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Abstract: Traditional fuzzy kernel clustering methods does Iterative clustering in the original data space or in the feature space by
mapping the samples into high-dimensional feature space through a kernel function These methods with normalized fuzzy degree of
membership has weak robustness against noises and outliers, and lack of effective kernel parameter selection method. To overcome
these problems, a robust kernel clustering algorithm is proposed to enhance the robustness by using typical parameter. Meawhile,
a kernel function parameter optimization method under the unsupervised condition is also proposed in this paper. The experimental
results show that the new algorithm is not only effective to the linear inseparable datasets with noisy data, but also more robust compared
with other similar clustering algorithms and can obtain better clustering accuracy under noise jamming.

Keywords: Kernel function; fuzzy kernel clustering; kernel optimization; robustness.

1. Introduction

Fuzzy C- means clustering (FCM) algorithm is one of the
most widely used clustering algorithms [1]. FCM and its
improved algorithms have been widely used in pattern
recognition, data mining, image processing and other
fields, due to their simple design and low complexity
[2-5].

Although the FCM algorithm improved the clustering
effect of the partially overlapping datasets, the algorithm
requires that the sum of various degree of membership of
each sample point is 1. Therefore, FCM is sensitive to the
outliers or the noise jamming. Literature [6] introduced
the uncertainty degree of membership, but only limited to
0 and 1, and the interference from noise is still large.
Krishnapuram and Keller proposed the possibilitic
c-means clustering (PCM) algorithm, which loosened the
normalized constraint and enhanced the robustness using
the typical parameters, but would easily produce a
consistent clustering. Pal and et al. proposed the
possibilistic fuzzy c-means clustering (PFCM) algorithm,
which combines FCM and PCM [7], which although
solved consistency clustering and noise sensitive
problem, but has a slow convergence rate. Zhang and
Leung proposed the improved possibilistic c-means
(IPCM) algorithm [8], which has strong robustness and
fast convergence rate. Literature [9] further accelerated
the convergence rate of the IPCM algorithm.

In a noisy environment, the above algorithms, using
the Euclidean metric clustering methods, are sometimes
not stable, and also, they are sensitive to the initial
clustering center, cluster shapes and sizes, and cannot
deal with nonlinear data as well. Therefore, some
algorithms based on the kernel function have been put
forward in succession, among which, a kind of algorithms
enhance the robustness using the kernel function distance,
for example, Literature [10] proposed the alternative
fuzzy c-means (AFCM) algorithm based on the FCM
algorithm, and similar algorithms were proposed in
Literature [11-13]. Literature [14] proposed kernel
possibilistic c-means (KPCM) algorithm based on the
PCM algorithm. Literature [15] presented a possibilistic
fuzzy clustering algorithm based on the kernel function,
which used the Gauss kernel function to design the
distance based on the PFCM, overcoming the
shortcomings of the FCM and the PCM algorithm, and
obtaining good results for the linear dataset in the original
data space. In order to process the nonlinear data, the
other kind of kernel clustering algorithms map the
samples into a high-dimensional feature space using the
kernel function, then do clustering in high-dimensional
feature space. For example, Literatures [16,17] proposed
hard partition kernel clustering algorithm, based on which
Literature [18] presented fuzzy kernel clustering with
outliers (FKCO) algorithm, a soft partition clustering
algorithm, which can obtain better clustering accuracy for
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linearly inseparable data, however, it is sensitive to the
initial clustering center and noise data, and would easily
obtain the local optimum solutions. The fuzzy kernel
c-means (FKCM) algorithms proposed in [19] and the
algorithms proposed in [20-23] are mostly based on the
FCM algorithm. They have bad robustness, and have not
discussed the parameter optimization problem of the
kernel function.

When a smooth and continuous nonlinear kernel
function is used to map the sample dataset into a
high-dimensional feature space, the topological structure
of the samples in the original data space holds the line, so
the noise or outliers in high-dimensional feature space
will have a big effect on clustering. To further enhance
the robustness of the kernel clustering algorithm, a
possibilistic fuzzy clustering algorithm is proposed, the
convergence of the algorithm is proved, and a
optimization method for the parameter of the kernel
function under the unsupervised conditions is presented.
The experimental results show that, compared with other
similar kernel clustering algorithm, this algorithm can not
only deal with the linear inseparable and partially
overlapping dataset, but also get better clustering
accuracy under the noise interference.

