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Abstract: This article proposes a new coherent risk measure called iso-entropic risk measure, which is based on relative entropy under
the theory framework of Artzner et al.(1999). It is pointed that this measure is just the negative expectation of the risk portfolio position
under the probability measure through Esscher transformation. This iso-entropic risk measure is not a 0-1 risk measure and very smooth
in contrast with another important coherent risk measureAV @R (Average Value at Risk). And it is a little larger thanAV @R at the
same level, namely it is has more prudence. So it maybe a better coherent risk measure.
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1. Introduction

How to measure the risk of the uncertainty in the future
value of a position is one of the basic tasks in finance. The
most well-known and widely used in practice methods to
this task are variance and subsequentV @R(Value at Risk).
In the finance context the standard deviation of continuous
growth rates usually is called volatility. However, both of
them have serious drawbacks. One important drawback for
variance is that it is not monotonic: a better gamble, i.e., a
gamble with higher gains and lower losses, may well have
a higher variance and thus be wrongly viewed as having
a higher riskiness. AboutV @R, it takes into account only
the quantile of the distribution without caring about what
is happening to the left and to the right of the quantile.
And it is concerned only with the probability of the loss
and does not care about the size of the loss. However, it
is obvious that the size of loss should be taken into ac-
count(Cherny and Madan, 2008)[6]. Further criticism of
variance andV @R can be found in Artzner et al.(1997)[2]
as well as in numerous discussions in financial journals.

At the final of last century, a new very promising method
to quantify risk was proposed in the landmark paper by
Artzner, Delbaen, Eber and Heath(1999)[3]. They intro-
duced the notion of coherent risk measure, and gave the ax-
ioms for the measure. And later, the coherent risk measure
was extended to the class of convex risk measures in[11,
14,15]. Since their seminal work, the theory of coherent

risk measures has rapidly been evolving; it already occu-
pies a considerable part of the modern financial mathemat-
ics. Some of these papers are [1,4,5,7,8,10,11,14,16–18,
20–22,30]. Excellent reviews on the theory of coherent
risk measure are given in [12]. Recently, the most fash-
ionable coherent risk measure isAV @R (also called Con-
ditional Value at Risk, Expected Shortfall,or Tail Value at
Risk). As compared toV @R, it measures not only the
probability of loss but its severity as well. Kusuoka (2001)[20]
proved thatAV @R is the smallest law invariant coher-
ent risk measure that dominatesV @R. It is seemly that
AV @R might be the most important subclass of coherent
risk measures. However, its disadvantage is that it depends
only on the tail of the distribution, i.e. it is a 0-1 risk mea-
sure, so it is not smooth[6].

Our article here propose a new coherent risk measure
based on relative entropy, which is obtained under the the
theory framework of coherent risk measure from Artzner
et al.(1999)[3]. We call this new risk measure iso-entropic
risk measure. It is pointed that this risk measure is not 0-1
risk measure, so it is a smooth one. And, we prove that at
the same level, the iso-entropic risk measure is more large
thanAV @R for the same position or portfolio.

The remainder of the article is organized as follows.
Section 2 give a brief introduction for monetary, convex
and coherent risk measures; Section 3 propose the iso-
entropic risk measure based on relative entropy. Section 4
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compare our iso-entropic risk measure to several important
risk measures in detail. And at last, Section 5 concludes.

2. Acceptance set, monetary, convex, and
coherent risk measures

Here, We introduce some concepts related to coherent risk
measures. More detail see Föllmer and Schied(2008)[13]
and Artzner et al.(1999)[3].

In financial theory, the uncertainty of value for a po-
sition (a asset or a portfolio) in the future is usually de-
scribed by a random variableX : Ω → R on a probability
space(Ω,F ,P ), whereΩ is a fixed set of scenarios. For
instance,X can be the (discounted) value of the portfolio
or some economic capital. The goal of risk measure is to
determine a numberρ (X) that quantifies the risk and can
serve as a capital requirement, i.e., as the minimal amount
of capital which, if added to the position and invested in a
risk-free manner, makes the position acceptable. The fol-
lowing axiomatic approach to such risk measures was ini-
tiated in the coherent case by[2,3] and later extended to the
class of convex risk measures in [11,14,15]. In the sequel,
G denotes a given linear space of functionsX : Ω → R
containing the constants. LetG be the set of all risks, that
is the set of all real valued functions onΩ.

