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Abstract: Ocular artifact (OA) is one of the main interferences in electroencephalogram (EEG) recordings. It appears as a big pulse
and has a strong impact to EEG signals. To overcome OA interference in EEG data, a novel automatic method of OA removal, denoted
as DWICA, was proposed in this paper. In DWICA, the discrete wavelet transform (DWT) is applied to every recorded signal to obtain
multiple scale coefficients. Then the independent component analysis (ICA) algorithm is used, and its input is the coefficients connected
in series. Thus the independent components are acquired quickly in wavelet domain. The criterion of angle cosine is introduced to
recognize ocular artifact, and the corresponding component is set to zero. Furthermore, the artifact free components are projected to
original electrodes with inverse ICA algorithm. Finally, DWT is inversed to obtain the artifact free brain signals. Quantitative studies
about suppression of OA distorting the underlying cerebral activity and accurate evaluation on denoising effect of DWICA are finished
in this paper. Experiment results show that DWICA is preferable and effective in automatic OA correction. Meanwhile, DWICA is
powerful in noise immunity and fast in convergence rate, and it provides a preferable method for EEG preprocessing on-line.
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1. Introduction

Electroencephalogram (EEG) is a biological signal reflect-
ing complex activities of brain. It plays an important role
in human brain research, disease diagnosis, rehabilitation
engineering and so on. However, EEG is weak and time-
varying, and it is easily affected by other noises. Therefore
various artifacts are formed during EEG signal recordings.
Electrooculogram (EOG) is one of the main interferences
in EEG, which appears in EEG recordings randomly as a
big pulse and forms ocular artifact (OA). OA brings about
much difficulty in EEG signal processing, and even affects
its analysis and recognition [1]. So it is very important to
remove ocular artifact without losing any information in
EEG signal preprocessing.

Now there are 4 main methods of OA removing from
EEG: (1)Artifact Abstraction [2]. The method assumes that
EEG and EOG recordings are in accord with linear combi-
nation and uncorrelated with each other. So ocular artifact
can be estimated and removed in proportion from EEG.
This method has explicit physical meaning and is applied
early. In fact, there is actually mutual influence and bidire-

ctionality between EEG and EOG, artifact abstraction may
lose some important information in removing EOG from
EEG. (2)Wavelet Transform (WT) [3]. The method is based
on the different statistical characteristics of signal and noise
after wavelet transform. It is a time-frequency analysis met-
hod, and it is particularly suitable for non-stationary sig-
nals such as EEG. However, this method requires that the
frequency bands of signal and noise should not overlap
each other. In the overlapping bands of EEG and EOG, the
denoising effect is not quite good. Now some researchers
are trying to combine wavelet transform and other meth-
ods together in order to improve denoising effect. (3)Prin-
ciple Component Analysis (PCA) [4]. In PCA, the signal
is decomposed based on orthogonality criterion, and then
artifact is removed according to the contribution of each
component. This method performs much better than arti-
fact abstraction. But only the covariance matrix of signal
is considered here, and high order redundant information
may remain in the decomposed components [5]. (4)Inde-
pendent Component Analysis (ICA) [6]. ICA is a signif-
icant decorrelation method based on two and even higher
order statistical information, and it is actually an exten-
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sion of PCA. So it has more advantage over PCA. Cur-
rently ICA is perceived as a potentially robust and pow-
erful method for the artifact removal in EEG and receives
an increasing attention. ICA separates the recorded EEG
signals into statistically independent sources, and then re-
jects those responsible for artifacts. The majority applica-
tions of ICA in EEG processing focus on the removal of
ocular artifact. However, there are still several issues that
should be addressed. Firstly, classical ICA model doesn’t
take other noises into consideration. In fact, EEG is easily
disturbed by various noises in the collection process, and
the separation performance of ICA algorithm is affected
seriously. Besides, ICA algorithm needs more iterations
to get the separation matrix, which is significantly time
consuming and inefficient. Secondly, for the uncertainty
of ICA, it is rather difficult to decide which component ac-
counts for artifact. The traditional semi-automatic method
is a combination of visual observation and topographical
map of brain [7], but it is not desirable for real-time artifact
suppression. Joyce [8] and Flexer [9] used the correlation
between reference EOG and each independent component
to detect the one responsible for ocular artifact. However,
the determination of correlation threshold relies on some
experience, and the resolution of correlation coefficients is
not very high. Therefore, ICA is usually used as an offline
method for ocular artifact cancellation from EEG, and the
result needs to be improved.