2. Possibilistic fuzzy clustering algorithm

2.1. Description of the algorithm

In order to solve the sensitive issues of the fuzzy kernel
clustering algorithm to the initial clustering center and
noise data, and to enhance the robustness, the kernel
method is extended to the possibilistic fuzzy clustering
algorithm, namely the fuzzy membership and the typical
value matrix are used in the mapped high-dimensional
feature space, and in the iterative updates of the
algorithm. In the high-dimensional feature space H , the
objective function is defined as:

JKIPCM (T,U, V ) =
c∑

i=1

n∑
j=1

um
ij t

p
ij

∥∥Φ(xj)− vΦi
∥∥2

+

c∑
i=1

ηi

n∑
j=1

um
ij (1− tij)

p

(1)

where, xj ∈ RN (j = 1, 2, . . .n) is a sample vector in
the sample space, Φj) is the mapping of xj in the feature
space, vΦi is the ith center in the feature space, and U is
the fuzzy membership matrix. uij is a fuzzy membership.
which is to express the relative degree of the jth sample
belonging to the ith class. T is the typical value matrix or
the possibilistic membership matrix, wherein the element
tij is a typical value or a possibilistic membership used to
denote the absolute degree of the jth sample belonging to
the ith class. V is a center point set, m is weight of the

fuzzy membership, p is its weight index, and ηi is a right
positive value, which is defined as:

ηi = K
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K usually is set as 1.
The necessary conditions for Equation (1) to obtain the

minimum value are as follows:
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Where, vΦi cannot be calculated directly. When the Gauss
kernel function is used, the following method can be used
to indirectly solve uij and tij .

The sample and the distance of the ith class center in
the feature space are calculated as follows:

D2
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Where,
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Therefore, through solving Equation (8) and (9),
without the explicit solution of vΦi , the fuzzy membership
matrix and the typical value matrix can be updated. The
possibilistic fuzzy kernel clustering algorithm is
described as follows.
Possibilistic fuzzy kernel clustering algorithm (PFKCA):

Step 1: The value ofc, m,pare fixed, 1 < c < n, 1 <
m < +∞, 1 < p < +∞, the initial value of the loop is
set as r = 1 and the maximum cycle number is rmax, and
the threshold of stopping the algorithm is ε;

Step 2: The KFCM algorithm is run, and the obtained
clustering centers is used as the initial clustering center
V(0), the obtained fuzzy membership matrix is used as the
initial fuzzy membership matrix U(0), the obtained kernel
function values K(xj ,

∧
vi) and K(

∧
vi,

∧
vi) are used as the

initial kernel function value; at the same time, the
parameters of the Gauss kernel function are optimized,
and the optimization parameter σ is obtained (the specific
optimization method of the kernel function is described in
Section 1.3).

Step 3: The parameter ηiis calculated according to
Equation (2);

Step 4: Using the initial clustering center V(0), the
fuzzy membership matrix U(0), the parameter ηi and the
optimized Gauss kernel parameter σ, the loop is run as
follows:

The distance between the sample vector in the
high-dimensional feature space and the clustering center
is updated using Equation (6), (7), (8) and (9);

The typical value matrix T(r)is updated using Equation
(3);

The fuzzy membership matrix U(r) is updated using
Equation (4);

The loop variable ris added 1;
Until the conditions ||V(r)-V(r−1)||<ε or r>rmax are

satisfied
The following is the convergence proof of possibilistic

fuzzy kernel clustering algorithm.
Theorem 1. In the possibilistic fuzzy kernel clustering
algorithm, the necessary condition of U = [uij ]c×n and
T = [tij ]c×n, V = [φ(vi)]1×c being JK local optimum, is
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uij satisfies the constraint conditions
c∑

i=1

uij = 1∀j. (i =
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Proof: under the constraint condition
c∑
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minimum of the objective function JK(T,U, V ) is
calculated using the Lagrange multiplier method , the
Lagrange function is obtained as follows:
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The partial differential equations are solved:
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The iteration formula of the typical value is obtained using
Equation (12),
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Equation (19) is substituted into Equation (17), and
then the iteration formula of the membership is:

uij =
1

c∑
k=1

(
tp−1
ij D2

ij

tp−1
kj D2

kj

)
1

m−1

, ∀i, j, Q.E.D. (20)

Theorem 2. Let φ(U) = JK , where U = [uij ]c×n

satisfies the constraint conditions
c∑

i=1

uij = 1 ∀j,

T = [tij ]c×n are fixed, and for all 1 ≤ i ≤ c, 1 ≤ j ≤ n,
m > 1, p > 1, D2

ij > 0 exists, then U is a local optimum
of φ(U), if and only if uij(i = 1, 2, ..., c, j = 1, 2, ...n)
are calculated by Equation (4).
Proof: The necessity has been proven by Theorem 1. To
prove its sufficiency, the Hessian matrix H(φ(U)) of φ(U)
is obtained using the Lagrange function (10):

hmn,ij(U) =
∂

∂umn

[
∂φ(U)