As Artzner et al.[3] point that a first, crude but crucial,
measurement of the risk of a position will be whether its
future value belongs or does not belong to the subset of
acceptable risks, as decided by a investor or a supervisor.
For an unacceptable risk (i.e. a position with an unaccept-
able future value) one remedy may be to alter the position.
Another remedy is to look for some commonly accepted
instruments which, added to the current position, make its
future value become acceptable to the investor/supervisor.
The current cost of getting enough of this or these instru-
ment(s) is a good candidate for a measure of risk of the
initially unacceptable position. Based on this, a series of
definitions are given as follows.

Definition 2.1. A measure of riskρ is a mapping from
G into R.

Definition 2.2. An acceptance set: We callA a set of
final values, expressed in currency, are accepted by one
investor/supervisor.

It must be pointed that there are different acceptance
sets for different investors/supervisors because they are het-
erogeneous when faced with risk assets. There is a corre-
spondence between acceptance sets and measures of risk.

Definition 2.3. Risk measure associated to an accep-
tance set: the risk measure associated to the acceptance set
A is the mapping fromG intoR denoted byρA and defined
by

ρA (X) = inf {m ∈ R |m + X ∈ A} .

The risk measure is the smallest amount of units of date
0 money which invested in the admissible asset, must be
added at date 0 to the planned future net worthX to make

it acceptable. Note that we work with discounted quanti-
ties; cf.[3,19] for a discussion of forward risk measures
and interest rate ambiguity.

Definition 2.4.Acceptance set associated to a risk mea-
sure: the acceptance set associated to a risk measureρis the
set denoted byAρ and defined by

Aρ = inf {X ∈ G |ρ (X) ≤ 0} .

Definition 2.5. A measure of riskρis called amonetary
risk measureif ρ (0) is finite and ifρ satisfies the following
conditions for allX,Y ∈ G.

Monotonicity: If X ≤ Y , thenρ (X) ≥ ρ (Y ).
Translation invariance: If c ∈ R, thenρ (X + c) =

ρ (X)− c.
The financial meaning of monotonicity is clear: the

downside risk of a position is reduced if the payoff profile
is increased. Translation invariance is also called cash in-
variance. This is motivated by the interpretation ofρ (X)
as a capital requirement, i.e.,ρ (X) is the amount which
should be raised in order to makeX acceptable from the
point of view of a investor/supervisor, as Definition 2.3.
Thus, if the risk-free amountc is appropriately added to
the position or to the economic capital, then the capital re-
quirement is reduced by the same amount.

Definition 2.6. A monetary risk measureρ is called a
convex risk measureif ρ satisfies the following conditions

Convexity: ρ (λX + (1− λ)Y ) ≤ λρ (X)+(1− λ) ρ (Y ),
for 0 ≤ λ ≤ 1.

The axiom of convexity gives a precise meaning to the
idea that diversification should not increase the risk.

Definition 2.7.A convex risk measureρ is called aco-
herent risk measureif ρ satisfies the following conditions

Positive Homogeneity: if λ ≥ 0, thenρ (λX) = λρ (X).
Under the assumption of positive homogeneity, the con-

vexity of a monetary risk measure is equivalent to
Subadditivity: ρ (X + Y ) ≤ ρ (X) + ρ (Y ).
So, a coherent risk measure must satisfies four axioms:

monotonicity, translation invariance, positive homogeneity
and convexity or subadditivity.

3. Coherent risk based on relative entropy

In this setction, one new coherent risk measure is proposed
based on the given relative entropy.

