
Appl. Math. Inf. Sci. 7, No. 3, 947-954 (2013) 947

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Concurrent All-Cell Error Detection in Semi-Systolic
Multiplier Using Linear Codes

Wangjie Qiu1, Xiao Zhang1, Haoyang Li1, Zhao Wang1, Yao Zhang1 and Zhiming Zheng1

1Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education and School of Mathematics and
Systems Science, Beihang University, Beijing 100191, P.R. China

Received: 22 Nov. 2012, Revised: 1 Jan. 2013, Accepted: 10 Jan. 2013
Published online: 1 May 2013

Abstract: Finite field multiplier is widely applied in many domains such as coding theory and cryptography. In this paper, it is
purposed to propose a concurrent all-cell error detection semi-systolic polynomial basis multiplier based on coding theory which can
realize high-speed calculation and high efficient error detection with low resource consumption. First, our method is created to choose
an appreciate generator polynomial for a linear code and an irreducible polynomial generating the finite field. Then the finite field
arithmetic multiplication with error detection is simplified on a residue class ring resulted from linearly coding. Second, a semi-systolic
array is compressed to realize our multiplier which is suitable for almost any finite field with low time and area complexity. Furthermore,
our method breaks through the key technical bottleneck of unacceptable time and area overheads in the coding, decoding and checking
process. Additionally, the paper creatively builds an all-cell error model for systolic or semi-systolic multipliers more practical than the
conventional single stuck-at or single-cell error model. Finally, based on the all-cell error model, the proposed multiplier is only with
2.088% extra time overhead and 4.978% extra area overhead, and its probability of concurrent error detection reaches to 99.999999%.
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1. Introduction

Finite field arithmetic plays a fundamental role in some of
the most fascinating applications of coding theory, digital
signal processing and cryptography [1]. So the design of
an efficient multiplier with low time and area complexity
is vitally necessary. In general, multipliers are constructed
by using polynomial basis (PB) [2], dual basis (DB) [3],
and normal basis (NB) [4].

Concurrent error detection (CED) capability of
multipliers is required to protect against fault-based attack
which injects faults into cryptosystems and leaks secret
key information. The most common approaches for error
detection include parity prediction, time redundancy, etc.
Single parity prediction has been applied to bit-serial
multiplier [5], [6], bit-parallel multiplier [7] and
Montgomery multiplier [8], [9]. Besides, multiple-bit
parity prediction is developed in bit-serial and bit-parallel
PB multiplier [10], [11]. Remarkably, in [12], a parity
prediction approach is used for a semi-systolic DB
multiplier with CED capability.

Time redundancy error detection [13] is created for
systolic and semi-systolic multipliers. Based on time
redundancy approach, CED method is proposed for PB
multiplier [14], [15], [16], DB multiplier [17], and NB
multiplier [18]. However, to the best of our knowledge,
most CED systolic or semi-systolic multipliers can only
detect single stuck-at or single-cell errors. In practice,
transient or multiple-cell errors are likely to occur.
Therefore, to some sense, the parity prediction and time
redundancy approaches for systolic and semi-systolic
multipliers are invalid.

A new error detection approach based on error
correcting code is raised by Reyhani-Masoleh and Hasan
in [19]. Then Gaubatz and Sunar developed this approach
by using a class of linear codes according to a generator
polynomial [20]. Based on the developed approach,
Saramdi and Hasan [21] created a bit-serial and a
bit-parallel CED multiplier. A hybrid scheme for CED of
multiplication, which combines multiple parity
conception together with redundant reduction modules, is
raised in [22].
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In this paper, we construct a semi-systolic PB
multiplier by developing the approach described in [21].
Our multiplier, which can be applied to all finite fields,
can detect multiple errors and transient errors.
Meanwhile, it saves at least 70% time complexity and
63% area complexity compared with other CED systolic
or semi-systolic multipliers. Moreover, we break through
the key technical bottleneck of high delay for error
detection. In addition, an all-cell error model for both
systolic and semi-systolic multipliers is built for the first
time. Finally, based on the new error model, the error
detection capability is analyzed and the probability is
strictly proven to be 99.999999% with 2.088% extra time
overhead and 4.978% extra area overhead for CED, being
more accurate than simulation results.

