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Abstract: Multivariate regression estimates based on ranks and generalized ranks are proposed. These estimates are based on a
transformation and retransformation technique that uses Tyler’s (1987)M-estimator of scatter. The proposed estimates are obtainedby
retransforming the componentwise rank-based estimate dueto Davis and McKean (1993) and a componentwise generalized rank
estimate. Asymptotic properties of the estimates are established under some regularity conditions. It is shown that both estimates have
a multivariate normal limiting distribution. The influencefunction of the retransformed generalized rank estimate has a bounded
influence in both factor and response spaces. It is shown through a simulation study that the transformed-retransformedR and GR
estimates are highly efficient compared to the componentwise R, GR and least absolute deviations estimates. Also, it is shown that the
new estimates perform better than the least squares estimate when the errors have a heavy tailed distribution. An example illustrating
the estimation procedures is presented.

Keywords: Asymptotic distributions; Efficiency; Robust; Regression; GR-estimators; R-estimators; Least squares; Simulations;
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1 Introduction

Suppose we have a matrix of response variablesY which follow the multivariate linear model

Y = XB+εεε , (1.1)

whereX is ann×d matrix of regression coefficients,B is anp×d matrix of regression parameters, andεεε is ann×d
matrix of random errors whose rows have covariance matrixΣ . We wish to estimate and make inference on the parameters
B.

The least squares estimate ofB, B̂LS= (X′
X)−1

X
′ Y, has two advantages besides being easy to compute, it is affine

equivariant. It is equivariant under constant shifts and multiplication by arbitrary nonsingular matrices. It is the optimal
estimator ofB when the distribution of the errors is multivariate normal.However, it is not robust if the errors have a
heavy tailed distribution.

There are several approaches in the literature competing with the LS method and producing estimators that are robust
and more efficient. One approach is to use a robust fit on each component separately. Rao (1988) used this approach
where the robust fit was based on the least absolute deviations (LAD) estimators. Davis and McKean (1993) developed a
rank-based theory for the multivariate linear model in a manner similar to its development for the univariate linear model;
see Hettmansperger and McKean (2011). The estimates are component-wise R estimates for general score functions,
including the sign (LAD) and Wilcoxon scores. Besides estimation, their analysis includes confidence regions and tests
of general linear multivariate hypotheses. However, the efficiency of these estimates slips when the variables are highly
correlated. We extend their theory to positive breakdown estimates (see Theorem4.4). Hence, the analysis includes a large
family of estimates, including highly efficient and positive breakdown estimates.

Maronna and Morgethaler (1986) proposed the covariance estimation approach to estimate the parameters of a
univariate linear regression model. The data are summarized by a covariance matrix of the concatenated vector of
explanatory variables and response variable. A robust estimate of the covariance matrix leads to a robust regression
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estimate. Ollila, Hettmansperger and Oja (2002) used a similar approach in multivariate linear regression. They showed
under some conditions that the sign covariance matrix (SCM)regression estimate is a consistent estimate ofB, affine
equivariant, and asymptotically normal. It has a bounded influence function in both thexxx andyyy spaces.

Chakraborty (1996) proposed an extension of LAD based on thetransformation and retransformation technique. He
computed his transformation matrix from a subset of the datawhich must be chosen. He called his estimate,
TREMMER, (Transformation-Retransformation Estimate in Multivariate Median Regression). In his paper, he proved
that the TREMMER is asymptotically normal and highly efficient relative to LAD especially when the correlation
between the response variables increases. The choice of theoptimal α was based on minimizing the asymptotic
generalized variance of the TREMMER. Chakraborty and Chauduri (1997) applied the TREMMER algorithm to Davis
and McKean (1993) componentwise rank regression estimate that is based on the Wilcoxon scores. They proved that
their estimate inherits its asymptotic normality and robustness from the Wilcoxon estimate. The transformation matrix
was chosen such that the asymptotic generalized variance of

√
n(B̂−B) is minimum.

In this paper, we propose robust transformation-retransformation estimates for a general multivariate linear model.
The procedure is based on three steps, (Section 2). First, the matrix of responses is transformed using Tyler’s (1987)
multivariate scatter matrix. Then the Davis and McKean estimates are obtained on the transformed observations. In the
third step, these estimates are retransformed. General scores can be used for the R estimates; hence, these estimates can be
optimized if knowledge of the error distribuion is known. Weshall call this type of estimate transformed-retransformed R
(TRR) estimates. The estimates using the GR estimates are called the transformed-retransformed GR (TRGR) estimates.
We show the TRR and TRGR estimates satisfy some equivarianceproperties and obtain their asymptotic distributions
in Sections 2 and 4. The TRR estimates have bounded influence functions in theyyy space and possess good efficiency
properties. The TRGR estimates have positive breakdown andhave a bounded influence function in both thexxx andyyy
spaces. The efficieny of either estimate does not slip for highly correlated data. Unlike Chakraborty’s (1996) estimate, the
transformation is based on all the data. Hence, no subset of the data has to be chosen. These estimates offer the user a
large class of estimates from which to choose including highly efficient estimates and positive breakdown estimates allof
which are quickly computed.

Consistent estimators of the asymptotic standard deviations are available. Also, because of the quick computation
bootstrap estimates of the standard errors can be used for moderate sized data sets. We discuss both in the paper and
compare them on an example in Section 3. Section 5 presents the results of simulation studies which demonstrated the
high efficiency of the new estimates relative to LAD. In particular, our transformation-retransformation rank estimate
performs as well as or better than the estimate of Chakraborty and Chauduri (1997).

2 Transformation-Retransformation R and GR Estimators

In this section, we describe the transformed-retransformed R (TRR) and GR (TRGR) estimators. We consider the
multivariate linear model

yyyi = βββ 0+B
′
1xxxi + εεε i , i = 1, . . . ,n, (2.1)

whereyyyi ∈ ℜd is a vector of response variables,xxxi ∈ ℜp is a vector of constant regressors,βββ 0 ∈ ℜd is an unknown vector
of intercepts,B1 is a p× d matrix of unknown regression coefficients, andεεε i ∈ ℜd is a vector of random errors. The
random errorsεεε1, . . . ,εεεn are assumed to be independent and identically distributed with E[εεε] = 0 and Cov(εεε) = ΣΣΣ , where
ΣΣΣ is a symmetric positive definite matrix. Let

Y =




yyy′1
...

yyy′n


, 111n =




1
...
1


, X =




xxx′1
...

xxx′n


, εεε =




εεε ′
1
...

εεε ′
n


,

X=
(
111n X

)
, B =

(
βββ ′

0
B1

)
.