Suppose now thatG consists of measureable functions
on (Ω,F). According to the basic representation theorem
proved by Artzner, Delbaen, Eber, and Heath (1999)[3] for
a finite Ω and by Delbaen (2002)[8] in the general case,
any coherent risk measureρ admits a representation of the
form

ρ(X) = − inf
Q∈D

EQ[X]to11.51 (1)

with a certain setD of probability measures absolutely
continuous with respect toP . Here, we apply relative en-
tropy to define the setD of probability measures.

D = {Q : H (Q |P ) = H} (2)
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WhereH (Q |P ) = E
[

dQ
dP log dQ

dP

]
is relative entropy of

Q ¿ P . Relative entropy is also called Kullback–Leibler
divergence or information divergence. From Jensen’s in-
equality, we know thatH (Q |P ) ≥ 0. Here, we can inter-
pret the meaning for the formula (1), (2): the probability
P is the observation, andQ may be the true one which
generatesX, but the investor/supervisor don’t knowsQ
well, she only knows the ‘distance’ fromP to Q, namely
Kullback–Leibler divergence here. Kullback–Leibler di-
vergence is just a pseudo-distance, becauseH (Q |P ) 6=
H (P |Q ). Now, the investor/supervisor try to find the worst
expectation of a position (a asset or a portfolio)X given
the divergenceH (Q |P ) = H from P to Q. Because the
setD of probability measures is induced under the same
relative entropy, so we call it iso-entropy induction set of
probability measures.

Apparently, this is a functional extremum problem with
equality constraints. DenotedQ = q (x) dx and dP =
p (x) dx, rewrite the problem (1), (2) as follows:

ρ (X) = − inf
q(x)

∫
Gxq (x) dx

s.t. H =
∫

G
q (x) log

q (x)
p (x)

dx (3)

1 =
∫

G
q (x) dx

Where the second constraint must be satisfied naturally.
Now, we use calculus of variations to solve the prob-

lem. Write functional with Lagrange multipliers as fol-
lows:

J (q (x)) =
∫

G
xq (x) dx−m1

∫

G
q (x) dx

−m2

∫

G
q (x) log

q (x)
p (x)

dx (4)

In which m1, m2 are Lagrange multipliers. The calculus
of variations of functionalJ is

δJ (q(x)) =
∂J (q(x) + αδq(x))

∂α
|α=0

=
∫

G

(
x−m1 −m2 −m2 log

q(x)
p (x)

)
δq (x) dx (5)

According to Lemma of calculus of variations, functional
J gets extremum atq0 (x), thenδJ (q0 (x)) = 0, and so
we get

x−m1 −m2 −m2 log
q0 (x)
p (x)

= 0 (6)

Utilizing unitary condition of probability(the second con-
straint), we get

q0 (x) = p (x)
e−mx

E [e−mx]
(7)

Wherem = −1/m2. And E [•] = EP [•], the subscript
is omit in the sequel. We can see the fomula (7) is just a
Esscher transformation ofp (x)[9].

Then, applying iso-relative-entropy condition(the first
constraint),m is determined. Denotef (m) = H (Q0 |P )−
H. We need to findm to satisfyf (m) = 0. About zero-
point for functionf (m), we have theorem as follows.

Theorem 3.1.If H = 0,thenf (m) has only one zero-
point which is atm = 0; and if H > 0,thenf (m) have
two zero-points which are atm ∈ (0,∞) andm ∈ (−∞, 0),
respectively.

The brief proofs is as follows:

f (m) =
∫
G q0 (x) log q0(x)

p(x) dx−H

= E

[
(−mx−log E[e−mx])e−mx

E[e−mx]

]
−H

= E [g (m,x)]−H

∂g
∂m = q0(x)

p(x)

(
mx2 + x log E [e−mx]

−x− (1−mx + log E [e−mx])
E[xe−mx]
E[e−mx]

)

= q0(x)
p(x)

(
mx2 + x log E [e−mx]− x

− (1−mx + log E [e−mx]) EQ0 [x])
df(m)

dm = E
[

∂g
∂m

]
= m

(
EQ0

[
x2

]− (EQ0 [x])2
)

= mσ2
Q0

Because ofσ2
Q0

> 0, so there is only one extremum point
for functionf (m),and further it is minimum point, which
is atm = 0. Because of the minmum off (m)is f (0) =
−H ≤ 0, so we can get the theorem. The proof is com-
pleted.