The remainder of this paper is organized as follows: A
brief introduction of finite field and coding theory is
presented in Section 2. In Section 3, we propose an
algorithm for CED multiplication. In Section 4, a
concurrent all-cell error detection semi-systolic PB
polynomial multiplier is presented. In Section 5, error
model is constructed and error detection capability is
analyzed. A comparison is given to evaluate our
multiplier in Section 6. Concluding remarks are given in
Section 7.

2. Preliminaries

Definition 1.[1] Let H be an (n− k)× n matrix of rank
n− k with entries in F2. The set C of all n−dimensional
vectors c ∈ Fn

2 such that HcT = 0 is called a binary linear
(n,k) code over F2 where n is called the length and k the
dimension of the code. The elements of C are called code
words (or code vector). The matrix H is a parity-check
matrix of C.

Theorem 1.Let GF(2m) be the finite field of F(x) of
degree m. If any polynomial in GF(2m) is multiplied with
a polynomial and arrives at a result set denoted as A, then
the vector form of A is called a polynomial code over F2.

Theorem 2.[1] A cyclic (m′,m) code C over F2 can be
obtained by multiplying each message (identified with a
polynomial of degree < m) by a fixed polynomial g(x) of
degree n which is a divisor of xm′

+ 1, where m′ = m+

n. The parity-check polynomial h(x) = (xm′ − 1)/g(x) =
∑m

i=0 hixi. Then the matrix

H =


0 0 ... 0 hm hm−1 ... h0
0 ... 0 hm hm−1 ... h0 0
...

...
...

hm hm−1 ... h0 0 ... 0

 (1)

is called the parity-check matrix for C.

3. Algorithm for CED multiplication

3.1. Conventional multiplication algorithm

In this section, we will introduce a conventional
multiplication algorithm over GF(2m) using PB.

Let F(x) be an irreducible polynomial in F2[x] of
degree m. Then the finite field of F(x) over F2 is given by
GF(2m). Let α be a root of an irreducible polynomial
F(x) = xm +∑m−1

i=0 pixi of degree m. Then the PB is the
follow set:{1,α,α2,α3, ...,αm−2,αm−1}. An element A
of GF(2m) can be represented by the PB above as
A = ∑m−1

i=0 aiα i where ai ∈ F2. And it can also be viewed
as a vector (a0,a1,..., am−2,am−1).

Suppose A and B are two elements in the binary finite
field GF(2m) where an (primitive) irreducible polynomial
F(x) of degree m over F2 generates the field. Let
A = ∑m−1

i=0 aixi and B = ∑m−1
i=0 bixi. Then, the product of A

and B is computed as Algorithm 1.

Algorithm 1 The conventional multiplication algorithm
over GF(2m)

Require: A,B,F(x)
Ensure: C = AB mod F(x)
1: T0 = 0
2: for i = 1 to m do begin

Ti = Ti−1x+bm−iA mod F(x)
end

3: return Tm.

3.2. Proposed CED multiplication algorithm

In this section, we will present an algorithm for CED
multiplication using linear codes. We can enhance the
calculation efficiency of Algorithm 1 by improving the
parallelism degree. Let A′ = Ag(x) and f (x) = F(x)g(x)
where F(x) and g(x) are polynomials with degree m and
n, respectively. After choosing a positive integer k as the
parallel parameter, we present Algorithm 2 as follows.
Here, let tend , ti be the vector form of Tm−(k−1)⌊m/k⌋, Ti,
respectively; denote tl and th as the vectors consisting of
the first m coordinates and the remaining coordinates of
tend , respectively; G is the generator matrix according to
g(x) and G1 and G2 denote the first m columns and the
remaining columns of matrix G, respectively.