Furthermore, clean EEG signals are difficult to obtain
during the actual collection process, and there are few stan-
dard EEG data bases provided for OA research. So it is
hard to find an accurate assessment for OA removal ef-
fect. Most authors presented their results graphically, and
few quantitative performance indexes were given to evalu-
ate denoising result. It is difficult to determine accurately
which method is better.

Based on discrete wavelet transform and independent
component analysis, a novel automatic removal method of
ocular artifact, denoted as DWICA, was proposed in this
paper. In order to assess denoising effect of DWICA accu-
rately, a mathematical model of EEG and EOG was built
according to their bi-directionality. Then the EEG exper-
imental data contaminated with ocular artifact was con-
structed, and quantitative performance indexes were com-
puted to assess the denoising effect. Experiment results
have shown that the signal to noise ratio of EEG is greatly
improved by DWICA. This method is powerful in noise
immunity and fast in convergence rate, and it will provide
a novel preferable idea for on-line preprocessing of EEG
data.

2. Basic principles

2.1. Discrete Wavelet Transform

Wavelet transform is a time-frequency analysis method on
the basis of Fourier transform [10]. The wavelet coeffi-

cients can reflect both the time and frequency domain in-
formation of signal. Therefore, wavelet transform is widely
used in the processing of biomedical signal, especially suit-
able for the non-stationary one such as EEG. The compu-
tation speed of discrete wavelet transform (DWT) is very
fast, and it is desirable for real-time artifact suppression
in EEG. Moreover, the practical signals that need to be
processed are discrete after sampling, so discrete wavelet
transform is used widely.

For ∀ f (t) ∈ L2(R) the DWT is given as follows:

WTf ( j,k)=< f (t),ϕ j,k(t)>=
∫ +∞

−∞
f (t)ϕ̄ j,k(t)dt, j,k∈Z.

(1)
Where ϕ j,k(t) = 2−

j
2 ϕ(2− jt − k) is the binary expansion

and shift of the mother wavelet function ϕ(t), j and k are
the shifts of frequency resolution and time respectively.
ϕ̄ j,k(t) is the conjugate of ϕ j,k(t).

The inverse discrete wavelet transform (IDWT) is de-
fined as follows:

f (t) =
∞

∑
j=−∞

∞

∑
k=−∞

WTf ( j,k)ϕ j,k(t), j,k ∈ Z. (2)

Mallat proposed the fast algorithm of wavelet analy-
sis and reconstruction based on the pyramid algorithm in
image decomposition and reconstruction. The algorithm
gives access to DWT and IDWT with double channel fil-
ters on the basis of multi-resolution analysis, and it pro-
vides a very convenient idea for its further application.

A L-level decomposition of signal f (t) is obtained with
Mallat algorithm, and the corresponding wavelet coeffi-
cients are given by:

a j,k = ∑
m∈Z

a j−1,mh0(m−2k), (3)

d j,k = ∑
m∈Z

a j−1,mh1(m−2k). (4)

Where a j,k are the approximate coefficients of the j-th( j =
1, · · · ,L) scale and d j,k are the detail, and a0,k = f (t). The
multi-resolution coefficients of the signal at each scale can
be obtained with the scale increasing gradually. h0(k) is the
low frequency filter while h1(k) is the high frequency one,
and both of them are determined by the selected wavelet
basis. The typical three level decomposition tree is shown
in Fig.1 . Where A j is the approximate vector and D j is
the detail one of the j-th scale. Moreover, the decomposi-
tion meets the following equation:

f (t) = A3 +
3

∑
j=1

D j. (5)

It is easy to conclude from the decomposition tree in
Fig.1 that the further decomposition is only for the low fre-
quency band of signal, not for the high frequency band. So
the signal f (t) can be divided into many sub-bands after
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Figure 1 Three level decomposition tree.

decomposition. The Mallat’s pyramid reconstruction algo-
rithm is given as follows:

a j−1,m = ∑
k∈Z

a j,kh0(m−2k)+d j,kh1(m−2k). (6)

The signal f (t) can be reconstructed with the scale j
decreasing gradually.

