Kbb2

2π

[
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2

)
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4

]
. (19)

In order to obtain the third term, the parametric derivation method is employed [25], and
we have
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where

f (θ0)=
γI

2
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2

)
cos2 θ0, (21)
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with θ0 =arctanα p̃ and α=1/c. After calculation and arrangement, we have

J3 =−π

κ

(γI−2γus

2

)(
1−c+

c2

4
+

c3

12

)
. (23)

The term J defined in (4) is now given by J1+ J2+ J3. The geometric variational pa-
rameters can be determined by the following algebra equations

∂J
∂c

=0. (24)

The dislocation core width ζ is defined as the atomic distance over which u changes
from b/2 to 3b/4 (definition I) [19]. The core width may also be defined as the position
reaching half maximum of the dislocation density (definition II) [20]. It is valuable to note
that definitions I and II equate to each other only within the original Peierls-Nabarro
model with sinusoidal force law (arctan-type dislocation solution). The core width for
seven partial dislocations evaluated from the above two definitions are shown in Fig.
2. The core width increases monotonically with dislocation angle for both definition I
and definition II. The core width obtained from definition I is smaller than that obtained
form definition II. Fig. 3 illustrates that the core width decreases with the increase of
the unstable stacking fault energy γus and the intrinsic stacking fault energy γI . The
conclusion that the core width decreases monotonically with the increase of γus/γI can
also be made from Fig. 3. It is well known that the stacking fault energy can be altered
by solid-solution alloying [26–28]. Thus, the core structure is controllable for different
mechanical property purpose of materials.
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Figure 2: Half core width ς of 60◦ in Ag decreases with the increasing of the unstable stacking fault energy γus.

Figure 3: Half core width ς of dislocations increases with the increase of dislocation angle for definition I and II

.

3 Peierls stress of 60◦ partial dislocations in Ag

It is well known that the core structure is difficult to be determined from experiments.
Thus, it is useful to calculate the Peierls stress of partial dislocation to verify the above
results. The Peierls stress is the crucial quantities characterizing the mobility of disloca-
tions that controls the mechanical properties of materials. After the first estimation of
the stress by Peierls and Nabarro, attempts to improve the prediction of the stress for-
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mula have been made [29]. However, the elastic strain energy is neglected due to the
continuous medium approximation in P-N model [30] . The contribution of the elastic
strain energy are considered while calculating the Peierls stress in lattice theory and the
dislocation energy associated with discreteness of lattice can be expressed as

Ed(l)=
+∞

∑
m=−∞

γ[u(ma−l)]+
1
2

+∞

∑
m=−∞

f [u(ma−l)]u(ma−l), (25)

where the first term and the second term are the misfit energy and the elastic strain en-
ergy, respectively, a is the interspacing in the direction of dislocation sliding and a=bsinϕ
in Ag, and l is the position of the dislocation. The assumption of Nabarro is reserved that
the profile of dislocation core is independent of the position of the dislocation. Factor 1

2
originates from that u(x) is the relative displacement rather than the absolute displace-
ment. By means of Poisson formula, the dislocation energy are

Ed(l)=
+∞

∑
s=−∞

[
(Λm(s)+Λe(s)

]
e−

2πisl
bsinϕ , (26)

where Λm(s) and Λe(s) take the following form after arrangement

Λm(s)=− 1
πis

∫ +∞

−∞
f [u(x)]ρ(x)e

2πisx
bsinϕ dx, (27)

Λe(s)=
1

2bsinϕ

∫ +∞

−∞
f [u(x)]u(x)e

2πisx
bsinϕ dx. (28)

While calculating dislocation energy, it is sufficient to consider the lowest harmonic con-
tributions. Then, if the parity properties of f [u(x)], u(x) and ρ(x) are taken into account,
the dislocation energy can be written as

Ed(l)= E0
d+2Λp(1)cos

( 2πl
bsinϕ

)
, (29)

with Λp(1) = Λm(1)+Λe(1). The Peierls energy is the energy variation while the dislo-
cation slip along the Burgers vector and that can be obtained from Eq. (29) expediently,
Ep = 4Λp(1). The Peierls stress σp is given by the maximum slop of the Peierls energy
according to the definition that the smallest external applied stress to move a dislocation

σP =
πξ(2γus−γI)

bsinϕ
|A(ξ)|e−ξ , (30)

where
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(
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8
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Ae(1)=(0.5772+ln2ξ)
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with
ξ =

2π

κbsinϕ
. (33)

While the contribution of elastic strain energy is not taken into account, Peierls stress
σP = 5.7×10−6µ for 60◦ partial dislocation in Ag is smaller than the experimental mea-
surements, 2.0×10−5µ and 2.6×10−5µ [31]. After considering the elastic strain energy,
Peierls stress σP = 1.0×10−5µ is in accordance with the experimental results. The accor-
dance show that both the core structure and Peierls stress obtained with the modified
P-N dislocation equation are acceptable.

4 Conclusions

The 2D modified P-N dislocation equation is reduce to 1D dislocation equation based
on the assumption ux

uy = tanϕ. The reduced dislocation is applied to determined the core
structure and Peierls stress of the partial dislocation in Ag. The generalized stacking
fault energy curve along the Burgers vector of the partial dislocation is a skewed sinu-
soidal force law that is related to the intrinsic stacking fault energy γI and the unstable
stacking fault energy γus. After sloving the dislocation with the variational method, the
results show that the half core width of partial dislocations increases as the increasing of
dislocation angle. A increase in the ratio between unstable stacking fault energy and in-
trinsic stacking fault energy results in the narrowing of the half core width. Peierls stress
calculated for partial dislocation is in agreement with the experimental result.
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