Then we can write model (2.1) in a matrix form as

Y = XB+εεε . (2.2)

The algorithm for the transformed-retransformed R (TRR) estimator is:

1.Transformation Step. Fit Model (2.1) using LS and obtain the LS residualŝεεε1, ε̂εε2, . . . , ε̂εεn. Then obtain the
transformation matrix̂A = Â(ε̂εε1, ε̂εε2, . . . , ε̂εεn), as described in Section2.1 and use it to get the transformed response
variableszzzi = Âyyyi for i = 1, . . . ,n.
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2.R-Estimation Step.Obtain the component-wise R estimate,B̂R =
(

β̂ββ 0,s B̂
′
1,ϕ

)′
, on the data(xxx1,zzz1), . . . ,(xxxn,zzzn), as

described in Section2.2.
3.Retransformation Step.RetransformB̂R to obtain the TRR estimatêBTRR= B̂R(Â′)−1.

The algorithm for the transformed-retransformed GR (TRGR)estimator is the same as that of the TRR estimator, except
the R-estimation step is replaced by the GR-estimation step, as described in Section2.3.

We briefly describe the transformation and R-estimation steps. More details are given in Section 4. The LS estimator
of B is of course

B̂LS= (X′
X)−1

X
′Y.

The LS estimator is a quick computation. Furthermore,B̂LS is affine equivariant.

2.1 Transformation Step

The transformation matrix̂A is a data-driven nonsingular matrix that was proposed by Tyler (1987). Given the LS residuals
ε̂εε1, ε̂εε2, . . . , ε̂εεn, Â is the unique upper triangular positive definite matrix witha one in the upper left hand element that solves

1
n

n

∑
i=1

(
Aε̂εε i

‖Aε̂εε i‖

)(
Aε̂εε i

‖Aε̂εε i‖

)′
=

1
d

I (2.3)

Equation (2.3) shows that the transformation matrix̂A is chosen so that the sample variance-covariance matrix of the
unit-transformed vectors is 1/d times the identity. In other words, the unit vectors of the transformed residuals have
the variance covariance structure of a random variable thatis uniformly distributed on the unitd-sphere. Besides being
nonsingular,̂A satisfies the affine equivariance property

D′Â′
DÂDD = c0 Â′Â, (2.4)

for a fixed nonsingulard×d matrixD, whereÂD is the matrixÂ calculated on the transformed observationsDε̂εε i , Â is the
computed matrix on the residualsε̂εε i , andc0 is a positive scalar that may depend onD and thêεεε i ’s.

For the location problem, Tyler (1987) showed thatÂ is unique if the sample is drawn from a continuous distribution
andn> d(d−1). He also proved that̂A is consistent. In SectionA.2, we show that̂A= Â(ε̂εε1, ε̂εε2, . . . , ε̂εεn) is a consistent
estimator. Discussion of an iterative procedure which is quick and easy for computinĝA, (Randles (2000)), is given in
Appendix A.1.

2.2 R-Estimation Step.

Davis and McKean (1993) developed a rank-based theory for the multivariate linear model in a manner similar to its
development for the univariate linear model; see also Chapter 6 of Hettmansperger and McKean (2011). The estimate of
B was obtained by first estimating the regression coefficient matrix B1 by minimizing for j = 1, . . . ,d the dispersion
functions

D(B
( j)
1 ) =

n

∑
i=1

a(R(Y( j)
i − xxx′iB

( j)
1 ))(Y( j)

i − xxx′iB
( j)
1 ), (2.5)

wherea(i) are scores such thata(1)≤ a(2) ≤ ·· · ≤ a(n) and∑a(i) = 0. The scores are generated by a score generating
function ϕ asa(i) = ϕ(i/(n+ 1)). The most widely used scores are the Wilcoxon scores which can be generated by

ϕ(u) = 121/2(u−(1/2)). The ranks are component-wise rankings onY( j)
i −xxx′iB

( j)
1 , j = 1, . . . ,d. The intercept vectorβββ 0 is

then computed as a location estimate of the residuals for each component. Thus the problem of estimatingB is reduced to

estimatingB( j) for each column separately. Under certain conditions, Davis and McKean showed that̂BR=
(

β̂ββ 0 B̂
′
1,ϕ

)′

is a highly efficient asymptotically normal estimator; see Section4.2for details. In the case of Wilcoxon scores,B̂1,ϕ has
an asymptotic relative efficiency (ARE) of 95% relative to the LS estimate.
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2.3 GR-Estimation Step.

Model (2.2) can be written as
Y = 111nααα ′

0+XcB1+εεε , (2.6)

whereααα ′
0 = βββ ′

0+ x̄xx′B1. The model in (2.6) is the concatenation of thed univariate linear modelsY(k) =111nααα(k)
0 +XcB

(k)
1 +

εεε (k), k= 1, . . . ,d. Consider the function
‖uuu‖GR= ∑

i< j
bi j |ui −u j |, (2.7)

where the weightsbi j are functions of thexi j ’s and are assumed to be positive and symmetric, i.e.,bi j ≡ b ji . Note that this
function is the Wilcoxon pseudonorm if the weightsbi j ≡ 1. The componentwise GR-estimate ofB1 is a matrixB̂1,GR=(
B̂

(1)
1,GR · · · B̂

(d)
1,GR

)
, whereB̂

(k)
1,GR minimizesDGR(B

(k)
1 ) = ‖Y(k)−XcB

(k)
1 ‖GR which is a continuous, nonnegative and

convex function ofB(k)
1 . Fork= 1, . . . ,d the negative of the gradient ofDGR(B

(k)
1 ) is given by

SSS(k)GR(B
(k)
1 ) = ∑

i< j
bi j (xxxi − xxx j)sgn((Y(k)

i −Y(k)
j )− (xxxi − xxx j)

′
B

(k)
1 ).

Define the statisticSSSGR(B1) =
(

SSS(1)GR(B
(1)
1 ) · · · SSS(d)GR(B

(d)
1 )
)

. Then the componentwise GR-estimate ofB1 solves the

estimating equationsSSSGR(B1)+ 000 by solving the equationsSSS(k)GR(B
(k)
1 )+ 000, for k= 1, . . . ,d.

We have chosen to use high breakdown weights of the formbi j = bib j , wherebi is defined by

bi = min{1,c/
√
(xxxi − v)′V−1(xxxi − v)}α , (2.8)

and(v,V) are the minimum covariance determinant (MCD) estimates of location and scatter; see Rousseeuw and Van
Driessen (1999). In our work we setα at 1 and the parameterc at the 95th percentile of theχ2 distribution withp degrees
of freedom.

The univariate GR-estimates were proposed by Sievers (1983) and further developed by Naranjo and Hettmansperger
(1994). In Section4.3, we establish the asymptotic normality of these component-wise GR estimators under Model (2.1).
Using the fast MCD algorithm of Rousseeuw and Van Driessen (1999) for the weights and a simple Gauss-Netwon
algorithm to obtain the estimates, these GR estimates are quickly computed.

2.4 Equivariance Properties of the TRR and TRGR Estimators

The next theorem establishes the equivariance properties of the TRR estimator. A similar theorem is true for the TRGR
estimator. Simply replacêBTRRby B̂TRGRin the theorem.