2.2. Independent Component Analysis

ICA is a recently developed method on the basis of blind
source separation. It has been applied to solve denoising
problems in recent years and achieved a robust and pow-
erful result [6]. The idea of ICA comes from the Central
Limit Theorem. A sum of random variables tends toward
a gaussian distribution under the condition that their mean
and variance have the same order. So, when the statistically
independent sources are mixed into a group of signals, it
is necessary to estimate the nongaussian property of sepa-
ration signals. Maximizing the nongaussianity can achieve
separation of the recorded signals.

The mathematic model of ICA is given as follows:

x(t) = A · s(t), (7)

y(t) =W · x(t). (8)

Where s(t)= [s1(t),s2(t), · · · ,sn(t)]T ∈Rn×M is n channels
of original sources that are real-valued, non-Gaussian dis-
tributed, and statistically independent. M is the sampling
point of each signal. x(t)= [x1(t),x2(t), · · · ,xn(t)]T ∈Rn×M

is n channels of observed mixtures. It is modeled as the re-
sult of multiplying an n×n matrix (i.e. square matrix A) by
s(t). Independent component analysis is to estimate orig-
inal sources from the observed mixture x(t) while know-
ing little about the mixing process as well as the matrix
A. It is necessary to estimate the linear separation matrix
W ∈Rn×n to recover a version y(t) to approach the original
sources s(t) as far as possible.

ICA is based on the assumption that all the original
sources are mutually independent. So, the objective func-
tion is established and optimized to estimate the separate
effect of each independent component. The ultimate pur-
pose is to obtain the latently independent sources. There-
fore, the key of ICA is to establish an objective function for

estimating the independence of separate components and
to find the corresponding separation algorithm. FastICA
is good in performance and has a lot of advantages listed
as follows: (1)Convergence speed of this algorithm is at
least quadratic, this means that the convergence rates of
FastICA is very high. (2)Different from other algorithms
based on gradient, it is not necessary to choose the step pa-
rameter, and it is therefore quite convenient to use. (3)Fas-
tICA shares some advantages of neural network such as
parallel and distributed computation. So it is simple in cal-
culation and needs much less memory space. For all the
reasons above, FastICA based on the negentropy is adopted
in this paper.

2.3. The criterion of angle cosine

The cosine of angle is often used in geometry to estimate
the similarity between two vectors. While in machine learn-
ing, it is applied to measure the difference between two
samples. The criterion of angle cosine has higher resolu-
tion than correlation coefficient. Currently it is widely used
in many fields such as the similarity measurement of fin-
gerprint, the classification of text and spectrum etc. For the
uncertainty characteristics of amplitude as well as polarity
and order for each independent component in ICA, it is
difficult to decide which one accounts for ocular artifact
and should therefore be set to zero. The criterion of angle
cosine was introduced in this paper to estimate similarity
between each independent component and the reference
EOG so as to recognize ocular artifact automatically.

Suppose that yi = [yi1,yi2, · · · ,yiM]T ∈ RM×1 is the i-th
independent component of EEG, and

x̃l = [x̃l1, x̃l2, · · · , x̃lM]T ∈ RM×1,

is the reference EOG. Here, M is the sampling point of
each signal. The cosine of angle reads as follows:

cosθi =

M

∑
q=1

yiqx̃lq√√√√ M

∑
q=1

y2
iq

M

∑
q=1

x̃2
lq

. (9)

It is obvious that cosθi belongs to [−1,1]. Because of the
uncertainty of amplitude and polarity for each indepen-
dent component, the absolute value of cosθi (i.e. |cosθi|)
is chosen to estimate the similarity between each inde-
pendent component of EEG and the reference EOG. The
larger value represents more similarity of the correspond-
ing component to the reference EOG.

3. Ocular Artifact Removal With DWICA

In 2003, Jafari combined wavelet transform and ICA method
together in fetal electrocardiogram extraction for the first
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time [11]. This idea was further applied into image pro-
cessing and event related potential extraction in recent years.
Studies have shown that the coefficients of wavelet trans-
form have more super-Gaussian nature in the probability
density function and larger kurtosis than the original sig-
nal. So ICA in wavelet domain has many significant ad-
vantages, such as faster convergence speed of iteration and
better performance of noise immunity. In this paper, the
ICA algorithm with discrete wavelet transform, denoted
as DWICA, was investigated to remove ocular artifact, and
the criterion of angle cosine was introduced to recognize
ocular artifact automatically and quickly.

