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Abstract: Demand response can play a very relevant role in the context of mystms with an intensive use of distributed energy
resources, from which renewable intermittent sources are a signifieat More active consumers participation can help improving
the system reliability and decrease or defer the required investmentaridemmsponse adequate use and management is even more
important in competitive electricity markets. However, experience stdiffisulties to make demand response be adequately used
in this context, showing the need of research work in this area. The mpsttamt difficulties seem to be caused by inadequate
business models and by inadequate demand response prograngemant This paper contributes to developing methodologies and
a computational infrastructure able to provide the involved players witkjusde decision support on demand response programs
and contracts design and use. The presented work uses DemSi, mddessponse simulator that has been developed by the authors
to simulate demand response actions and programs, which includesiagaliser system simulation. It includes an optimization
module for the application of demand response programs and contsaagsdeterministic and metaheuristic approaches. The proposed
methodology is an important improvement in the simulator while providingjaate tools for demand response programs adoption by
the involved players. A machine learning method based on clusteringasgification techniques, resulting in a rule base concerning
DR programs and contracts use, is also used. A case study concéminge of demand response in an incident situation is presented.

Keywords: Demand response, decision support system, distributed generasimibpution system, simulation.

1 Introduction retail customers from 2006 to 2008, is described@h [
However, demand response is not being as successful as

One area expected to grow in the scope of electricityexpected in the context of competitive markets. In some

markets is Demand Response (DR), as it appears as @ases, the electricity markets implementation even caused

very promising opportunity for consumers and brings a reduction in demand participation, 8,9].
several advantages for the whole systdn3]. This is due

to the fact that power systems infrastructure is highly  Practically speaking, demand response has been
capital intensive and demand response is one of thémplemented in various electricity markets and has
cheaper resources available to prevent investment needproved to bring relevant benefits to market players.
by peak-shaving and strategic load curtailment inFurthermore, demand response opportunities are
congestion situations4]. On the other hand, demand normally considered vital for negotiating contracts
response programs can provide the system operator with between retailers and customers in future smart grids.
determined load curtailment capacity which is highly However, till the present, demand side has been unable to
valuable to deal with unexpected changes in both supplyuse all the business opportunities in the scope of
and demand levels. The actual state of demand responsdectricity markets in a satisfactory way. Efficient demand
around the world is summarized irb]] DR in U.S. response management requires new approaches to deal
wholesale markets, reporting an increase of 10% in thewith the complex interdependencies existing between
number of entities offering dynamic pricing tariffs to electricity prices and volumes.
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The difficulties concerning demand response 2.1 Demand response simulator
participation appear even for large demand side players
and obviously apply to small players. Aggregation is The simulator, as shown in the functional diagram of
being more and more used, so that electricity marketdmigure 1, includes an optimization module for the
players can join their resources and efforts to obtainapplication of DR programs and contracts using
competitive advantage in electricity market$0[11]. deterministic and metaheuristic approaches.
However demand response has very specific needs that
even large aggregators face serious difficulties in dealing
with. This shows the need to address DR as a priority,

providing electricity markets players with adequate DR
programs, contracts and business models.

The model presented in this paper aims at extending
the already obtained resultsl112,1314,15,16,17], Network data >
contributing to overcome present demand response

limitations. The main objective is to provide the involved

players with decision-support concerning DR programs knf;’;?];a;";’,?m » Ne“‘;g‘gg:gﬂ'f"""
and contracts use and adoption.

The participation in DR programs can be voluntary or Consumers |
mandatory. Presently, implemented DR programs are knowledge base | |

voluntary [L8], although some studies report important
advantages of the mandatory approagih [

Demand response programs can be divided in two
wide groups, namely price-based demand response and
incentive-based demand respond®][ The former is

End
of simulation
lime

related with changes in customers consumption in e
response to variations in energy prices. The latter indude DRbusiness | |
programs involving customers incentives that are models
additional to their electricity rates, which may be fixed or Dainand Rosoons
time varying. y g DR contracts =1 ;rograms manap;am(:m
DR programs can be divided by economic (demand
bidding) and operational (reliability) purposes. Maketdsts ™™
Combining these two purposes, ancillary services can v
include load demand bids to participate in those services Performance evaluation
which are crucial for the system operation. 3
After this introductory section, Section 2 presents the N e ik
developed decision support system and Section 3

concerns the implemented decision-support model. After L |
the case-study of Section 4, the main conclusions of the

work exposed in the paper are presented in section 5. Fig. 1 DemsSi functional diagram.

