
Appl. Math. Inf. Sci.7, No. 3, 839-841 (2013) 839

Applied Mathematics & Information Sciences
An International Journal

c© 2013 NSP
Natural Sciences Publishing Cor.

A simple way to reconstruct the Wigner function
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Abstract: We show a simple mechanism to measure the Wigner function of a harmonic oscillator. For this system we also show that
autocorrelation and Wigner functions are equivalent.
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Non classical states of ions [1,2] and cavity fields [3]
have been produced recently in experiments around the
world [4–8]. This is one of the reasons why the Nobel
prize was awarded last year to Serge Haroche and David
Wineland. Once a given nonclassical sate has been
produced, it is important to count with mechanisms that
allow us to measure them, making the gathering of such
information a key problem in quantum mechanics. For
instance, information about the position or momentum
allows us to look for non classicality of the system.
However, it is possible to obtain full information from a
system by measuring, not some of its observables, but
directly the density matrix [9,10], i.e. obtaining
information about all possible observables. One of the
possible ways of obtaining such information is via a
quasiprobability distribution function, that may be related
to the density matrix by using the equation [11]

F(α,s) =
2

π(1−s)

∞

∑
k=0

(
s+1
s−1

)k

〈α,k|ρ|α,k〉 (1)

with s the quasiprobability function’s parameter that
indicates which is the relevant distribution (s = −1
Husimi [12], s = 0 Wigner [13] and s = 1
Glauber-Sudarshan [14,15] distribution functions),ρ the
density matrix and the states|α,k〉 are the so-called
displaced number states [16].

It is well known that the Glauber-Sudarshan
P-function is highly singular (note the terms− 1 in the
denominator) and may be used to measure
non-classicality of states [17]. From it one can write the
density matrix in a (diagonal) coherent state basis

ρ =
1
π

∫
d2αP(α)|α〉〈α|= 1

π

∫
d2αF(α,1)|α〉〈α|,

(2)
that may be used to derive Fokker-Planck equations from
master equations [18].

The (Husimi)Q-function may be obtained from (1) by
takings= −1. In such a case, the only term that survives
in the sum isk = 0, that allow us to write

Q(α) = F(α,−1) =
1
π
〈α|ρ|α〉. (3)

Moreover, besides applications in classical optics
[19], it has been shown that these phase space
distributions can be expressed, in thermofield dynamics,
as overlaps between the state of the system andthermal
coherent states [20], that is probably the reason by which,
systems subject to decay may still be ”measured” [21,22].

Wineland’s [9] and Haroche’s [10] groups used the
above expression to measure the Wigner function (s = 0
case) of the quantized motion of an ion and the quantized
cavity field, respectively. It is somehow simple to obtain a
quasiprobability distribution function from experimental
data from the above equation as there is already there a
direct recipe. Let us write equation (1) as

F(α,s) =
2

π(1−s)

∞

∑
k=0

(
s+1
s−1

)k

〈k|D†(α)ρD(α)|k〉
(4)

where D(α) = exp(αa† − α∗a), with a and a† the
annihilation and creation operators respectively, is the
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Glauber displacement operator. Note that, in order to
obtain a quasiprobability distribution function we need to
do the following: displace the system by an amplitudeα
and then measure the diagonal elements of the displaced
density matrix.

Equation (4) may be rewritten also as a trace

F(α,s) =
2

π(1−s)
Tr

{(
s+1
s−1

)a†a

D†(α)ρD(α)

}
.

(5)
By using the commutation properties under the symbol of
trace, and for simplicity, considering the system in apure
state|ψ〉, the above equation may be casted into

F(α,s) =
2

π(1−s)
Tr

{
D(α)

(
s+1
s−1

)a†a

D†(α)ρ

}

=
2

π(1−s)
〈ψ|D(α)

(
s+1
s−1

)a†a

D†(α)|ψ〉. (6)

Consider now a displaced harmonic oscillator with
frequencyω

H = ωa†a+βa† +β ∗a (7)

with β the amplitude of the displacement. One can directly
write the evolved wave function as (we seth̄ = 1)

|ψ(t)〉 = e−iHt |ψ(0)〉 (8)

= D†(β/ω)e−iωta†aD(β/ω)|ψ(0)〉
From equation (8) we may obtain theautocorrelation
function[23]

A(t) = 〈ψ(0)|ψ(t)〉 (9)

= 〈ψ(0)|D†(β/ω)e−iωta†aD(β/ω)|ψ(0)〉
that is very similar to equation (6). In fact, if we choose
t = π/ω in the above equation, it produces a term

e−iπa†a = (−1)a†a, (10)

that is essential in the production of the Wigner function
(the alternating term), so tha by settings= 0 in equation
(6), the Wigner and autocorrelation functions become
proportional:

F(β/ω,0) = W(β/ω) =
2
π

A(π/ω) (11)

which is not surprising as the Wigner function is the
generating function for all spatial autocorrelation
functions of the wave function [24].

Thus, an eigenstate of the harmonic oscillator,
namely, a number state|n〉, may be easily measured,
simply by choosing as initial state|ψ(0)〉 = |n〉, and
projecting it with the same number state. This can be
done for instance in cavity QED, by obtaining the density
matrix from the evolved wavefunction and then

measuring its diagonal elements by passing atoms
through the cavity [21,22]. Note however, that, for every
displacement of the harmonic oscillator, a single value of
the Wigner function is obtained. Therefore for the
reconstruction of the Wigner function it is necessary a big
number of experiments in order to fill the phase space up.

Note that such systems may be emulated in classical
light propagation through waveguide arrays [25] due to
the analogy between linear lattices and the atom-field
interaction [26]. Therefore, experiments leading to
measurements of quasiprobability distribution functions
may be easier to implement in classical optical systems.

In conclusion, we have shown a simple method to
reconstruct the Wigner function for the harmonic
oscillator and have shown that for this system, the
autocorrelation function is proportional to the Wigner
function.
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