The DWICA algorithm for ocular artifact suppression
in EEG is given as follows:

(1)The Mallat’s pyramid decomposition algorithm was
applied to n channels of collected signals:

x(t) = [x1(t),x2(t), · · · ,xn(t)]T ,

suppose that the l-th column vector xl(t) is the reference
EOG and others are EEG signals. Then each channel xi(t)∈
RM1×1(i = 1,2, · · · ,n) was decomposed by L-level decom-
position tree, and the approximate coefficients and detail
coefficients were ranked in order to construct wavelet co-
efficient vector x̄i(t) ∈ RM2×1, that is:

x̄i(t) = [Ai,L,Di,L,Di,L−1, · · · ,Di,1]
T , i = 1,2, · · · ,n.

(10)
Where M1 is the sample point of collected original signals,
and M2 is the sample point of wavelet coefficient vector
x̄i(t).

(2)All coefficient vectors were combined to consider
as the input of ICA algorithm, i.e.

x̄(t) = [x̄1(t), x̄2(t), · · · , x̄n(t)]T .

Then the FastICA algorithm based on negentropy criterion
was applied to estimate the separation matrix W , and the n
channels of independent components:

y(t) = [y1(t),y2(t), · · · ,yn(t)]T ,

were acquired quickly in wavelet domain by y(t) =Wx̄(t).
(3)The criterion of angle cosine was applied to recog-

nize ocular artifact. The cosine of angle between each in-
dependent component yi(t)(i= 1,2, · · · ,n) and wavelet co-
efficient vector x̄l(t) of the reference EOG was calculated
by Eq.(11).

cosθi =

M2

∑
q=1

yiqx̄lq√√√√ M2

∑
q=1

y2
iq

M2

∑
q=1

x̄2
lq

. (11)

Where M2 is the sample point of each wavelet coefficient
vector.

All the absolute values of angle cosine were sorted in
decreasing order, and the independent component corre-
sponding to the biggest one was considered as ocular arti-
fact, and it should be set to zero. Therefore, the indepen-
dent component vector after elimination of EOG artifact

was rewritten as:

ỹi(t) =

{
0, i f |cosθi|= max

j=1,··· ,n
(
∣∣cosθ j

∣∣),
yi(t), Others.

(12)

The new independent component vector:

ỹ(t) = [ỹ1(t), ỹ2(t), · · · , ỹn(t)]T ,

were used with inverse transform of ICA to project back
onto the scalp electrodes by Eq. (13):

u(t) =W−1ỹ(t) ∈ Rn×M2 . (13)

The Mallat’s pyramid construction algorithm was ap-
plied to each channel of ICA-corrected wavelet coefficients
u(t) to reconstruct the artifact free EEG data. Thereby oc-
ular artifact in EEG signals was removed and the signal to
noise ratio was improved greatly.

4. Experimental Research

In section 4, a mathematical model about EEG and EOG
was built according to the bi-directionality contamination
between the EEG and EOG signal, and the EEG data with
ocular artifact was constructed for experiments. Then, the
proposed DWICA was applied to remove ocular artifact
and quantitative performance indexes were introduced to
evaluate the denoising effect. Furthermore, DWICA was
applied into the real contaminated EEG data provided by
EEG research center of Colorado Purdue University to prove
the correctness and effectiveness of DWICA in EEG pre-
processing.

4.1. EEG data construction for experiment

The clean EEG data was from the “BCI Competition 200”
contest database. The data was recorded from a normal
subject (female, 25) during a feedback session. The subject
sat in a relaxing chair with armrests. The task was to con-
trol a feedback bar by means of imagery left or right hand
movements. The motor imagery experiment consisted of
140 trials, of which the left hand movements and the right
one were 70 trials respectively. All trials were conducted
on the same day. As shown in Fig.2 , each trial was 9 s
in length with several minutes break in between. The first
2 s was quite, at t=2 s, an acoustic stimulus indicated the
beginning of the trial, and a cross ”+” was displayed for 1
s; then at t=3 s, an arrow (left or right) was displayed as
cue. At the same time the subject was asked to move a bar
into the direction of the cue [12].

The recording was made using a G.tec amplifier and
some Ag/AgCl electrodes. Three bipolar EEG channels
were measured over C3, Cz and C4 according to the In-
ternational 10-20 System. The signals were sampled with
128Hz and filtered between 0.5 and 30Hz, as shown in
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Figure 2 Timing scheme of experiment.

Fig.3(a) . The vertical EOG data from Colorado Purdue
University was filtered between 0.1 and 100Hz.