The simulator also includes a realistic power system
2 Decision-support system simulation module, based on PSCAD, to undertake the
optimization results technical validation. Presentlye th
simulator has several limitations, namely it only is
The methodology presented in this paper has beeapable of network simulation considering a priori
implemented in a decision support system integrated in alefined load reduction in the context of a defined DR
demand response simulator, DemSi2[13 14,15, program.
developed by the authors of the paper. The simulator has
important capabilities in what concerns the DR programs
use evaluation and has been updated to include the tool3 2 P|ayers
necessary to simulate and support the decision concerning
DR programs adoption, as described in this paper. The implementation of electricity markets gives place to
The present section makes a brief description of thethe existence of several players. The basic players of an
simulator, as well as the explanation of the playerselectricity market are the consumers and the producers
activities supported by the simulator, and an introductionsince the objective is to supply the consumers demand.
to the existing demand response programs models. Traditionally, this has often been achieved by vertically
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integrated companies supplying to consumers the energg.3 Demand response programs and contracts
provided by producers. However, in the scope of preseninodels

electricity markets diverse players such as DNO
(Distribution Network Operator), TSO (Transmission
System Operator), MO (Market Operator), VPP (Virtual
Power Players), CSP (Curtailment Service Provider), an
Retailers, interact to accomplish individual and common
goals. Figure 2 shows the relationships between thes
players. In this figure, black thick arrows represent the
physical electricity flows, and the grey arrows represen
financial electricity exchanges.

Demand response programs can be divided in two wide
roups, namely price-based demand response and
ncentive-based demand respor [
Price-based demand response is related to the changes
energy consumption by customers in response to the
variations in their purchase prices. This group includes
ime-Of-Use (TOU), Real Time Pricing (RTP) and
Critical-Peak Pricing (CPP) rates. For different hours or
time periods, if the price varies significantly, customers
can respond to price variations with changes in energy
use. Their energy bills can be reduced if they adjust the
time of the energy usage taking advantages of lower
Producers prices in some periods or reduce consumption when
prices are higher. Currently, the response to price-based
demand response programs by adjusting the time of
consumption is entirely voluntary. However, some

TSO MO ﬂ VPP advantages of mandatory response can be found. An

important demand-side resource that can be considered
independently, but not necessarily disconnected from the
above described DR programs is the energy efficiency,

| DNO } Retailers‘ } CcsP ‘ which has to be considered in the long time system
* planning.
Consumers .
3 Implemented decision-support model

Fig. 2 Relationships between the electricity market pIayersAS d(.a.s‘.:”b?d in Section 2, DemSi has important
(adapted fromZ1]). capabilities in what concerns the DR programs use. The

present section presents an improvement of the simulator
and of the decision-support system, as the main
contribution of the paper, in order to include the
Depending on the size and location of the loads, energylecision-support concerning DR programs adoption. This
can be delivered to the consumers by a DNO or a TSO. Fosection presents the explanation of the need of the
most consumers, the TSO delivers energy to DNOs andleveloped machine learning module which is of high
these deliver energy to the consumers. A brief descriptiorinterest for the implementation of the DR programs
of the players in the figure is presented 21]| adoption decision support, and the consumers
performance evaluation required for the determination of

resguc:gzgjegggntgge%arttlglp?r:gm noeftvtlr(])?kgevivndIZItgck:)tl#itg? the effective participation of the consumers in a demand
yresponse program event.

markets, requires a new type of player. Small players

) o . The functioning of the system is illustrated in the
owning distributed resources do not have the capability Ofdiagram presented in Figure 3. The system includes two
participating in a competitive environment. VPPs can main sub-modules concerning. the contracts use and the

aggregate severall small-scale  energy resources, Fontracts adoption. For programs adoption, decision
distributed generation, storage, and demand responsgupport will consider DR programs and contract