From theorem 3.1., we have following corollary.
Corollary 3.2. If H = 0,then functionalJ has only

one extremum which is atq0 (x) = p (x); and if H >

0,thenJ have two extremums which areq0 (x) = p (x) e−mx

E[e−mx]

atm ∈ (0,∞) andm ∈ (−∞, 0), respectively.
So we have the following proposition about coherent

risk measure based on relative entropy.
Proposition 3.3.Given the relative entropyH (Q |P ) =

H, the coherent risk measure has the form

ρ (X) = −EQ0 [X] = −E
[
Xe−mX

]

E [e−mX ]
(8)

In whichm satisfyf (m) = 0, andm ≥ 0.

The reason form ≥ 0 is because of
d(EQ0 [X])

dm =
−σ2

Q0
.

And from iso-relative-entropy condition:

E

[
(−mx−log E[e−mx])e−mx

E[e−mx]

]
= H,

the coherent risk measure can take another form

ρ (X) =
H + log E

[
e−mX

]

m
(9)

In which,m is determined byH uniquely. For convenience,
we call it iso-entropic risk measure for our new coherent
risk measure, and denoteρie (X).
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In order to apply our iso-entropic risk measure sim-
ilar like V @R(Value at Risk) orAV@R(Average Value
at Risk), we discuss relative entropy further. Entropy can
describe the uncertainty, and relative entropy describe the
‘distance’ or divergence of two uncertaintys. Confidence
level has the similar meaning. So we denoteH = log 1

λ , λ ∈
(0, 1] . Then we can get iso-entropic risk measure at confi-
dence levelλ:

ρie
λ (X) =

log 1
λ + log E

[
e−mX

]

m
(10)

In which,m is determined byλ uniquely.
Here,λ serves as the risk aversion parameter. We have

ρie
λ (X) →

λ↓0
−essinfω X(ω) andρie

1 (X) = −E [X].

When X has Gaussian distribution,X ∼ N (µ, σ),
thenm =

√
2H/σ. So we have iso-entropic risk measure

for Gaussian distribution:

ρie
λ (X) = σ

√
2H − µ (11)

Whereµ = E [X] , σ2 = E
[
(X − µ)2

]
.

4. Comparison for several risk measures

In this section,we compare our coherent risk measure based
on relative entropy with other several important risk mea-
sures.

The first one isV @R(Value at Risk), which is the most
fashionable one now.V @R at levelλ ∈ (0, 1], defined for
X on a probability space(Ω,F ,P ) is

V @Rλ (X) = inf {m ∈ R |P [X + m < 0] ≤ λ} (12)

V @R satisfies monotonicty, translation invariance and pos-
itive homogeneity, but not subadditivity, so it is just a mon-
etary risk measure, not a convex one.

The second risk measure isAV@R(Average Value at
Risk). At level λ ∈ (0, 1], AV@Ris defined as

AV @Rλ (X) =
1
λ

∫ λ

0

V @Rα (X)dα (13)

AV@Ris also calledConditional Value at Risk, Expected
Shortfall,or Tail Value at Risk.According to F̈ollmer and
Schied(2008)[13], there is another definition forAV@R:

AV @Rλ(X) = − inf
Q∈D

EQ[X]

for D =
{

Q :
dQ

dP
≤ 1

λ

}
(14)

So it gets

AV @Rλ (X) =
1
λ

E [−X |X ≤ zλ (X) ] ,

zλ (X) = inf [x : F (x) ≥ λ] (15)

Apparently,AV@R is coherent risk measure accord-
ing to the basic representation theorem proved by Artzner,