Lemma 2.1.The estimatêBTRR= B̂TRR(xxx,yyy) satisfy the properties

1.yyy- scale equivariance. If k is a non zero scalar and bbb is a d×1 constant vector, then

B̂TRR(xxx,kyyy+bbb) =

(
kβ̂ββ

′
0,TRR+bbb′

kB̂1,TRR

)

2.regression equivariance. For any G a p×d matrix

B̂TRR(xxx,yyy−G′xxx) =

(
β̂ββ
′
0,TRR

B̂1,TRR−G

)

3.xxx- affine equivariance. For any fixed p× p nonsingular matrix W and a p×1 constant vector ccc

B̂TRR(Wxxx+ ccc,yyy) =

(
β̂ββ
′
0,TRR− ccc′(W−1)′B̂1,TRR

(W−1)′B̂1,TRR

)
.
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3 Example

The data of this example was collected by the Biological Sciences Division of Indian Statistical Institute, Calcutta and
consists of systolic and diastolic blood pressures of 40 Marwari females resting at Burrabazar area of Calcutta and their
ages; see Chakraborty and Chaudhuri (1997). There is a linear relationship between blood pressure and age. Also, there
is a positive correlation between systolic and diastolic blood pressures. Lety1 denote the systolic blood pressure andy2
denote the diastolic blood pressure. Letx denote age. Then upon fitting this data set to model2.1 with d = 2 andp= 1
we get the estimates

B̂TRR=

(
102.64(8.08,5.62) 73.35(4.13,3.23)
0.86(0.18,0.21) 0.35(0.10,0.11)

)
,

and

B̂TRGR=

(
102.67(6.18,6.10) 73.35(3.52,3.23)
0.86(0.17,0.23) 0.35(0.10,0.11)

)
.

The first number in parenthesis is the estimated standard errors while the second number is the bootstrap standard error
(based on 10,000 bootstrap replications). The estimated standard errors based on asymptotic theory and based on the
bootstrap are very similar. Note that theR andGRfits are almost the same.

As a comparison, the estimate obtained by Chakraborty and Chaudhuri (1997) is

B̂Chk =

(
100.64 74.4

0.8 0.32

)
.

Also, Chakraborty and Chaudhuri computed the standard errors of their estimate using a bootstrap technique. They
obtained as standard errors of the coefficients of age fory1 andy2 the values 0.20 and 0.11 respectively. Their results are
quite similar to those of the TRR estimate.

4 Theory

In this section, we obtain the asymptotic distributions of the of the TRR estimator̂BTRRand the TRGR estimator̂BTRGR.
They both depend on the consistency of the transformation matrix Â which we show first.

The assumptions for the theory are:

A1.The rows ofεεε are iid with an absolutely continuous joint distribution function F and a continuous joint density
function.

A2.The marginal distribution functionFj has a unique median at 0 and a differentiable densityf j with finite Fisher
information.

A3.X andXc are of full column rank.
A4.Huber’s condition holds forXc(X′

cXc)
−1X′

c.
A5.Cov(ϕ(Fj(εi j ), ϕ(Fj ′(εi j ′)) = sj j ′ < ∞, for j, j ′ = 1, . . . ,d. Also,SSS= (sj j ′) is positive definite.
A6.limn→∞ X̄′ = v′, whereX̄′ = n−1111′nX.
A7.limn→∞ n−1/2(X′

cXc)
1/2 = V1/2, whereV1/2 is finite positive definite.

A8.Ford > 1, E
(

1
‖Aεεε‖

)
< ∞.

The major assumption on the design matrix is Huber’s condition (A4), which is the assumption required for LS
asymptotic theory. This assumption and the others in A1-A7 are the same as required for the multivariate R regression
estimators of Davis and McKean (1993). Ford > 1 assumption A.8 is needed for the consistency of the transformation
matrix Â. This holds for many elliptical multivariate distributions, including the multivariate normal.

4.1 Consistency of̂A

Consider Model (2.1). Recall that our transformation matrix̂A is a function of the LS residualŝεεε1, . . . , ε̂εεn and that it is
the unique solution of equation (2.3). For the true errors of Model (2.1), εεε1, . . . ,εεεn, Tyler (1987) showed that there exists
uniqueA such that

E

(
Aεεεεεε ′A′

‖Aεεε‖2

)
=

1
d

I ,
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whereεεε is then×d matrix of true errors. LetA∗ solve the equation,

1
n

n

∑
i=1

(
Aεεε i

‖Aεεε i‖

)(
Aεεε i

‖Aεεε i‖

)′
=

1
d

I (4.1)

Then Tyler (1987) showed that‖A∗−A‖F = op(1), where‖.‖F denotes the Frobenius norm on matrices. Then, as proved
in Appendix A.2, the same result holds for our estimateÂ; i.e.,

Theorem 4.1.Under conditions A4 and A7–A8,‖Â−A‖F = op(1).

4.2 Asymptotic Normality of̂BT RR

Consider Model (2.1). Let Â be the transformation matrix based on the LS residuals for Model (2.1). As in Section
2, denote the transformed responses byzzzi = Âyyyi for i = 1, . . . ,n. Suppose that a score functionϕ(u) has been specified.
Assume thatϕ(u) is a square integrable, nondecreasing function defined on(0,1) and is standardized so the

∫
ϕ(u)du= 0

and
∫

ϕ2(u)du= 1. Denote the R scores bya(i) = ϕ(i/(n+1)). Define then×d matrix of scored ranks by

AS(Z−XB1) =
[
a
(

R
(

z( j)
i − x

′
iβ

( j)
))]

, (4.2)

whereR
(

z( j)
i − x

′
iβ ( j)

)
denotes the rank ofz( j)

i − x
′
iβ ( j) among then residualsz( j)

1 − x
′
1β ( j), . . . , z( j)

n − x
′
nβ ( j), i.e.,

component-wise rankings. Then the R-estimator of the transformed variables is

B̂1,ϕ = ArgminD(B1) = Argmin tr (Z −XB1)
′AS(Z −XB1). (4.3)

The negative of the gradient ofD(B1) is
L(B1) = X′AS(Z −XB1). (4.4)

Then equivalently,̂B1,ϕ solves the equationL(B1) = 0. OnceB̂1,ϕ is obtained, we estimate the vector of intercept

parameterŝβ 0,s by component-wise location estimations based on the residuals. In this paper, we will only consider the
median of the residuals. Hence, forj = 1,2, . . . ,d

β̂ ( j)
0,s = med1≤i≤n{Y( j)

i − x′iB̂
( j)
1,ϕ}, (4.5)

and let β̂0,s =
(

β̂
(1)
0,s . . . β̂

(d)
0,s

)
. Stacking the intercept estimators and the regression estimators together and then

transforming back, we get the TRR estimator Stacking the intercept estimators and the regression estimators together and
then transforming back, we get the TRR estimator

B̂TRR=

(
β̂
′
0,s

B̂1,ϕ

)
(Â′)−1. (4.6)

As theorem4.2showsB̂TRRhas an asymptotic normal distribution. To state the asymptotic covariance structure, we need
some additional notation.