?;22%283 ifwhglseectrriiist;)/lg;erietasnd making them able t%valuation. The modules of the system dfepicted in Figure
: 3 in grey color are the ones concerning the demand

Another special player only aggregating consumersresponse programs use and the power system simulation.
DR patrticipation, the CSP, is needed in order to make theMoreover, those modules include the optimization,
small consumers able to participate in DR programsincluding both deterministic and heuristic methods, of the
designed for large consumers. Small consumers withoutifferent players behavior in order to support their
the reduction capacity required by the DR programdecision concerning DR programs use and adoption. The
managing entity (usually an ISO) make a contract with aelectricity markets structures are also included for the
CSP, which aggregates several small consumers DR ancharacterization of the DR programs and context
participates in the DR program. simulation.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

164 NS 2 P. Faria, Z. Vale : Decision Support Concerning Demand Response..

A baseline is an estimate of the electricity that would
have been consumed by a demand resource in the absence
of a demand response event. The baseline is compared
with the actual metered electricity consumption during
the demand response event to determine the demand
reduction value. Depending on the type of demand
e Garersin response product or service, baseline calculations may be
. performed in real-time or after-the-fact. The system
operator may offer multiple baseline models and may
assign a demand resource to a model based on the
characteristics of the demand resources load.
Alternatively, it may allow the demand resource to choose

a performance evaluation model consistent with its load
Fig. 3 Demand response decision-support system. characteristics from a predefined list. A baseline model is
the simple or complex mathematical relationship found to
exist between baseline window demand readings and
independent variables. A baseline model is used to derive

The modules depicted in light blue constitute the the baseline adjustments, which in turn is used to compute
improvement of the decision support presented in thisthe demand reduction value. An independent variable is a
paper and are the ones regarding the decision-support fgrarameter that is expected to change regularly and have a
DR programs adoption. An adequate study of the DRmMeasureable impact on demand. Figure 4 illustrates the
programs adoption requires large amounts of data to bgoncept of baseline relative to a demand response event.
analyzed. Regarding this aspect, the system has been
improved with a machine learning module (described in
section 3.1) and a consumers knowledge base.

In order to address an adequate evaluation of the
consumers effective participation in demand response
events, the system has been improved with consumers
performance evaluation tools, as described in section 3.2.

Ancillary
Services

Adjusted Baseline Measured Reduction

Actual Load

1

Demand (kW)

e 3

{1
ot
4

3.1 Machine learning module

Fig. 4 Example Baseline and Performance Measurement for

This module is the main addition to be included in the DR Demand Response Asseg],

simulator. The main objective is to study and determine
the data-mining techniques adequate for the consumers
participation in DR programs classification. With a large
diversity of consumers acting in DR programs, with
different types (domestic, commerce, industry, services
etc.), different peak consumption power, different daily
load demand profile, and with different goals/awarenes
in the scope of that programs, new classification
techniques are required. This classification is importan

for the design by an ISO, for the participation by a VPP, . _ (Cr +Ciaz + Coas + Cas + Cuis) a)
and for the bidding by a CSP in a DR program. ! 5

The adjustment facta is calculated as the difference
in observed demand and the estimated baseline, for a
3.2 Consumers performance evaluation calibration period starting two hours before event
notification, with a minimum adjustment of 0, as in
The reduction of load demand consumption is always€quation 2. This factor is calculated for each time interval
subjective since consumers could intentionally increasd-
consumption before a known demand response event to {[(q1 ~b)+(C.,—5.,)] }
a, =max .0 2)

For a given time intervat, the initial baselinebt is
calculated as the average demand among the 5 days with
the highest energy usage out of the prior 10 non-event
Sdays (this calculation is performed for each interval time
Interval t during the demand response event), as in
tequation 1.

pretend that the load demand was reduced during the
demand response event. To avoid these cases,
performance evaluation methods have been developed. The total performancp is measured as the integrated
The methodology developed in this paper includes adifference between the sum of the baselimeand the
baseline performance evaluation method. adjustment factom minus the consumptioe, for each
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interval t over an event period beginning at time 0 and economic impact of the fault. When facing a generation

ending at timee, as seen in equation 3.

shortage (e.g. in case of an incident), the distribution

g network operator makes use of flexible contracts and/or

p:IEO(bIJraI)fCt ©)

The capacity-setting performanpavg is simply the
average performance during all intervals of the deman
response event for which the program rules stipulate that
performance is mandatory, as in equation 4.

e
IEO(bt+a) Cr @

Pag =
e

It is important to note that the day-of load adjustment
period is the two hours period prior to event naotification
instead of the two hours period prior to the event start.