For the bi-directionality interaction between the EEG
and the EOG signal, there exist the following equations :

EEGrec(t) = EEGclean(t)+ k1 ×EOGclean(t), (14)

EOGrec(t) = EOGclean(t)+ k2 ×EEGclean(t). (15)

Where k1 represents the propagation factor from the EOG
to the EEG signal, and k2 represents the propagation factor
from the EEG to the EOG signal. EEGclean and EOGclean
are the clean EEG and EOG signal respectively. EEGrec
and EOGrec are the recorded EEG and EOG signal respec-
tively.

In this experiment, it was supposed that the propaga-
tion factors of EEG from three channels (C3, Cz and C4)
to EOG were 0.05, 0.1 and 0.15 respectively. Meanwhile,
the propagation factors from the EOG to the EEG of three
channels (C3, Cz and C4) were all set to 0.2. Considering
other artifacts such as muscle activity, pulse, sweat etc, a
gaussian white noise with 5 dBw was thus added into each
channel to imitate the common influence of other noises.
The constructed EEGs of three channels were presented
graphically in Fig.3(b) , and it was easy to find that each
channel of EEG data was influenced by EOG inordinately.
Besides, the added gaussian white noise could reflect im-
munity of artifact removal method.

4.2. Results of OA removal with DWICA

The EEG data of 140 trials contaminated by ocular artifact
was processed with DWICA. The iteration algorithm was
FastICA based on the negentropy, where the iteration pre-
cision was set to 0.0001 and the maximum iteration num-
ber was 10000. A Sym 8 wavelet filter was chosen in DWT
and a 3-level decomposition was performed. Experiment
results were shown in Fig.4 . Compared the clean EEG
data in Fig.3(a) with the contaminated EEG data by ocu-
lar artifact in Fig.3(b) , it was obvious that the magnitude
of OA was much higher than that of neural signals. From
Fig.4 we could find that OA was removed from EEG data
and neural signals were recovered quite well with little in-
formation leakage.
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Figure 3 Clean EEG and the constructed EEG and EOG.

0 192 384 576 768 960 1152
−40

−20

0

20

40

C
3/

uV

0 192 384 576 768 960 1152
−40

−20

0

20

40

C
z/

uV

0 192 384 576 768 960 1152
−40

−20

0

20

40

C
4/

uV

Samples

Figure 4 OA removed EEG signals with DWICA.

More experiments were done to compare DWICA pro-
posed this paper with WT [3] , PCA [4], and ICA [6] in
OA removal. Quantitative evaluations about the denoising
effect and the average time consumption were given.

(1)Comparison on denoising effect base on Mean Sq-
uared Error (MSE) index

MSE performance index was adopted to quantify and
assess the denoising effect. MSE was calculated as fol-
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lows:

MSE = { 1
N

N

∑
n=1

[s(n)− c(n)]2}. (16)

Where s(n) was the clean EEG data over an electrode,
while c(n) was the corrected EEG data , and N was the
number of sampling point. A smaller value of MSE means
that the corrected EEG is more close to real EEG.

Before ocular artifact was removed, the average MSE
of raw EEG data of 140 trials was 92.5299 (µV )2 for C3,
92.4589 (µV )2 for Cz and 92.4313 (µV )2 for C4. After
ocular artifact removal with DWICA, the average MSE
was 3.9296 (µV )2 for C3,4.2042 (µV )2 for Cz and 4.0716
(µV )2 for C4. Then WT, PCA and ICA were also used
for OA removal and the comparison of average MSE was
shown in Fig.5 . It illustrates that the denoising effect of
DWICA is obviously better than WT and PCA, and also
more effective than ICA. Therefore the automatic DWICA
proposed in this paper is proved to be effective and prefer-
able.

(2)Comparison on time consumption
In the above experiments of 140-trials EEG data, four

methods were used to remove ocular artifact in three chan-
nels, and the average running time was shown in Fig.6
. Note that the average time consumption was 0.5768 s
for WT and 0.649 s for ICA, while 0.0406 s for DWICA
in the same computing environment. So DWICA has the
best time efficiency significantly. Meanwhile, as shown in
Fig.6 , the average computation time of PCA was almost
the same as DWICA, while the denoising effect of OA re-
moval by PCA was much worse than by DWICA, as shown
in Fig.5 . Therefore considered both the denoising effect
and time consumption together, DWICA is powerful.