If D is anm×n matrix then by vec(D) we mean themn×1 vector formed by stacking the columns ofD. Let A be
an m2 × n2 matrix and letB be anm1 × n1; thenA⊗B denote the left direct product ofA andB, see Graybill (1983).

Define the scale parameterτ j by τ−1
j =

∫ 1
0 ϕ(u)ϕ(u, f j )du, whereϕ(u, f j ) =− f ′j (F

−1
j (u))

f j (F
−1
j (u))

. Also, letτ∗j =
1

2 f j (0)
. Let T, T∗

be ad×d diagonal matrices whose jth diagonal element isτ j , τ∗j respectively. The assumption onf j to have finite Fisher
information ensures thatτ j is finite. Let SSS= (sj j ′) wheresj j ′ = Cov(ϕ(Fj(εi j ), ϕ(Fj ′(εi j ′)) and letSSS∗ = (s∗j j ′) where
s∗j j ′ = Pr(εi j < 0,εi j ′ < 0)+Pr(εi j > 0,εi j ′ > 0)−Pr(εi j < 0,εi j ′ > 0)−Pr(εi j > 0,εi j ′ < 0).

Theorem 4.2.Under assumptions A1-A8

√
nvec(B̂TRR−B)′

D→ N(p+1)d

(
000,

(
SSS11,TRR SSS12,TRR
SSS21,TRR SSS22,TRR

))
(4.7)
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where

SSS11,TRR= A−1(T∗SSS∗T∗+(v′V−1v)TSSST)(A−1)
′

SSS12,TRR= A−1TSSST(A−1)
′⊗ v′V−1

SSS21,TRR= A−1TSSST(A−1)
′⊗V−1v

SSS22,TRR= A−1TSSST(A−1)
′⊗V−1,

wherev andV are defined by Assumptions A6 and A7, respectively.

The proof of this theorem is given in the appendix, SectionA.3. Using the results from Peters and Randles(1990), a
basic contiguity result was established by Davis and McKean(1993). This was used to obtain the asymptotic properties
of the gradient of the dispersion function for the true and local distributions of the errors. This lead to asymptotic linearity
and quadraticity results from which the proof of Theorem4.2follows. Also it induces the following influence function of
B̂TRRas:

Corollary 4.1.The influence function of̂B1,TRR is given by

ΩΩΩ(xxx0,yyy0,B̂1,TRR) = V−1xxx0
(
ϕ(F1(Ayyy0)1) · · · ϕ(Fd(Ayyy0)d)

)
T (A−1)′ (4.8)

Note that, givenA, the influence function of the TRR estimate is bounded in theyyy-space but not in thexxx-space.

4.3 Asymptotic Normality of̂BTRGR

Define the weight matrixW = (wi j )n×n as

wi j =

{
− 1

n bi j i 6= j
1
n ∑k6=i bik i = j.

ThenW is symmetric and its rows sum to zero. In addition to conditions A1–A4 and A6–A7 needed for the asymptotic
theory of theR-estimate we need to assume the following

B1.limn→∞
1
nX′WX = C, C > 000.

B2.limn→∞
1
nX′W2X = E, E > 000.

B3.WX satisfies Huber’s condition.

Asymptotic properties of̂BTRGRfollow from the corresponding properties of the componentwise estimatêBGR. Let

SSS= (sj j ′) wheresj j ′ = Cov(2Fj(Y
( j)
1 ), 2Fj ′(Y

( j ′)
1 )). Also, letSSS∗, T andT∗ be as defined in Section4.2. For the TRGR

estimate, we first establish the asymptotic distribution ofthe component-wise GR estimate.

Theorem 4.3.
√

nvec
(

β̂ββ 0,GR−βββ 0 B̂
′
1,GR−B

′
1

)

D→ N(p+1)d

(
000,

(
T∗SSS∗T∗+3(x̄xx′C−1EC−1x̄xx)TSSST −TSSST ⊗3x̄xx′C−1EC−1

−TSSST ⊗3C−1EC−1x̄xx TSSST ⊗3C−1EC−1

))
. (4.9)

The asymptotic distribution of the TRGR estimator is given in the next theorem.

Theorem 4.4.
√

nvec(B̂TRGR−B)′
D→ N(p+1)d

(
000,

(
SSS11,TRGRSSS12,TRGR
SSS21,TRGRSSS22,TRGR

))
(4.10)

where

SSS11,TRGR= A−1(T∗SSS∗T∗+3(x̄xx′C−1EC−1x̄xx)TSSST)(A−1)′

SSS12,TRGR=−A−1TSSST(A−1)′⊗3x̄xx′C−1EC−1

SSS21,TRGR=−A−1TSSST(A−1)′⊗3C−1EC−1x̄xx

SSS22,TRGR= A−1TSSST(A−1)′⊗3C−1EC−1
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The proof of this theorem proceeds similar to that of the asymptotic distribution of the TRR estimator. The proof is
given in Appendix??. Part of the proof results in an asymptoic representation ofthe TRGR estimator which leads to its
influence function.

Corollary 4.2. √
nvec(B̂1,TRGR−B1)

D→ Npd(000,3C−1EC−1⊗A−1TSSST(A−1)′). (4.11)

The next corollary shows that̂B1,TRGRhas a bounded influence in bothxxx-space andyyy-space.

Corollary 4.3.The influence function of̂B1,TRGRis

IF (xxx0,yyy0,B̂1,TRGR) =
√

12C−1
∫
(xxx− xxx0)dM(xxx)

×
(

F1(yyy
(1)
0 −ααα(1)

0 − xxx′0B
(1)
1 )− 1

2 · · · Fd(yyy
(d)
0 −ααα(d)

0 − xxx′0B
(d)
1 )− 1

2

)

×T(A−1)′.

Given the matrixA, with a proper choice of weights, the influence function of the TRGR estimator is bounded in both
theyyy- and thexxx-spaces.

5 Simulations

In our simulation study a comparison is made between the performance ofB̂TRRandB̂TRGRand the other procedures in
the literature. In this study we used model (2.1) with d = 2 andp= 1. That is we used the multivariate linear model

(
yi1
yi2

)
=

(
β01
β02

)
+ xi

(
β11
β12

)
+

(
εi1
εi2

)
. (5.1)

The parameter matrixB was set to zero. The regressorsxi were generated as a random sample fromN(0,1) and the
independent errors from elliptically symmetric distributions, i.e. distributions having a density proportional to

(detΣΣΣ )−1/2h(εεε ′ΣΣΣ−1εεε). (5.2)

From this class of distributions we included in the study thebivariate normal, bivariate contaminated normal, bivariate
t with 3 degrees of freedom and bivariate Cauchy. The study also covered the case where the errors have the elliptical
bivariate Laplace distribution. This distribution has thespherical density

h(εεε ′εεε) =
1

2π
exp(−

√
εεε ′εεε ). (5.3)

Further, we used the covariance matrix

ΣΣΣ =

(
1 ρ
ρ 1

)
(5.4)

where we chose values forρ between 0.00 and 0.95.
We considered the LS, LAD, R (Wilcoxon scores), TRR (Wilcoxon scores), and TRGR estimates. The TRR and

TRGR estimates were computed as described in the algorithm of Section 2. The Wicoxon estimates were computed by
the RGLM algorithm (see Hettmansperger and McKean, (2011),and the LAD estimate was computed by the algorithm
of Armstrong and Kung (1978).