∂uij

]
=

{
m(m− 1)tpiju

m−2
ij D2

ij , ifm = i, n = j

0, otherwise
(21)

According to Equation (21), H(φ) = hmn,ij(U) is a
diagonal matrix. For all 1 ≤ i ≤ c, 1 ≤ j ≤ n, tij , uij are
separately calculated by Equation (3) and (4),
uij > 0, tij > 0,m > 1, D2

ij > 0, The above Hessian
matrix is a positive definite matrix. So Equation (4) is the
sufficient condition to minimize φ(U).
Theorem 3. Let φ(T ) = JK , where T = [tij ]c×n, U =
[uij ]c×n are fixed and satisfies the constraint conditions
c∑

i=1

uij = 1 ∀j, for all 1 ≤ i ≤ c, 1 ≤ j ≤ n, m > 1, p >

1, D2
ij > 0 exists, then T is a local optimum of φ(T ), if

and only if tij (i = 1, 2, ..., c, j = 1, 2, ...n) are calculated
by Equation (3).
Proof: The necessity has been proven by Theorem 1. The
sufficiency proof is same as Theorem 2, the Hessian matrix
H(φ(T )) of φ(T ) is obtained using the Lagrange function
(10):

hmn,ij(T ) =
∂

∂tmn

[
∂φ(T )

∂tij

]

=


p(p− 1)um

ij (t
p−2
ij D2

ij + ηi(1− tij)
p−2), if m = i,

n = j

0, otherwise
(22)

According to Equation (22), H(φ(T )) is a diagonal
matrix. For all 1 ≤ i ≤ c, 1 ≤ j ≤ n, tij , uij are
calculated by Equation (3) and (4), respectively, and
uij > 0, 0 < tij < 1, p ≥ 2, ηi > 0, D2

ij > 0, The above
Hessian matrix is a positive definite matrix. So Equation
(3) is the sufficient condition to minimize φ(T ).

According to Theorem 1 and 2,
JK(U t+1, T t+1) ≤ JK(U t, T t) can be proved, therefore,
the possibilistic fuzzy kernel clustering algorithm will
converge.

2.2. Optimization method of kernel function
parameter

Based on the kernel parameter optimization idea proposed
in Literature[24], an optimization method for Gauss
kernel function parameter under the unsupervised case is
presented. In this method, firstly the unsupervised kernel
clustering results are used as prior knowledge to guide the
kernel parameter optimization, then the optimized kernel
parameters are used to do possibilistic fuzzy kernel
clustering. The optimization process is as follows:

First of all, according to the initialization results of
the KFCM algorithm, the subsets Xk(k = 1, 2, . . . c)
where fuzzy membership is greater than a threshold value
M are selected from each cluster. In this experiment, M
is 0.9. Two pairwise constraint sets ML and CL are
constructed from c subsets, where
ML = {(xi, xj), xi ∈ Xk, xj ∈ Xk} is a must-link
constraint set denoting that two samples belong to the
same category;
CL = {(xi, xj), xi ∈ Xl, xj ∈ Xk, l ̸= k} is a
cannot-link constraint set denoting that two samples are
from different classes. ML and CL are used as a priori
information to do kernel function learning. We expect that
the learned kernel function should let two samples
satisfying the must-link constraint condition be as close
as possible after mapped into the high-dimensional
feature space, and the two samples satisfying the
cannot-link constraint conditions be separated as far as
possible in the high-dimensional space. Therefore, the
objective function is defined as follows:

Fkernel =
∑

(xi,xj)∈CL

∥Φ(xi)− Φ(xj)∥2

−
∑

(xi,xj)∈ML

∥Φ(xi)− Φ(xj)∥2 (23)

By maximizing the objective function, the effective kernel
parameter can be found out, therefore the similarity
between sample points can be more accurately expressed
in the high-dimensional feature space, to obtain better
clustering effect. The objective function is expanded as
follows:∑

(xi,xj)∈CL

∥Φ(xi)− Φ(xj)∥2

=
∑

(xi,xj)∈CL

{K(xi, xi) +K(xj , xj)− 2K(xi, xj)}

=
∑

(xi,xj)∈CL

{2− 2K(xi, xj)}
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= 2NCL − 2
∑

(xi,xj)∈CL

K(xi, xj) (24)

Similarly available:∑
(xi,xj)∈ML

∥Φ(xi)− Φ(xj)∥2

= 2NML − 2
∑

(xi,xj)∈ML

K(xi, xj)
(25)