In Algorithm 2, step 1 is used to obtain the product
of A and g(x). By iterating from step 2 to 4, the iteration
result tend which is the code word corresponding to C is
obtained. Then, tend is recovered to c in step 5. And step
6 is designed for error detection by checking whether tend
is a code word or not. Note that, step 6 can also be placed
after Ti to check any intermediate result Ti. The effect of
single and multiple checking points will be discussed in
Section 5.
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Algorithm 2 Proposed algorithm for CED multiplication
using a linear code
Require: A,B,F(x),g(x)
Ensure: C = AB mod F(x)
1: A′ = Ag(x)
2: T0 = 0
3: for i = 1 to ⌊m/k⌋ do begin

Ti = Ti−1xk +∑k−1
j=0 bm− j−(i−1)k−1A′xk− j−1

mod f (x)
end

4: for i = ⌊m/k⌋+1 to m− (k−1)⌊m/k⌋ do begin
Ti = Ti−1x+bm−i−⌊m/k⌋(k−1)A

′ mod f (x)
end

5: get the result Tm−(k−1)⌊m/k⌋/g(x) by c = tlG
−1
1 .

6: check the result by th = tlG
−1
1 G2 or HtT

end = 0

4. Semi-systolic PB multiplier with CED
capability

The proposed Algorithm 2 can be divided into the
following four main processes as shown in Fig. 1:

1.Coding process (step 1)
2.Multiplying process (step 2-4)
3.Decoding process (step 5)
4.Checking process (step 6)

Figure 1 System framework for the multiplication

In the following, we assume that k divides m because
the result is almost the same if k does not divide m. We
will introduce the multiplying process in Section 4.1 and
the other three processes in Section 4.2.

4.1. Implementation of multiplying process

Based on a choice of F(x) and g(x) according to Algorithm
2, we have

f (x) = F(x)g(x) = xm′
+

m′−1

∑
i=0

fixi

where m′ = m + n and m,n is the degree of F(x),g(x),
respectively. Then we will implement the multiplying
process modulo f (x).

Since F(x) generates GF(2m), Let us denote

xm′+ j =
m′−1

∑
i=0

f ( j)
i xi mod f (x)

A′ =
m′−1

∑
i=0

a′ix
i

A( j) = A′x j =
m′−1

∑
i=0

a( j)
i xi mod f (x)

Remark.When k0 is smaller compared with m, it is not
difficult to find F(x) and g(x) satisfying the following
conditions:

1.As the number of nonzero fi, s is no more than 9.
2.i− j ≥ k0,m′− i ≥ k0 for any fi = 1, f j = 1.

Note that, k0 in condition 2) determines the upper
bound of the parallel parameter k in Algorithm 2, that is,
k0 ≥ k.

When the two conditions in the remark hold, the
expression for f ( j)

i and a( j)
i can be simplified as follows

f (0)i = fi f or 0 ≤ i ≤ m′−1 (2)

f ( j)
i =

{
fi− j f or j ≤ i ≤ m′−1
0 f or 0 ≤ i ≤ j−1

(3)

where j = 1, ...,k−1.

a(0)i = a′i f or 0 ≤ i ≤ m′−1

a( j)
i =


a′i− j +∑ j

t=1 a′m′−t fi− j+t

f or j ≤ i ≤ m′−1
∑ j

t= j−i a′m′−t fi− j+t

f or 0 ≤ i ≤ j−1

(4)

where j = 1, ...,k−1.