In this studyB̂TRRandB̂TRGRwere compared to the LS, LAD and the corresponding componentwise estimate. The
finite sample efficiencies were computed as the fourth root ofthe ratios of the generalized variances of the estimates. See
Bickel 1964. The study was run for 3000 Monte Carlo replications and for a sample sizen = 30. A similar simulation
study was conducted by Chakraborty (1997) and Oja (2002).

From our results, tables 1–8, we observe that the performance of the componentwise estimators decreases as the
correlation among the response variables increases. This is true regardless of the distribution of the errors. In contrast,
relatively, the TRR and the TRGR estimators are increasingly more efficient than the component-wise estimators asρ
increases across all distributions. Note that the TRR estimator is more efficient than the LAD estimator for all the
bivariate laplace distributions. However,̂BTRR performance is better thanB̂TRGR because the matrix
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(X′WX)−1X′W2X(X′WX)−1 − (X′X)−1 is positive semi-definite; see Hettmansperger and McKean (2011). The LS
estimator performs best for multivariate normal errors. However, for every other distribution the TRR estimator was
more efficient than the LS estimator over all situations. Thesame is true for the TRGR estimator.

Compared to Chakraborty’s result our estimate has a higher efficiency for heavy tailed distributions and has almost
similar efficiency as Oja’s estimate for these distributions.

In order to study the effect of the initial estimate on the proposed estimators we ran the same simulation study but
using robust initial estimates like MCD and WTLMCD. The results showed that the TRR and the TRGR were not affected
by the LS initial estimation step except when the errors haveCauchy distribution.

Table 1: B̂TRRestimated relative efficiencies under bivariate normal errors

ρ ARE(B̂TRR,B̂LS) ARE(B̂TRR,B̂LAD) ARE(B̂TRR,B̂R)
0.00 0.809 1.215 0.986
0.20 0.798 1.240 1.000
0.50 0.791 1.330 1.031
0.75 0.799 1.577 1.132
0.80 0.804 1.684 1.176
0.85 0.799 1.758 1.227
0.90 0.791 1.985 1.290
0.95 0.805 2.377 1.431

Table 2: B̂TRGRestimated relative efficiencies under bivariate normal errors

ρ ARE(B̂TRGR,B̂LS) ARE(B̂TRGR,B̂LAD) ARE(B̂TRGR,B̂GR)
0.00 0.787 1.181 0.984
0.20 0.770 1.197 0.999
0.50 0.769 1.293 1.040
0.75 0.770 1.520 1.140
0.80 0.776 1.625 1.188
0.85 0.781 1.719 1.251
0.90 0.773 1.940 1.310
0.95 0.782 2.310 1.452

Table 3: B̂TRRestimated relative efficiencies under bivariate laplace errors

ρ ARE(B̂TRR,B̂LS) ARE(B̂TRR,B̂LAD) ARE(B̂TRR,B̂R)
0.00 1.119 1.104 1.001
0.20 1.117 1.104 1.005
0.50 1.114 1.178 1.050
0.75 1.127 1.413 1.180
0.80 1.105 1.459 1.167
0.85 1.109 1.584 1.235
0.90 1.103 1.750 1.300
0.95 1.105 2.084 1.455

Table 4: B̂TRGRestimated relative efficiencies under bivariate laplace errors

ρ ARE(B̂TRGR,B̂LS) ARE(B̂TRGR,B̂LAD) ARE(B̂TRGR,B̂GR)
0.00 1.090 1.075 1.000
0.20 1.088 1.075 1.010
0.50 1.071 1.132 1.054
0.75 1.095 1.373 1.185
0.80 1.073 1.417 1.178
0.85 1.075 1.536 1.247
0.90 1.071 1.699 1.320
0.95 1.079 2.035 1.479
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Table 5: B̂TRRestimated relative efficiencies under bivariatet(3) errors

ρ ARE(B̂TRR,B̂LS) ARE(B̂TRR,B̂LAD) ARE(B̂TRR,B̂R)
0.00 1.676 1.082 0.993
0.20 1.677 1.089 0.992
0.50 1.700 1.133 1.007
0.75 1.757 1.367 1.147
0.80 1.766 1.441 1.178
0.85 1.631 1.592 1.242
0.90 1.798 1.792 1.332
0.95 1.899 2.117 1.481

Table 6: B̂TRGRestimated relative efficiencies under bivariatet(3) errors

ρ ARE(B̂TRGR,B̂LS) ARE(B̂TRGR,B̂LAD) ARE(B̂TRGR,B̂GR)
0.00 1.627 1.050 0.991
0.20 1.628 1.058 0.989
0.50 1.661 1.108 1.013
0.75 1.701 1.323 1.151
0.80 1.697 1.384 1.176
0.85 1.573 1.535 1.257
0.90 1.741 1.735 1.337
0.95 1.842 2.055 1.494

Table 7: B̂TRRestimated relative efficiencies under bivariate cauchy errors

ρ ARE(B̂TRR,B̂LS) ARE(B̂TRR,B̂LAD) ARE(B̂TRR,B̂R)
0.00 1941.31 0.741 0.842
0.20 1450.32 0.659 0.752
0.50 940.462 0.606 0.668
0.75 2233.78 0.939 1.019
0.80 1935.99 0.917 0.946
0.85 1136.22 1.092 1.115
0.90 1266.34 1.208 1.207
0.95 2378.34 1.435 1.272

Table 8: B̂TRGRestimated relative efficiencies under bivariate cauchy errors

ρ ARE(B̂TRGR,B̂LS) ARE(B̂TRGR,B̂LAD) ARE(B̂TRGR,B̂GR)
0.00 1903.08 0.726 0.840
0.20 1451.27 0.659 0.779
0.50 1065.54 0.686 0.773
0.75 2221.51 0.934 1.026
0.80 1937.74 0.918 0.959
0.85 1132.01 1.088 1.112
0.90 1239.29 1.182 1.206
0.95 2339.96 1.412 1.300
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Table 9: Finite Sample Efficiencies of TRR Relative to LAD
Initial Estimator

Distribution rho LS MCD WTLMCD
Normal 0.75 1.564 1.538 1.556

0.80 1.620 1.601 1.604
0.85 1.764 1.763 1.748
0.90 1.962 1.923 1.932
0.95 2.306 2.283 2.2890