Besides, it was found in the experiment that when ICA
algorithm in time domain was applied to remove ocular
artifact, the noise in EEG data not only disturbed the sep-
aration effect of ICA, but also resulted in the increasing of
iteration and calculation. In the total 140 trials, there were
7 trials failed in solving the separating matrix W , namely
it wasn’t obtained when the maximum iteration number
reached 10000. However, ICA decomposition in wavelet
domain was powerful in noise immunity, so all the 140
trails could obtain the separation matrix W . Thus a con-
clusion is drawn that DWICA can reduce the iterations
in FastICA algorithm and has great noise immunity. It is
preferable in EEG preprocessing on-line.

4.3. Power spectrum estimation

The power spectrum based on Autoregressive (AR) para-
metric model is the major part of modern spectral estima-
tion. It is widely applied in speech signal analysis, data
compression and communication. AR model power spec-
trum estimation can reflect the energy of signal in fre-
quency domain, and it improves the resolution of spec-
trum estimation. The EEG power spectrum distortions of
the cerebral activity introduced by the ocular artifact were

(a) with 

the contaminated EEG data by ocular artifact in 
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Fig. 4.3. OA removed EEG signals with DWICA
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Figure 5 Comparison of denoising effect with MSE.
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Figure 6 Comparison of time consumption.

studied in this section. To assess the results of ocular ar-
tifact removal in EEG, AR power spectrum of clean EEG
(0.5-30Hz), contaminated EEG by OA, and corrected EEG
by DWICA were all considered, as shown in Fig.7 . It
shows that the distortions of OA are generally in low fre-
quency band, and AR model power spectrum of the cor-
rected EEG with OA removed by DWICA matches per-
fectly with the clean EEG signals. So we can conclude that
energy of artifact free EEG data is recovered very well. It
proves that the proposed DWICA is correct and effective
in OA removal.

0 5 10 15 20 25 30
0

10

20

30

40

C
3/

dB

 

 
Clean EEG
Contaminated EEG by OA
Corrected EEG by DWICA

0 5 10 15 20 25 30
0

15

30

45

C
z/

dB

0 5 10 15 20 25 30
0

15

30

45

Frequency/Hz

C
4/

dB

Figure 7 Power spectrum comparison of EEG.
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4.4. DWICA in real contaminated EEG

In this section, DWICA was employed to real corrupted
EEG data collected by cerebral research center of Col-
orado Purdue University. There were seven volunteers tak-
ing part in the experiment. Six bipolar EEG signals were
measured over 6-channels of C3, C4, P3, P4, O1 and O2
according to the International 10-20 System. Recordings
were made with reference to electrically linked mastoids
A1 and A2. One channel of vertical EOG was recorded
between the forehead above the left browline and the left
cheekbone. The signals were sampled with 250Hz for 10
seconds, 2500 samples and recordings were performed with
a bank of Grass 7P511 amplifiers whose bandpass analog
filters were set at 0.1 to 100 Hz.

The data in this experiment was from subject 1 (a uni-
versity male teacher of forty-eight years old did arithmetic
multiplication homework), here we only chose 3-channels
EEG over C3, C4, P3 and synchronous EOG data, as shown
in Fig.8(a) . For clean cerebral data were unknown in prac-
tical collection, no quantification evaluation about DWICA
in OA removal was given. While from the comparison be-
tween Fig.8(a) and Fig.8(b) , it is obvious that OA is
removed perfectly from EEG, and it proves that DWICA
is also effective and powerful in real contaminated EEG
recordings. It provides a novel preferable idea for prepro-
cessing of EEG data.

5. Conclusion

EOG contamination to EEG data is a common and im-
portant problem in brain computer interface, disease di-
agnosis and brain research etc. In this paper, a novel re-
duction of ocular artifact in EEG signals is investigated
based on discrete wavelet transform and independent com-
ponent analysis. The criterion of angle cosine is introduced
to judge OA automatically, and some quantitative perfor-
mance indexes including MSE, AR-model power spectrum
and time consumption are used in simulated mixtures with
the bidirectional contamination between the EEG and the
EOG signals. The comparisons between DWICA and other
approaches, namely WT, ICA and PCA, are performed for
the reduction of OA in simulated mixtures in order to show
which ocular reduction technique is the best. In fact, the
experiment results indicate that the proposed DWICA is
powerful in noise immunity and fast in convergence rate.
It provides a novel idea for on-line preprocessing of EEG
signals. Also it has a positive effect to further research and
applications in cerebral activity.
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