Where NML and NCL denote the number of constraint
pair in a must-link constraint set and a cannot-link
constraint set, respectively. After removing the constant
terms, the objective function is obtained:

Fk =
∑

(xi,xj)∈ML

K(xi, xj)−
∑

(xi,xj)∈CL

K(xi, xj) (26)

In this experiment, the Gauss kernel function is used to
do mapping, and the gradient descent method is used for
solving the Gauss kernel parameter σ. The process is as
follows:

∂Fk

∂σ
=

∑
xi,xj∈ML

∂K(xi, xj)

∂σ
−

∑
xi,xj∈CL

∂K(xi, xj)

∂σ

(27)
Where,

∂K(xi, xj)

∂σ
= exp

(
−
∥∥xi − xj

∥∥2
2σ2

) ∥∥xi − xj

∥∥2
σ3

σ(new) = σ(old) + ρ
∂Fk

∂σ
(28)

Where ρ is a step parameter, which can be achieved
through linear search method. The optimization algorithm
is described as follows:

Step 1: Do initialization, the variance of the set X =
X1∪X1∪. . .∪Xc is calculated to be as the initial value σ0
of the Gauss kernel parameter.

Step 2: Equation (27) is used to calculate the gradient
∂Fk
∂σ .

Step 3: The linear search method is used to obtain the
step parameter ρ, the Gauss kernel parameter is updated
according to Equation (28).

Step 4: Return to the second step to do iterative
computation, until a local optimal solution of Fk is
obtained.

Step 5: Output finally calculated Gauss kernel
parameter σ.

2.3. Time complexity of the algorithm

In this paper, Nexpresses the sample number, C is the
cluster number, and L is the loops. The time complexity
of the KFCM algorithm is O(N2CL1), where L1 is the

loops of the KFCM algorithm. The time complexity
counting ηi is O(CN2), and the time complexity to update
the typical value and fuzzy membership is O(NCL2), with
L2 be the loops of this algorithm. The time complexity of
updating K(xj ,

∧
vi) and K(

∧
vi,

∧
vi) is O(N2CL2).

Therefore, the total time complexity of this algorithm is
O(N2CL1) + O(CN2) + O(NCL2) + O(N2CL2) =
O(N2CL). Literature [13] points out that the time
complexity of the FCM type algorithm iterating in the
original data space is O(NCL), however, the time
complexity of the KFCM type algorithm iterating in the
high-dimensional feature space is O(N2CL). These are
consistent with the analysis for time complexity of the
algorithm in this paper.

3. Experimental results and analysis

In order to test the running time and clustering accuracy
of the algorithm, we’ve run the traditional FCM and PCM
algorithm, two kinds of typical possibilistic fuzzy
clustering algorithm IPCM and PFCM, KPFCM
algorithm based on the kernel function distance, FKCM
and FKCO algorithm based on Mercer kernel mapping,
and the possibilistic fuzzy clustering algorithm PFKCA
proposed in this paper, according to the standard IRIS
datasets high-dimensional WINE dataset and artificial
datasets. At the same time, in order to verify the
robustness of the algorithm, algorithm is tested under
noise jamming, and the results are analyzed to verify the
validity of this method. The experimental parameters are
as follows: ε =0.00001, the maximum number of the loop
rmax=200, m=2.0, p=2.0, a=1, and b=1. The threshold of
the membership M=0.9. Gauss kernel function parameter
σ is optimized by the method described in Subsection 1.3.
The computer configuration is: Intel core 2 Duo CPU,
frequency 2.93GHz, and memory 2.00GB. Microsoft
Visual C++6.0 and MATLAB tools are used to carry out
simulation experiments.

3.1. Evaluation index of clustering results

A clustering algorithm generates a class label for each
data point, the close degree between the generated class
labels and the true class label need to be considered for
the clustering performance evaluation of the algorithm.
Two commonly used evaluation indexes are: Rand Index
(RI) and Normalized Mutual Information index
(NMI)[25].

3.2. Test on complex dataset

To further verify the effectiveness and the robustness of
the PFKCA algorithm, two datasets (named Test1 and
Test2) shown in Figure 1 are tested. These datasets are
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simultaneously composed of the linear inseparable data,
partially overlapping data and noise data.

The Test1 dataset are made of 4000 two-dimensional
data points that are divided into three classes, with each
one containing 1000 sample points: one is the annular
dataset with the center at the origin, which is uniformly
distributed with the radius of 5, and is added by the Gauss
noise with mean 0 and variance 0.1; the other two classes
follow the following normal distributions, respectively:

Class2: N(

[
1
0

]
,

[
0.2 0
0 0.4

]
), 1000 points;

Class 3: N(

[
3
0

]
,

[
0.3 0
0 0.6

]
), 1000 points;

Class 1 and Class 2 or Class 3 are linear inseparable,
and Class 2 and Class 3 are approximately linear
separable. In addition, there are 1000 noise data,
uniformly distributed in the region of [-6,6]×[-6,6].