Laplace 0.75 1.521 1.485 1.509
0.80 1.572 1.556 1.560
0.85 1.725 1.708 1.708
0.90 1.905 1.865 1.870
0.95 2.253 2.234 2.230

t3 0.75 1.364 1.369 1.380
0.80 1.485 1.482 1.486
0.85 1.571 1.570 1.578
0.90 1.798 1.824 1.821
0.95 2.110 2.140 2.122

Cauchy 0.75 0.972 1.172 1.183
0.80 1.00 1.223 1.228
0.85 1.157 1.332 1.340
0.90 1.249 1.470 1.472
0.95 1.516 1.898 1.905

Table 10: Finite Sample Efficiencies of TRGR Relative to LAD
Initial Estimator

Distribution rho LS MCD WTLMCD
Normal 0.75 1.521 1.485 1.509

0.80 1.572 1.556 1.560
0.85 1.725 1.708 1.708
0.90 1.905 1.865 1.870
0.95 2.253 2.234 2.230

Laplace 0.75 1.336 1.335 1.328
0.80 1.461 1.442 1.438
0.85 1.524 1.511 1.498
0.90 1.706 1.702 1.693
0.95 2.043 2.027 2.034

t3 0.75 1.314 1.311 1.325
0.80 1.438 1.430 1.436
0.85 1.532 1.526 1.531
0.90 1.731 1.754 1.756
0.95 2.038 2.059 2.053

Cauchy 0.75 0.938 1.138 1.141
0.80 0.986 1.178 1.185
0.85 1.120 1.328 1.342
0.90 1.246 1.458 1.465
0.95 1.522 1.875 1.882

6 Conclusion

In this article, we have proposed estimators for multivariate linear models based on ranks and generalized ranks. They
are transformation and retransformation type estimators.The matrix of responses is first transformed using Tyler’s (1987)
multivariate scatter matrix, based on residuals. Then the rank-based estimates of Davis and McKean (1993) are obtained
on the transformed data. These are then retransformed to obtain the final estimates. Chakraborty and Chauduri’s (1997)
transformed-retransformed estimates depend on a preselected subset of the data. Our estimates, however, use all the data
in the transformation step, no preselection is necessary. We have introduced both a highly efficient estimator (TRR) which
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bounds influence in the response space and a bounded influenceestimator (TRGR) which bounds influence in both the
response and factor spaces.

We developed the asymptotic distribution theory for both the TRR and the TRGR estimators. The theory results in
asymptotic variances and covariances for which consistentrobust estimators are available. The asymptotic theory depends
on the consistency of Tyler’s (1987) scatter matrix based onresiduals which we also proved.

We presented the results of a Monte Carlo study over a varietyof error distributions and correlation structures. These
studies confirmed previous results of the slippage of efficiency of componentwise robust estimators as correlation
increases. The TRR estimator showed high efficiency over allthe situations. It was more efficient than the LS estimates
over all situations other than the multivariate normal. It was much more efficient for the heavy tailed error distributions
including an elliptical multivariate Cauchy. It was more efficient than the LAD estimator over all situations includinga
multivariate Laplace except for the multivariate Cauchy; however, even here it was more efficient at the high correlation
situations. The TRGR estimator although less efficient thanthe TRR estimator still displayed good empirical efficiencies
in the study.

We presented the results of several examples showing the practicality of our estimators. We confirmed the consistent
estimates of the asymptotic standard errors of the estimators with bootstrap (using 3000 replications) estimates of the
variance-covariance matrices. The study also showed that the LS initial estimation step has a little effect on the efficinecy
of the estimators.

In summary, we recommend the use of the TRR and TRGR estimators for multivariate linear models. The TRR
estimator is a highly efficient estimator while the TRGR estimator is a bonded influence estimator. They are quickly and
efficiently computed using R/SPLUS routines or standard fortran routines. There is only one concern about the proposed
estimates which is they are not fully affine equivariant as they lack rotation equivariance.

Appendix

A.1 ComputingÂ

The following steps gives the computational algorithm forÂ on the LS residualŝεεε i,LS.

Step I.Compute

SSS0 =
1
n

n

∑
i=1

(
ε̂εε i,LS

‖ε̂εε i,LS‖

)(
ε̂εε i,LS

‖ε̂εε i,LS‖

)′
(A.1.1)

and formÂ0 = Chol(SSS−1
0 ) , where Chol(M) denotes the upper triangular Cholesky factorization of thepositive definite

matrixM, divided by the upper-left element of that upper triangularmatrix.
Step II.At the tth iteration, form

Âdt = Ât−1Ât−2 · · · Â0, (A.1.2)

and

SSSt =
1
n

n

∑
i=1

(
Âdt ε̂εε i,LS

‖Âdtε̂εε i,LS‖

)(
Âdtε̂εε i,LS

‖Âdtε̂εε i,LS‖

)′
. (A.1.3)

Step III. If ‖SSSt − 1
d I‖ is sufficiently small, then stop and setÂ= Âdt. If not, then computêAt = Chol(SSS−1

t ) and go back to
step II.

A.2 Consistency of̂A

In this section of the appendix we obtain the proof of Theorem4.1which shows that the matrix̂A based on LS residuals
is a consistent estimator of the matrixA defined in expression (4.1).

Before we establish the consistency ofÂ we need to introduce the following notation. LetWn = X′X where in the

following contextX = Xc. Also, letxxxni =W−1/2
n xxxi , B1,n =W1/2

n B1, yyyni = yyyi andεεεni = εεε i . Now, recall model (2.1)

yyyi = βββ 0+B
′
1xxxi + εεε i , i = 1, . . . ,n.

For simplicity we may assume wlog thatβββ 0 = 000. Then in terms of the new notation we can write this model as

yyyni = B
′
1,nxxxni + εεεni, i = 1, . . . ,n.
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Let B
∗
1,n,LS be the LS estimate ofB1,n andB̂1,LS be the estimate ofB1. Assuming the true parameterB1 = 000, we can

write the residualŝεεεni,LS for i = 1, . . . ,n as

ε̂εεni,LS= yyyni − ŷyyni,LS

= B
′
1,nxxxni + εεεni − (B∗

1,n,LS)
′xxxni

= εεεni − (B∗
1,n,LS)

′xxxni.

Further letd∗
n = max1≤i≤n‖xxxni‖, then by A4

lim
n→∞

d∗
n = lim

n→∞
max
1≤i≤n

xxx′nixxxni = lim
n→∞

max
1≤i≤n

xxx′i(X
′X)−1xxxi = 0.

Lemma A.2.1.Under A7,
B

∗
1,n,LS= Op(1).

We need the following definitions on the norm of matrices; seeGolub et al (1983).