Generally, we choose F(x),g(x) for our CED
multiplication, then f (x) is pre-computed and fixed for
constructing the semi-systolic array depicted in Fig. 1. It
is implied that any expression determined by fi can be
considered to be known. According to the remark above,
for one or none of fi− j+t equals 1 in (4), there exists no
more than j× s elements which do not equal to any of the
coefficients of A′, among {a( j)

i , i = 0,1, ...,m′− 1}. Thus,
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for all j ∈ {1,2, ...,k − 1}, the number of such a( j)
i s

reaches to a total of k(k−1)s
2 and each one can be

implemented by a 2-input XOR gate from the coefficients
of A′. Then m′ + k(k−1)s

2 bits, denoted as a∗, are required
to be stored, which cover
{a( j)

i , i = 0,1, ...,m′− 1, j = 0,1, ...,k− 1} in each row of
the array. And each a( j)

i should be placed beside the jth
column of the semi-systolic array for fast signal
propagation. Moreover, we denote the transformation
from a′ which is the vector form of A′ to a∗ as expansion
process which is a part of the multiplying process with a
propagation delay TX .

Based on the analysis above, step 3 in Algorithm 2 can
be rewritten as

Ti = Ti−1xk +
k−1

∑
l=0

bm−l−(i−1)k−1A(k−l−1) mod f (x)

=
m′−1

∑
l=k

ti−1,l−kxl +
k−1

∑
l=0

ti−1,l+m′−kxl+m′

+
k−1

∑
l=0

bm−l−(i−1)k−1A(k−l−1) mod f (x)

where

ti, j =



ti−1, j−k +∑k−1
l=0 bm−l−(i−1)k−1a(k−l−1)

j

+∑k−1
l=0 ti−1,l+m′−k f (l)j

f or j ≥ k

∑k−1
l=0 bm−l−(i−1)k−1a(k−l−1)

j

+∑k−1
l=0 ti−1,l+m′−k f (l)j

f or 0 ≤ j < k

(5)

Based on condition 2) in the remark, ∑k−1
l=0 ti−1,l+m′−k

f (l)j can be simplified into ti−1,l j+m′−k f j−l j where l j ∈ {0,
1, ...,k− 1}. Then (5) can be implemented by a basic cell
which consists of k + 1 2-input AND gates and k + 1 2-
input XOR gates as shown in Fig. 2. And the cell delay
is TA + ⌈log2(k+ 2)⌉TX +TL. Moreover, the semi-systolic
array for the multiplying process is built up by mm′/k basic
cell in Fig. 1.

4.2. Implementation of coding, decoding and
checking process

In this section, we consider the implementation of coding,
decoding and checking processes based on the choice
below.

F(x) = F3(x) or F5(x)
g(x) = xp1 +1

h(x) =
p2−1

∑
i=0

xip1

xp1 p2 +1 = g(x)h(x)

Figure 2 Basic cell Ui−1, j for the multiplier

where F3 and F5 denote an irreducible trinomial and an
irreducible pentanomial, respectively. Additionally, p1 can
be any positive integer and p2 is determined by p1(p2 −
1)≥ m > p1(p2 −2). And g(x) is a divisor of xp1 p2 +1.

First, during the coding process of Algorithm 2, the
relationship between A and A′ can be expressed by
a′ = aG where a and a′ is the vector form of A and A′,
respectively. Then the coding process is implemented by
the combinational logic. The area and time complexity of
the coding rely on g(x) = xp1 + 1. The critical path delay
is TX and the area consumption is m − p1 2-input XOR
gates.

Second, the decoding process c = tG−1
1 is realized by

matrix multiplication Similarly, the critical path delay is
⌈log2(1 + ⌊m−1

p1
⌋)⌉ TX and the area consumption is

m⌊m−1
p1

⌋ − p1
2 ⌊m−1

p1
⌋− p1

2 ⌊m−1
p1

⌋2 2-input XOR gates.
Third,complexity for the checking process is to be

analyzed. According to Theorem 2, a cyclic
(p1 p2, p1 p2 − p1) code C over F2 can be obtained by
multiplying each message (identified with a polynomial
of degree mc < p1 p2 − p1) by a fixed polynomial
g(x) = xp1 + 1 which is a divisor of xp1 p2 + 1. The
generator and parity-check matrix is G and H determined
by g(x) and h(x), respectively, where
h(x) = (xp1 p2 − 1)/g(x) = ∑p2−1