4 Case study

The present case study shows the application of the
consumers performance evaluation to the case study
presented in12]. This section includes the explanation of

Real-Time Pricing (RTP) to condition consumers
behavior. When such situation occurs, the solution can be
Jound in two phases:

—Phase | The available energy production is evaluated
and it is analyzed if it is sufficient to supply the
critical loads. These loads should never be shed,
unless it is absolutely impossible to supply them, due
to security and/or economic reasons. The critical load
status should be adequately addressed in the contracts
between these loads owners and their suppliers. If all
critical loads can be satisfied and there is a surplus of
energy, the way this energy should be used, is
determined in phase II;

—Phase Il The remaining loads that should be
completely or partially supplied are determined using
an optimization approach. This aims at minimizing
the costs of the incident, from the suppliers and the
distribution network operator point of view.

a DR program model as well as the scenario

characterization and the obtained results. Regarding the demand response, loads differ mainly

on the conditions they impose for eventually being
curtailed or reduced under specific situations. This
determines if each load must be considered in Phase | or
in Phase Il, as well as the Value Of Lost Load (VOLL)

The growing use of Distributed Generation (DG) has established in the contract. By default, DemSi considers
changed the way that electricity networks are operated. Ahree different typical load profiles, as follows:

fault originating a lack of supply that causes the existence _cyitical Loads (CL) which should be supplied in every

of an island can be a good opportunity for both DR and  gjyation. When not supplied, these loads receive high

DG to be used, evidencing their real value. Figure 5 compensation values, as determined by the contracts

shows an example of a distribution network connected t0  patween their owners and their suppliers;

a larger upstream network through line 0-1. —Clients with Flexible Supply contracts (FS), which

When a fault occurs in this line, there will be a lack — paye hired the priority of their circuits and/or loads in

of supply from the upstream network, and the envisaged  ase of supply shortage. The distribution network

distribution network will operate in island mode. operator can control each of these clients overall load
or some of its circuits. Financial terms for this supply
flexibility are established in the supply contracts;

—All other loads, which are considered Regular Loads
(RL).

4.1 Demand response program model

4.1.1 Mathematical formulation

As mentioned above, Phase Il aims at minimizing the
costs of a generation shortage situation. After completing
Phase | with all the critical loads supplied, this can be
modeled as an optimization problem. The objective
function, in (5), is formulated with the aim of minimizing
the total cost that the distribution network operator has to
pay for non-supplied loads (VOLL). It is important to
note that Phase Il always corresponds to a situation for
which there is a lack of supply.

Minimize

Fig. 5 Example of network islanding operation.

An adequate use of the available resources can make
possible to supply some important loads and reduce the

-
oc=3 &)

b I[P "Red(c) * CRed(e) Feute) CCHI(E)]
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The constraints of the problem are the power balance —The considered network turns to an island where DG

(6); the maximum curtailment for each consumer (7); and
the maximum reduction for each consumer (8). The
difference between reduction and curtailment is that the
curtailment is the decrease of the total amount of power,

is the only mean of electricity generation;

—The available DG is not enough to supply all the

demand but is enough to supply Critical Loads (CL)
and to ensure an adequate amount of reserve;

whereas the reduction can be of any value between zero —The remaining DG must be optimally used to supply
and the total considered load. The reduction corresponds additional loads, according to their profiles and

to the changes, for example, in the lighting power, in
function of the specified luminance needs. The
curtailment method corresponds to the elimination of the
consumption in a determined consumer, circuit of loads,
or load. Both methods require adequate technological
means. A certain consumer could have both methods of

consumption decrease, or only one of them.
Ne ¢ 3
ng = C§1£PLoad(c) ~PRed(c) ‘PCm(c)J )

PCur(c—) - PMmCm‘(c) * XCuz(c)’

™

Yee {L.Y.‘NC}‘XCM(C) e{o0.1}
PRed(c) s }i’ilaxRed(c): veE {1""’NC} ®
where,

OC - Total operation costs [m.u.]