There are 4000 data points in the Test2 dataset,
divided into three classes, with each one containing 1000
sample points. Class 1 is the annular dataset with the
center at the origin, with is uniformly distributed, with the
radius of 3, and is added by the Gauss noise with mean 0
and variance 0.1, while the other two classes follow the
following normal distributions:

Class2: N(

[
1
0

]
,

[
0.2 0
0 0.4

]
), 1000 points;

Class 3: N(

[
3
0

]
,

[
0.3 0
0 0.6

]
), 1000 points;

Class 1 and Class 2 are linear inseparable, and Class 3
is approximately linear separable with Class 1 or Class 2.
In addition, there are 1000 noise data, uniformly
distributed in the region of [-4,10]×[-4,4].

Noisytwins: twins+1000 uniform noise [-6,6]*[-6,6]
Ring: R=5, u=0, σ2=0.1, 1000 points
Normal distribution 1: u=(2,0), σ2=[0.5 0;0 0.5], 1000

points
Normal distribution 2: u=(-2,0), σ2=[0.5 0;0 0.5], 1000

points
NoisyMirror: Mirror+1000 uniform noise

[−4, 10] ∗ [−4, 4]
Ring: R = 3, u = 0, σ2=0.1, 1000 points
Normal distribution 1: u = (0, 0), σ2 = [0.50; 00.5],

1000 points
Normal distribution 2: u = (6, 0), σ2 = [0.50; 00.5],

1000 points
Let’s summarize the above experimental results: for

linear separable datasets or partially overlapping dataset,
except PCM would easily produce consistent clustering,
the clustering effects of the other algorithms have little
differences, where the KPFCM, FKCM, FKCO and
PFKCA algorithms based on the kernel function have
more running time than the FCM, PCM, PFCM and
IPCM algorithms based on the Euclidean distance; the
FKCM, FKCO and PFKCA algorithms iterating in the
high-dimensional feature space have more running time
than KPFCM algorithm, while the IPCM, PFKCA
algorithms have stronger robustness than the other

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

cluster 1

cluster 2

cluster 3

Noisy point

Figure 1 Test1 dataset with 1000 noises
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Figure 2 Test2 dataset with 1000 noises
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Figure 3 The clustering result of Test1

algorithms; for linear inseparable dataset, the FCM, PCM,
PFCM, IPCM and KPFCM algorithms iterating in the
original data space are invalid, furthermore, under the
condition of a random initial clustering center and noise
interferences, FKCM and FKCO algorithms are sensitive
and with poor clustering effect, but the PFKCA algorithm
presented in this paper still has good clustering effect.
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Table 1 Comparison of clustering performances on the linear
inseparable dataset with 300 noisy points

Algorithms Iterations Time(s) Errors RI NMI
FCM 262 3.36 847 0.72 0.56
PCM 18 4.05 946 0.68 0.69
PFCM 370 6.88 960

(963)
0.68
(0.68)

0.54
(0.56)

IPCM 272 12.50 1070
(994)

0.64
(0.67)

0.56
(0.56)

KPFCM
(σ2=10)

204 12.80 970
(757)

0.68
(0.75)

0.52
(0.69)

FKCM
(σ2=10)

33 1483.78 362 0.89 0.81

FKCO
(σ2 = 10,
q=1,
w=4000)

36 2394.55 298 0.92 0.85

PFKCA
(σ2=10)

48 8281.34 75(75) 0.98
(0.98)

0.90
(0.90)

4. Conclusion

In this paper, a new possibilistic fuzzy kernel clustering
algorithm is proposed. At first, the samples in the sample
space are mapped into the high-dimensional feature space
using Mercer kernel function, then the possibilistic fuzzy
clustering algorithm is used for clustering in the
high-dimensional space. At the same time, the kernel
function parameter optimization method under the
unsupervised condition is presented, and compared with
the other similar kernel clustering algorithm, the new
algorithm can not only deal with the linearly inseparable
dataset, and can get better clustering accuracy under noise
jamming. Simulation results have proved the
effectiveness of the possibilistic fuzzy kernel clustering
algorithm. Since this algorithm has a weak point of high
time complexity, fast clustering problems for a large
linear inseparable dataset need to be studied, in addition,
semi-supervised kernel clustering algorithm with noise
robustness also needs to be future researched.
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