i=0 xip1 . By multiplying
each message (identified with a polynomial of degree
m ≤ mc) by the same polynomial g(x), a linear
(m+ p1,m) code L over F2 can be obtained according to
Theorem 1. Then the parity-check matrix H ′ is actually a
submatrix of H consisting of the first m + p1 columns.
Similarly, the generator matrix G′ is the submatrix of G
consisting of the first m rows and the first m + p1
columns. The inequality p1(p2 − 1) ≥ m > p1(p2 − 2)
ensures that H and G are the minimum matrixs as
described above. Thus the area complexity of checking
process depends on the weight of H ′ and the time
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complexity depends on the maximum weight of each row
in H ′. Then the critical path delay is ⌈log2 p2⌉ TX and the
area consumption is mp2 − m − p1 p2

2 + 3p1 p2 − 2p1 +

∑p1 p2−p1−m−1
i=0 (p2 −1−⌈ i

p1
⌉) 2-input XOR gates.

In addition, we can divide the critical path of the
coding, decoding and checking processes into several
short paths whose delays are slightly less than the system
clock using pipeline technology. In this way, the
throughput of the three processes can be increased to one
result per clock in accordance with the multiplying
process.

5. Error detection capability for all-cell error
model

In Section 4, a concurrent error detection semi-systolic
PB multiplier based on coding theory has been
introduced. In this section, we create a new all-cell error
model for systolic or semi-systolic multipliers which do
not exist in the literature. Error detection capability is
presented based on the new model, additionally with the
extra time and area overheads.

5.1. All-cell error model

The error model will be established according to the
systolic or semi-systolic array architecture of multipliers.
In previous papers, analysis of error detection is mostly
based on the the condition that single stuck-at or
single-cell errors would occur in systolic or semi-systolic
arrays. However, transient or multiple-cell errors are more
likely to occur in practice which render the CED
capability invalid to some sense. For accurate result, we
do not restrict any characteristics of errors in our error
model. In other words, we do not care whether errors
locate in a single cell or multiple cells., whether the error
is transient or permanent, and whether the error is natural
or manmade and so on.

For the clarity of analysis, we assume that k divides m.
Let Ei denote the error occurs in the ith row with the vector
form ei = (ei,0,ei,1, ...,ei,m′−1). And ei = (0,0, ...,0) means
error does not exit. Reviewing Algorithm 2, step 3 shows
the data relation between two adjacent rows of the semi-
systolic array in Fig. 1. After embedding error vectors into
each row, step 3 is transformed into

Ti = Ti−1xk +
k−1

∑
j=0

bm− j−(i−1)k−1A′xk− j−1

+ Ei−1 mod f (x)

So based on the premise that g(x) divides Ti−1, we can
easily detect nonzero Ei−1 if Ti is not divisible by g(x).
The error nonzero Ei−1 can not be detected if g(x) divides
Ei−1, for the reason that g(x) divides Ti if and only if g(x)
divides Ei−1. Then we will compute the probability of

error detection of nonzero Ei−1 called PD1 and the
probability of undetected Ei−1 called PU1. Let p be the
probability of ei j = 1, which means a mistake output bit
for ti, j occurring in the basic cell Ui−1, j. Let Wj be the
number of undetected Ei with the hamming weight j.
Then the probability of an undetected nonzero Ei is

PU1 =
m′

∑
i=1

Wi pi(1− p)m′−i (6)

Obviously, PD1 = 1 − PU1. If the checking process
described in step 6 of Algorithm 2 is placed after each
row, the total probability of error detection is 1 − P

m
k

U1.
However, the area complexity may be unacceptable. Then
we consider placing a checking process after every i f ix
rows in the array. Assuming that g(x) divides Ti−1,
influenced by Ei−1, ..., Ei+ j−1 which are independent
identically distributed, the correct Ti+ j is converted to

T ′
i+ j = Ti+ j +

j

∑
v=0

Ei+v−1xk( j−v) mod f (x) (7)

Thus under the condition that g(x) divides Ti−1, we can
detect the existence of Ei−1, ...,Ei+ j−1, which are not all
zero, when g(x) does not divide T ′

i+ j. The errors Ei−1, ...,

Ei+ j−1 can not be detected when g(x) exactly divides
∑ j

v=0 Ei+v−1· xk( j−v).