Ccut(c) - Cost of power curtailment Cut in the load of
consumer ¢ [m.u./kWh]

CRred(e) - Cost of power reduction Cut in the load of
consumer ¢ [m.u./kWh]

Nc - Total number of consumers

Pp¢ - Power available from DG [kW]

Proad(e) - Initial power of load demand in consumer ¢
(kW]

Preq(cy -Power reduction Cut in the load of consumer
c [kW]

Poui(ey -Power curtailment Cut in the load of
consumer ¢ [kW]

PpraxRed(c) -Maximum power curtailment Red in the
load of consumer ¢ [kW]

Phrrazcut(c) -Maximum power curtailment Cut in the
load of consumer ¢ [kW]

Xcut(ey -Binary variable related to the power
curtailment in the load of consumer ¢

Using this approach and its knowledge about load
profiles, the DNO can determine the better way to define
and establish supply contracts, at the same time that
situations of lack of supply are solved by the use of those
contracts.

contract clauses.

Phdnvdtac CHP @wm tsmdl} o
@WW .Fus! cell

ade-to- Biomass:
L

erergy

Fig. 6 33 bus distribution network.

The results obtained in this case study regard the
occurrence of the fault in 96 distinct periods of 15
minutes in a complete day. Figure 7 presents the value of
the total load and total DG for the first period. DemSi has
been used to find the optimization results, and to perform
the network simulation.

o
=)

o
=)

o
°

——DG Load

Power (MW)
F ol
©

w
=Y

-
=]

01234567 89101112131415161718192021222324
Period

Fig. 7 Load and DG diagram.

4.2 Scenario characterization

The proposed scenario is based on a distribution networld.3 Results

also presented inlpP] and depicted in Figure 6. It is a 33

bus distribution network with 32 consumers. As referred, The considered fault keeps line 0-1 out of service, starting
this network is connected to the larger distribution networ in instant 0 and lasting the whole day. The value of the

through bus number 0. Considering a fault in line 0-1 thatestimated power losses is discounted in the value of the
connects bus 0 to the upstream larger distribution networkavailable generation power that is considered to supply the
we will have: demand.
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Table 1 presents the demand metered data, in kW, fomcluding the value of historical baseline PE values in the
the first period, regarding consumer 1. These values arecheduling of the consumers demand reduction.
the ones necessary for application of equations 1 to 3in In what concerns the two first curves (with and
order to perform the consumers Performance Evaluatiorwithout DR), in spite of the NSL values similarity, the
(PE) described in section 3.2. VOLL presents very different values in the two situations
Table 2 shows the results obtained for the considereds shown in Figure 9.
scenario, with and without demand response use, as well The results presented in this figure clearly show that
as considering the application of the consumersan adequate use of DR, through flexible contracts can
Performance Evaluation (PE) for the first period of 15 significantly decrease the VOLL. In addition, including
minutes. In this period, the total generation is 2300kw. PE methods makes possible to perform a more accurate
Table 2 also indicates for the total load connected to eacltletermination of VOLL.
bus (considered as a single consumer) the value in kW of
the Non-Supplied Load (NSL) and the monetary Value Of
Lost Load (VOLL).

The case study considers three different situations: 46
with demand response, without demand response, and 44
with demand response including PE. Without DR, the g4?
VOLL is calculated according to the value of the unitary §“’°
VOLL attributed to each individual load. With DR, the =28
VOLL is calculated using the clauses of each load
contract; these clauses determine the conditions under
which a part of the load may be curtailed. These values 01234567889101112131415161718132021222324
are calculated for each individual load; the total value for Peried
the load connected to each bus is presented in Table 2.

In the case with DR and PE, the baseline variables ardig.- 8 NSL with and without DR.
calculated and then used to determine the effective value
of NSL and of the respective VOLL.