Definition A.2.1. For anm×n matrixC define

1.The Frobenius norm ofC

‖C‖F =

(
m

∑
i=1

n

∑
j=1

c2
i j

)1/2

2.The 2-norm ofC

‖C‖= ‖C‖2 = sup
uuu6=0

‖Cuuu‖
‖uuu‖ ,

where‖uuu‖= (u2
1+ · · ·+u2

d)
1/2.

The 2-norm and Frobenius norms are related through the inequality ‖C‖ ≤ ‖C‖F . Further, recall the inequality
‖CD‖F ≤ ‖C‖F‖D‖F . Using these results and some linear algebra, the followinglemma can be proved.

Lemma A.2.2.For anyaaa, bbb∈ ℜd, bbb 6= 000, aaa 6= bbb andaaa⊥ (bbb−aaa)

∥∥∥∥
(bbb−aaa)(bbb−aaa)′

‖bbb−aaa‖2 − bbbbbb′

‖bbb‖2

∥∥∥∥
F
≤ 4

‖aaa‖
‖bbb‖ .

Proof of Theorem4.1Let

SSSn(A) =
1
n

n

∑
i=1

(
Aε̂εεni,LS

‖Aε̂εεni,LS‖

)(
Aε̂εεni,LS

‖Aε̂εεni,LS‖

)′
(A.2.4)

and

SSS(A) =
1
n

n

∑
i=1

(
Aεεε i

‖Aεεε i‖

)(
Aεεε i

‖Aεεε i‖

)′
(A.2.5)

be as defined by (2.3) when the average is taken over the LS residuals and the true errors, respectively. Tyler proved the
consistency ofÂ when it is computed on a random sample. For the argument of hisproof to be applied to our case in
which we computêA on the LS residuals we only need to show that

‖SSSn(Adt)−SSS(Adt)‖F = op(1).

In his paper, Tyler mentioned that application of his Theorems 2.1 and 2.2 to a continuous population insures the existance
of a unique matrixA such thatAdt of the algorithm converges toA andSSS(A) = 1

d I . Thus,∀η > 0 andi = 1, . . . ,n we have
for large t

‖Adtεεεni‖ ≥ ‖Aεεεni‖−η .

Sinced∗
n → 0, we can choose a sequence of positive constants(vn) such that

lim
n→∞

vn = ∞, lim
n→∞

vnd∗
n = 0. (A.2.6)
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Recall that̂εεεni,LS= εεεni− (B∗
1,n,LS)

′xxxni and note that the fitted values(B∗
1,n,LS)

′xxxni are orthogonal to the residualsε̂εεni. Now
using the result of the last lemma we have

‖SSSn(Adt)−SSS(Adt)‖F =

∥∥∥∥∥
1
n

n

∑
i=1

Adtε̂εεni,LSε̂εε ′ni,LSA′
dt

‖Adtε̂εεni,LS‖2 −
n

∑
i=1

Adtεεεniεεε ′
niA

′
dt

‖Adtεεεni‖2

∥∥∥∥∥
F

≤ 1
n

n

∑
i=1

∥∥∥∥∥
Adtε̂εεni,LSε̂εε ′ni,LSA′

dt

‖Adtε̂εεni,LS‖2 − Adtεεεniεεε ′niA
′
dt

‖Adtεεεni‖2

∥∥∥∥∥
F

≤ 4
n

n

∑
i=1

‖Adt(B
∗
1,n,LS)

′xxxni‖
‖Adtεεεni‖

≤ 4‖Adt‖F ‖B∗
1,n,LS‖F d∗

n
1
n

n

∑
i=1

1
‖Adtεεεni‖

≤ 4(‖A‖F +η)d∗
nvn

1
n

n

∑
i=1

1
‖Aεεεni‖−η

+4(‖A‖F +η)d∗
nI(‖B∗

1,n,LS‖F ≥ vn)
1
n

n

∑
i=1

1
‖Aεεεni‖−η

whereI(.) denotes the indicator function. Now letη → 000, sinceE(‖Aεεε‖−1) < ∞ andd∗
nvn → 0, from Strong Law of

Large Numbers the first term converges to 0 in probability. The same is true for the second term becauseB
∗
1,n,LS= Op(1),

d∗
n → 0 andE(‖Aεεε‖−1)< ∞.

A.3 Asymptotic Normality of̂BTRR

Recall that by (2.1), the multivariate linear model can be written as

Y = 111nβββ ′
0+XB1+εεε . (A.3.7)

For convenience, we introduce the following transformation of Model (A.3.7). Let P1 be the projection matrix for the
space spanned by 111n. Let In be then×n identity matrix. Consider the following notation

N1.Xc = (In−P1)X.
N2.C= Xc(X′

cXc)
−1/2.

N3.∆∆∆ = (X′
cXc)

1/2B1.
N4.ααα ′

0 = βββ ′
0+n−1111′nX(X′

cXc)
−1/2∆∆∆ .

Under this notation we can express model (A.3.7) as

Y = 111nααα ′
0+C∆∆∆ +εεε (A.3.8)

To obtain the asymptotic distribution of̂BTRR we can assume without loss of generality that the true regression
parameters are zero; i.e.,βββ0 = 0 and thatB1 = 0. The following theorem due to Davis and McKean (1993) gives the
asymptotic distribution of̂BR.

Theorem A.3.1.Under assumptionsA1-A7

√
nvec[β̂ββ 0,s, B̂

′
1,ϕ ]

D→ N(p+1)d

(
000,

(
T∗SSS∗T∗+ v′V−1v TSSST ⊗ v′V−1

TSSST ⊗V−1v TSSST ⊗V−1

))
. (A.3.9)

Proof of Theorem4.2Since the transformed-retransformed estimateB̂TRR= B̂R(Â−1)′ we have

vec(B̂
′
TRR) = (Â−1

n ⊗ Ip+1)vec(B̂
′
R).

Let

M∗ =

(
1 −x̄xx′(nX′

cXc)
−1/2

000p (nX′
cXc)

−1/2

)
.
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It follows from Theorem A.3.1 that

cov(
√

nvecB̂
′
TRR)

= (Â−1
n ⊗ Ip+1)cov(

√
nvecB̂

′
R)((Â

−1
n )′⊗ Ip+1)

= (Â−1
n ⊗ Ip+1)(Id ⊗M∗)




T∗SSS∗T∗

TSSST
. . .

TSSST


(Id ⊗M∗′)((Â−1

n )′⊗ Ip+1)

= (Id ⊗M∗)(Â−1
n ⊗ Ip+1)




T∗SSS∗T∗

TSSST
. . .

TSSST


((Â−1

n )′⊗ Ip+1)(Id ⊗M∗′)

= (Id ⊗M∗)




Â−1
n T∗SSS∗T∗(Â−1

n )′

Â−1
n TSSST(Â−1

n )′

. . .
Â−1

n TSSST(Â−1
n )′


(Id ⊗M∗′)

As Ân
p→ A we obtain the asymptotic distribution of̂BTRRunder the assumptionB = 000 as stated in the theorem.