5.2. Error detection capability

Before giving out the error detection capability for all-cell
error model, we will limit the probability of multiple
undetected error by an upper bound. We firstly introduce
the following theorem to determine the upper bound.

Theorem 3.Suppose that pi, j is the probability that ∑i
v=0

Evxk(i−v) ≡ J mod g(x) where i = 0,1,2,3, . . . and j is the
vector form of the polynomial J. Then, limi→∞ pi, j =

1
2n

holds.

Proof.From (6), it is clear that

1.pi, j ̸= 1 and pi, j ̸= 0;
2.∑ j pi, j = 1;
3.pi, j = Σv pi−1,v p0,xk(v)⊕ j.

where v and xk(v) is the vector form of the polynomial V
and xk ·V , respectively.

Let mi = max j,l{(pi, j − pi,l)}

mi+1 = max
j,l

{(pi+1, j − pi+1,l)}

= max
j,l

{(Σv pi,v p0,xk(v)⊕ j −Σv pi,v p0,xk(v)⊕l)}

= max
j′,l′

{Σs p0,s(pi, j′ − pi,l′)}

≤ Σs p0,s max
j′,l′

|pi, j′ − pi,l′ |

≤ mi

(8)
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where

( j′,s) satis f ies s = xk( j′)⊕ j
(l′,s) satis f ies s = xk(l′)⊕ l

So the series {mi} is monotone decreasing and it has the
lower bound of 0, implying that {mi} has a limit M, i.e.,
∀ε > 0,∃N ∈ N, such that, for ∀i > N

M < mi < M+ ε ,
M < mi+1 < M+ ε,

Therefore, mi −mi+1 < ε .
Suppose that the limit M > 0. Easy to know, there

exists ( j, l) such that pi, j′ − pi,l′ ≤ 0. Then from (8) we
have

mi −mi+1 = mi −max
j′,l′

{Σs p0,s(pi, j′ − pi,l′)}

= min
j′,l′

{Σs p0,s(mi − (pi, j′ − pi,l′))

≥ mi min
s
(p0,s)

≥ M min
s
(p0,s)

It is obvious that the formula is contradictory with mi−
mi+1 < ε , contradicting the suppose about M > 0. So M =
0, that is, {mi} has a limit 0.

Therefore, limi→∞ pi, j =
1
2n is proven.

Theorem 3 implies that the probability of undetected errors
of E0,E1, ...,Ei−1 in (7) is

PUi = pi,0 − (1− p)im′

So PUi infinitely approaches to 1
2n when i is large enough.

According to definition of limit, ∀ε > 0,∃N ∈N, such that
1
2n − ε < PUi <

1
2n + ε for ∀i > N. Then i f ix > N is fixed

which implies that the probability of detecting the errors
of i f ix rows has a lower bound of (1− 1

2n − ε). Moreover,
the probability of all-cell error detection for our multiplier

is at least 1− ( 1
2n + ε)

⌊ m
ki f ix

⌋
.

Then we obtain the relationship between n and extra
overheads of time and area for realizing the CED
capability under the NIST recommended degree m = 571,
where n is the degree of g(x). As is shown in Fig. 3, the
extra time overhead declines with the growth of n and is
always kept below 1.1%, and the extra area overhead
percentage has a minimum at n = 8 when different
number of checking processes are inserted into the
multiplier. In other words, error detection efficiency is
relatively high when n = 8. In addition, Table 1 shows
that only 4 checking points are required for reaching to
all-cell error detection probability 99.999999% and the
extra time and area overhead is 0.89% and 3.160% when
k = 2,n = 8, respectively.