This scenario considers two types of flexible contracts
(FS1 and FS2), that represents the use of demand
response, which only differ on the specific contract S
clauses (percentage of load that the clients accept to be &3m0
curtailed and contract tariffs). The loads that have not any 5.800
type of supply contract are indicated as RL (Regular gjzz

Loads). En

From the presented results, we can conclude that the 350
total VOLL is substantially decreased when considering 3300
demand response with a part of the loads with types CL 2.800
and FS contracts. Moreover, the application of consumers
performance evaluation makes possible to determine the
effective values of both NSL and VOLL which are _. , .
significantly lower than the expected ones. It is important™9- © VOLL with and without DR.
to note that the values presented in Table 2 only refer to
the VOLL concerning a 15 minutes period. The total
annual decrease in the VOLL value depends on the
number, duration and characteristics of the faults that
cause a lack of supply. 5 Conclusion

Figure 8 shows the amount of non-supplied load
considering and not considering DR, and applying theThe demand response concept is a fast evolving topic of
consumers performance evaluation for the whole daycrucial importance for the planning and operation of
concerning the fault of this case study. The first two future electricity markets and of power systems in
curves are very similar because they correspond to the usgeneral. Most of DR programs in the past were based on
of the amount of DG available along the day. In what distinct electricity tariffs for different periods of theag
concerns the curve that considers the PE, the values d?Presently, demand response is evolving to more flexible
NSL are lower than the DG available. This leads to aapproaches, able to benefit from the participation of the
failure in the system supplying the loads as demand stillinvolved players. The ability of the demand side to play a
higher than generation after the application of demanddynamic, active, and strategic role is especially impdrtan
response flexible contracts. This leads to the need ofinder this context.

—With DR ——With PE Without DR

——With DR ——With PE Without DR

01234567 8 9101112131415161718192021222324
Period
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Table 1 Consumer 1 demand metered data, for the first period.

Time: 10Past non-event days Event day
interval td10 tdd td8 a7 td6 1d5 Td4d td3 td2 tdl wo

-2 33,40 3445 36,21 34,80 35,86 34,10 28,12 21,08 3551 33,75 35,15

=1 30,22 31,17 32,76 3149 32,44 30,85 25,44 19,08 212 30,53 31,81

t 31,81 | 3281 3448 3345  MA5 3243 | 2678 000 3381 3214 33,48

Table 2 Results for the first period.

Without FC With FC With PE
Demand b Metered gaseline variables

Bus (g MSL | UVoll | Vol | Supply | UVoll [ NSL | VoLl | compsumtion|  consumption T NSL | Vell