A.4 Asymptotic Normality of̂BTRGR

Lemma A.4.1.Let SSSGR(000) = n−3/2SSSGR(000). Further, let

SSSGR
∗(000) =

(
SSS(1)GR

∗
(000) · · · SSS(d)GR

∗
(000)
)

(A.4.10)

=
n

n3/2
X′W




2F1(Y
(1)
1 ) · · · 2Fd(Y

(d)
1 )

... · · ·
...

2F1(Y
(1)
n ) · · · 2Fd(Y

(d)
n )


 .

ThenSSS∗GR(000)−SSSGR(000)
p→ 000.

Proof.See Hettmansperger and McKean (2011).

Theorem A.4.1.Under assumptions A1, B1–B3 and assuming thatB1 = 000,

SSSGR(000)
D→ Np,d(000,E,SSS)

Proof.By lemma A.4.1 we only need to show thatSSSGR
∗(000)

D→ Np,d(000,E,SSS). Let M be any p× d matrix. Then by

Theorem 19.15 of Arnold (1981) we need to show that trM ′SSSGR
∗(000)

D→ N1(000, tr M ′EMSSS). Now, let
F′

n =
(
F(Y1) . . . F(Yn)

)
where, fori = 1, . . . ,n,

F′(Y i) =
(

2F1(Y
(1)
i )−1, . . . , 2Fd(Y

(d)
i )−1

)
.

Then we haveE[F(Y i)] = 000 and Cov(F(Y i)) = SSS. Finally, letBn = (1/
√

n)WnXnM . Then

tr M ′SSSGR
∗(000) = tr

1√
n

M ′X′WnFn

= tr B′
nFn,
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and

tr BnSSSB′
n = tr

1
n

WnXnMSSSM ′X′
nWn

= tr (MSSSM ′)(
1
n

X′
nW2

nXn)

−→ tr (MSSSM ′)E < ∞.

Also, we have

m(Bn) = m(
1√
n

WnXnM)

≤ 1√
n

pm(WnXn)m(M)

−→ 0

by conditions B2 and B3. Thus by theorem 19.16 of Arnold (1981) we have trB′
nFn

D→ N1(000, tr MSSSM ′E). Therefore, again

by theorem 19.15 of Arnold,SSSGR
∗(000) = B′

nFn
D→ Np,d(000,E,SSS).

The approximating quadratics forj = 1, . . . ,d are given by

Q(B
( j)
1 ) =

n

2
√

3τ j
B

( j)
1

′
X′WXB

( j)
1 −B

( j)
1 SSS( j)

GR(000)+D( j)
GR(000).

The vectorB( j)
1 that minimizesQ(B

( j)
1 ) is B̃

( j)
1,GR =

√
3τ j
n (X′WX)−1SSS( j)

GR(000). Let B̃1,GR =
(
B̃

(1)
1,GR · · · B̃

(d)
1,GR

)
. Then

B̃1,GR= (
√

3/n)(X′WX)−1SSSGR(000)T.

Theorem A.4.2 √
nB̂1,GR

D→ Np,d(000,3C−1EC−1,TSSST).

Proof.The result follows from the fact that

√
nB̃1,GR=

√
3(

1
n

X′WX)−1SSSGR(000)T

D→ Np,d(000,3C−1EC−1,TSSST)

and the result,
√

n(B̃1,GR− B̂1,GR)
p→ 000, proved in Hettmansperger and McKean (2011).

To estimate the intercept vectorααα0, α̂αα( j)
0,GR for j = 1, . . . ,d, is taken to be the median of the residuals of the jth column,

i. e.

α̂αα( j)
0,GR= med

1≤i≤n
(Y( j)

i − xxx′c,iB̂
( j)
1,GR).

For j = 1, . . . ,d let

SSS1(Y( j)−ααα( j)
0 111n−XcB̂

( j)
1,GR) =

n

∑
i=1

sgn(Y( j)
i −ααα( j)

0 − xxx′c,iB̂
( j)
1,GR).

Thenα̂αα( j)
0,GR solves

SSS1(Y
( j)−ααα( j)

0 111n−XcB̂
( j)
1,GR)+ 000.

Lemma A.4.2.If assumptions A1, A2 and A3 hold andΦΦΦ∗ = (sgn(εi j )) then for allε > 0,

lim
n→∞

Pr(‖n1/2α̂αα ′
0,GRT∗−n−1/2111′nΦΦΦ∗‖> ε) = 0.
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Proof.It is enough to show for allj = 1, . . . ,d that

lim
n→∞

Pr(|n1/2α̂αα( j)
0,GRτ∗j

−1−n−1/2111′nΦ∗( j)|> ε) = 0.

Note that

111′nΦΦΦ∗( j) = SSS1(Y( j))

=
n

∑
i=1

sgn(Y( j)
i ).

Now

Pr(|n1/2α̂αα( j)
0,GRτ∗j

−1−n−1/2SSS1(Y( j))|> ε)

≤ Pr(|n1/2α̂αα( j)
0,GRτ∗j

−1−n−1/2SSS1(Y( j)− α̂( j)111n−XcB̂
( j)
1,GR)

−n−1/2SSS1(Y( j)−XcB̂
( j)
1,GR)|> ε/3)

+Pr(|n−1/2SSS1(Y( j)−XcB̂
( j)
1,GR)−n−1/2SSS1(Y( j))|> ε/3)

+Pr(|n−1/2SSS1(Y
( j)− α̂( j)111n−XcB̂

( j)
1,GR)|> ε/3)

The first and second terms go to 0 by theorem 3.5.9 and lemma 3.5.8 of Hettmansperger and McKean (2011).

It follows from theorem 18 of Lehman (1975) that( 1√
n 111′nΦΦΦ∗)′

D→ Nd(000,SSS
∗). Thus,

√
nα̂αα ′

0,GR
D→ Nd(000,T∗SSS∗T∗).

Theorem A.4.3

√
nvec

(
α̂αα0,GR B̂

′
1,GR

)
D→ N(p+1)d

(
000,

(
T∗SSS∗T∗ 000

000 TSSST ⊗3C−1EC−1

))
. (A.4.11)

Proof of Theorem4.3The result is obtained by noting that

√
nvec

((
β̂ββ
′
0,GR

B̂1,GR

)′)
= vec

((
1 −x̄xx′

000 Ip

)(√
nα̂αα ′

0,GR√
nB̂1,GR

))′

= vec

(√
n
(

α̂αα0,GR B̂
′
1,GR

)(1 −x̄xx′

000 Ip

)′)

=

(
Id ⊗

(
1 −x̄xx′

000 Ip

))
vec
(√

nα̂αα0,GR
√

nB̂
′
1,GR

)
.

Now the result follows from theorem A.4.3.

Proof of Theorem4.4Similar to the proof of Theorem4.2. The affine invariance of the weights, the consistency ofÂ
and Theorem4.3gives the above asymptotic distribution ofB̂TRGR.
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