6. Comparisons
In the CMOS VLSI technology, transistor count is 6, 6, 6,
6, 16, 8 and latency is 7, 8, 12, 4, 16, 13ns respectively for
2-input AND, 2-input OR, 2-input XOR, 2-1 multiplexer,
4-1 multiplexer and 1-bit latch, respectively. Considering
the multiplying process as a multiplier without CED
capability, we compare its time complexity, area
complexity and time-area product with some other
bit-parallel systolic multipliers. Since the irreducible
polynomial generating the finite field can be trinomials or
pentanomials with the degree less than 10,000, let
m = 571, s = 4, k = 6, n = 8, d = 5, t = 2 in the following
comparisons whose results are shown in Table 2.
Comparison has been done between the proposed
multiplier and systolic or semi-systolic CED multipliers
in [17], [18] and [16] which is constructed based on DB,
NB and PB, respectively. In the comparison with [18] and
[16], the proposed multiplier saves 70% and 74% time
overhead, and 70% and 63% area overhead, respectively.

Furthermore, multipliers [18], [16] have constructed a
model based on single stuck-at or single-cell errors and
their error detection probability is 100%. However,
transient or multiple-cell errors are likely to occur in
practice. In this paper, we have created an all-cell error
model for systolic and semi-systolic finite field
multipliers. Remarkably, our error detection probability is
99.999999% with low extra time and area overheads. And
the error detection probability can be adjusted by
changing the number of checking processes. Moreover,
our multiplier has a throughput of 1 per cycle which is
lager than others.

7. Conclusion
In this paper, a concurrent all-cell error detection
semi-systolic PB multiplier based on coding theory is
proposed. Application range of our multiplier covers
almost all finite fields including the NIST recommended
five ones. Additionally, an all-cell error model is
creatively built for systolic or semi-systolic finite field
multipliers. The proposed multiplier efficiently reduces
time and area complexity. Specifically, our multiplier with
CED capability saves at least 70% time complexity and
63% area complexity compared with some other systolic
or semi-systolic CED multipliers. Significantly, based on
the new error model, the error detection capability is
analyzed and the probability is strictly proven to be
99.999999% with 2.088% extra time overhead and
4.978% extra area overhead for CED, being more
accurate than simulation results.
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(a) extra time overhead percentage (b) extra area overhead percentage

Figure 3 Time and area overhead fixing m = 571

Table 1 Relationship among number of checking points, error detection probability and area overhead

Number of checking points 1 2 3 4 ...
Error detection probability 99.9609375% 99.998474% 99.999994% 99.999999% ...
Area overhead 3.039% 3.079% 3.120% 3.160% ...
Time overhead 0.89%

Table 2 Comparison of Various CED Systolic or Semi-Systolic Multipliers over GF(2m)

Multiplier C. W. Chiou[18] W. T. Huang[16] The proposed multiplier (Fig. 1)
Basis normal polynomial pre-computed polynomial
Error type single-cell single-cell all-cell
Cell delay TA +TX +TL E:T2M +TA +TX +TL CE:2TX +TL

V:T3A +TX +TL MU:TA + ⌈log2(k+1)⌉TX +TL
DE:⌈log2(m/n+1)⌉TX
CH:⌈log2(m/n+1)⌉TX

Latency mt/2+1 m+2 m/k+2
Total delay 16mt +32 36m+71 12⌈log2(m/n+1)⌉+28m/3+37
Transistor counts 15(mt)2 +28mt +22 48(m+1)2 +100m+50 209m2/12+979m/3+905
Extra time 0.55% 12.9% 2.088%
Extra area 0.23% 0.72% 4.978%
Throughput 1/2 1/4 1
ECD probability 100% 100% 99.999999%
Notes:
2)CE denotes the coding process and the expanding process
3)MU denotes basic cell of the multiplying process
4)DE, CH denote the decoding and the checking process, respectively
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