Delbaen, Eber, and Heath (1999)[3]. It satisfies four ax-
ioms: monotonicity, translation invariance, positive homo-
geneity and subadditivity. From formula (15), we know
that it depends only on the tail of the distribution, i.e. it is
a 0-1 risk measure, so it is not smooth. In contrast with this,
our coherent risk measure based on relative entropyρie

λ (X) =
log 1

λ +log E[e−mX ]
m depends on the whole dietribution, it

is very smooth. Concerning toV@R, AV@Rand our risk
measureρie

λ (X), we have the following theorem.
Theorem 4.1.At same levelλ ∈ (0, 1], the following

formula exists
ρie

λ (X) ≥ AV @Rλ (X) ≥ V @Rλ (X) (16)
The brief proofs is as follows:
AV @Rλ (X) ≥ V @Rλ (X) is apparent. Let us see

why ρie
λ (X) ≥ AV @Rλ (X).

Pay attention that the solution ofQ foro optimum prob-
lem (14) satisfiesdQλ/dP = 1

λ1X≤zλ(X). And the rela-
tive entropy fromP to Qλ is:

H (Qλ |P ) = E

[
dQλ

dP
log

dQλ

dP

]
= log

1
λ

= H

So,Qλis one element ofD =
{
Q : H (Q |P ) = H = log 1

λ

}
.

However, from the result of section 3, we know that the
optimization for− infQ∈D EQ[X] ,

so we getρie
λ (X) ≥ AV @Rλ (X). The proof is com-

pleted.
In fact, for arbitrarydQλ/dP = 1

λ1X∈(a,b), if
E

[
1X∈(a,b)

]
= λ,

then
H (Qλ |P ) = E

[
dQλ

dP log dQλ

dP

]
= log 1

λ = H.

Figure 1. is the illustration of these three risk measures
supposed thatX has Gaussian distribution,X ∼ N (µ, σ).
Pay attention that whenλ → 0, all the three measures
→
λ↓0

−essinfωX(ω), but when

λ = 1, V @Rλ (X) →
λ↓1

−esssupωX (ω) ρie
1 (X) =

AV @R1 (X) = −E [X] .
The last risk measure is entropic risk measure, defined

by

ρent (X) =
log E

[
e−θX

]

θ
, θ¿0 (17)

The entropic risk measure satisfies three axioms: mono-
tonicity, translation invariance, and convexity but not for
positive homogeneity, so it is just a convex risk measure,
not a coherent one. Compare it with our iso-entropic risk
measureρie

λ (X) in formula (9), we will find that they are
very analogous in form. In fact, they are diffierent. The pa-
rameterθ in entropic risk measureρent (X) is free, but pa-
rameterm in our iso-entropic risk measureρie

λ (X) is not
free, it is defined byH andX, namelym = m (H,X).

If X has Gaussian distribution,X ∼ N (µ, σ), then
entropic risk measure has the form:ρent (X) = θ

2σ2 −
µ, θ¿0. It is interesting to mention here that the iso-entropic
risk measure used in this paper is different from the quan-
tum entropy which has been used to measure the entangle-
ment between two or more parties [24-30].
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Figure 1 An Illustration of three risk measures under differnt
level of λ X ∼ N (µ, σ) , σ = 0.3, µ = −0.5, from top to
bottom:ρie

λ (X) , AV @Rλ (X) , V @Rλ (X), respectively.

5. Conclusion

This article proposes a new coherent risk measure called
iso-entropic risk measure. Comparing with several current
important risk measures, it turns out that this new risk mea-
sure has advantage over the others. It is coherent, it is a
smooth measure, it is a more prudent risk measure than
AV@R. So it maybe a better coherent risk measure in the
future financial market in my opinion. But, this needs to
be verified in many ways, including pure theoretical and
empirical work. In particular, the problem of capital allo-
cation, the problem of pricing and hedging, optimal port-
folio choice and equilibrium and so on, must be studied
under our new coherent measure in practice.
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