(kW) | (&/kWh) | (6 | Contract |(€/kWh)| (kW) | (€] (kw) (kW) kW) | (9

do;t0 d0;t0 | dO;t-1) dO;t-2| bt | bt-1[bt-2| at

1| 1691 [ 1691 7,0 2959 sl 00 [1353] 00 B8 33,5 | 160,6] 177,86 | 33,7 32,0[ 35,4 [135,4] 1356 00
2 1489 1489 5.0 1862 RL 50 148,9| 1861 00 20,0 | 141,5) 156,3 | 20,3 19,3 | 21,3 |128,6| 1289 | 1611
3 1471 00 40,0 00 c 40,0 0.0 0.0 47,1 148,6| 139,7 | 154,5 |147,1{135,7|154,4| 00 | 00 00
4 1455 00 3.0 00 FS2 0o 728 | 00 28 745 1382 1528|761|71,5|798|698) 709 | 00
5 942 94,2 7.0 164,9 RL 70 0.0 00 94,2 96,1 | 89,5 | 989 [975(926|1024| 00 | 14 00
6 3111 311 5.0 3889 FS1 00 2489| 00 62,2 64,7 | 295,5| 326,7 | 66,3 | 63,0 | 69,6 |244.8| 2464 | 00
Z 3087 3087 68,0 4630 FS2 00 1543| 00 1544 1595,0| 293,3 | 324,1 |161,4(153,3|169,4{147,3| 1437 | 00
8 893 89,3 6,0 1339 RL 6.0 89,3 | 1340 0,0 100 | 848 | 93,8 | 102]| 36 |10,7| 792 783 | 1130
] 806 90,6 5,0 1132 RL 5,0 90,6 | 1133 0,0 50 [81)951|91]|87([96|8L5( 816 | 1020
10 67,0 00 30,0 00 CL 30,0 0.0 00 67,0 69,0 | 63,7 | 704 | 67,6( 642|700 00 | 00 00
1| 911 91,1 8,0 1822 51 00 | 725 00 182 191 | 865 | 957 | 194] 184|204 717| 720 | 00
12| 513 91,3 7.0 1599 FS2 00 | 457 | oo 45,7 452 | 867 | 955 |459|436(482| 454 | 461 | 00
13 1813 00 30,0 00 L 30,0 0.0 00 1813 177,7| 172,2| 150,4 |180,3[170,4|185,4| 14 | 41 00
17| a1 a1 8,0 1821 RL 80 | 00| oo a1 934 | 865 | 957 | %48|900(995] 00| 14 | op
15| 511 91,1 5,0 1138 RL 50 | 91,1 | 1139 0,0 70 | 865 | 957 | 71| 67 | 7,5 [ 840] 841 | 1051
16 | 519 0,0 50,0 00 cL 500 | 00 | 00 51,9 928 | 873 | 9,5 |942|895(9es] g0 | 14 | op
17 1355 1355 3.0 1016 RL 30 135,5| 1016 0.0 15,0 | 128,7| 1423 | 15,2| 14,5 | 16,0 |120,3] 1205 | 904
18 | 1524 | 1524 6,0 2285 FS1 00 [1219] 00 20,5 an2 | 144,8] 160,0 | 30,6] 25,1 31,8 [1219] 1223] op
19 | 1517 | 15L7 5,0 1396 AL 50 | 00| 00 151,7 157,0] 1441 159,3 |160,9[152,5[1890] 00 | 35 | 00
20 | 1516 | 1516 5,0 1895 RL 00 |758] 00 0,0 0,0 | 1440] 1592 | 0,0 | 00 [ 00 [1516] 1516] oo
21| 1515 | 1515 3,0 1136 RL 30 |151,5[ 1136 0,0 12,0 [ 1438] 1591 [ 12,2| 11,6 | 12,8 [138,3] 1395 | 10486
22 | 1473 0,0 7,0 00 FS1 00 |1178] 00 25 a0,1 | 138,9] 154,7 | 33,1 15,5 34,8 [122,0] 1245 op
23 | 6748 0,0 5,0 00 RL 50 | 874815183 0,0 50,0 | 641,1] 7085 | 50,8 48,2 [ 53,3 [624,1] 24,8 | 1405.8
24 | 6693 | 6693 7.0 1171,3 RL 70 | 689,3[11713) 0,0 35,0 | 635,8] 702,8 | 36,5 34,7 [ 38.4 [632,8] 6333 | 11083
25 | @38 93,8 5,0 117,2 RL 50 | 9381173 0,0 00 | 89,1 ] 985 | 00| 00 |00 [93s] s38 | 1173
26 932 0,0 25,0 00 CL 250 0,0 0,0 93,2 92,7 | 885 | 97,5 [541[854|588) 00 | 14 00
27| 922 52,2 4,0 92,2 RL 40 | 92292 0,0 00 [ 876 98] 00] 0000922 922|022
28 | 1830 | 1830 8,0 66,1 [ 00 |95 o0 9,5 94,2 | 1739] 192,2 | 960 91,2 [ 99,8 875 834 | oo
29 | 2953 0,0 50,0 00 cL 500 | 0,0 | 00 253 305,5] 280,5] 3101 [314,1]304,1(329,8] 00 | 46 | 00
30 2254 00 20,0 00 a 20,0 0.0 0.0 54 233,7| 2141 | 236,7 |233,0{221,4|244,7| 00 | 00 00
31 | 3151 | 351 3,0 2363 RL 30 |3151] 2363 0,0 26,0 | 299,3] 3303 | 264| 25,1 27,7 [288,7] 2851 | 2168
32 | sss 89,8 5,0 1123 RL 50 | 8981123 0,0 40 | 853 943 4139543 ]ss57] 858 [1073
Total| 58313 | 37625 - 53025 = a 3778,8|4010,1] 20625 2052,5|15539,6|6122.8| - a % - |3680,2{3729,8
FS1- Flexible Contracts type 1 d0- Day of event
F$2- Flexible Contracts type 2 t0 - Period of event
RL - Regular Loads b - Baseline
CL - Critical Loads at - Adjustment factor of period t
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