On Generalized Left Derivations in BCI-Algebras

G. Muhiuddin\(^1\)\(^*,\) and A. M. Al-roqi\(^2\)

\(^1\) Department of Mathematics, University of Tabuk, P. O. Box 741, Tabuk 71491, Saudi Arabia
\(^2\) Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

Received: 28 May. 2013, Revised: 2 Oct. 2013, Accepted: 3 Oct. 2013
Published online: 1 May. 2014

Abstract: In the present paper, we introduce the notion of generalized left derivation of a BCI-algebra \(X\), construct several examples, and investigate related properties. Also establish some results on regular generalized left derivation. Furthermore, for a generalized left derivation \(H\), the concept of a \(H\)-invariant generalized left derivation is introduced, and examples are discussed. Using this concept a condition for a generalized left derivation to be regular is provided. Finally, some results on p-semisimple BCI-algebra are obtained and it is shown that let \(H\) be a self map in a p-semisimple BCI-algebra \(X\). Then \(H\) is a generalized left derivation if and only if it is a derivation on \(X\).

Keywords: Derivations, BCI-Algebras

1 Introduction

The notion of BCK-algebras and BCI-algebras were introduced by Y. Imai and K. Iseki in 1966 [9, 10]. BCK-algebras and BCI-algebras are algebraic formulation of BCK-system and BCI-system in combinatory logic. Later, the notion of BCI algebras have been extensively investigated by many researchers (see [2, 3, 14] and references there in). BCI-algebra is a generalization of a BCK-algebra that is every BCK-algebra is a BCI-algebra but not vice versa (see [6]). Therefore, most of the algebras related to the t-norm based logic such as MTL [5], BL, hoop, MV [4] (i.e. lattice implication algebra) and Boolean algebras etc., are extensions of BCK-algebras which have a lot of applications in computer science (see [19]). Cosequently, BCK/BCI-algebras are considerably general structures.

Throughout the present paper \(X\) will denote a BCI-algebra. Jun and Xin [11] applied the notion of derivation in ring and near-ring theory to BCI-algebras in the year 2004 and introduced a new concept called a (regular) derivation in BCI-algebras, and investigated some of its properties. Using the notion of a regular derivation, they also established characterizations of a p-semisimple BCI-algebra. For a self map \(d\) of a BCI-algebra, they defined a \(d\)-invariant ideal, and gave conditions for an ideal to be \(d\)-invariant. During the last 10 years, a greater interest has been devoted to the study on derivations in BCI-algebras and a number of research articles have been published in this direction on various aspects (see [1, 8, 15, 16, 17, 18, 20]).

Motivated by notions of left derivations [1] and generalized derivations [18] in the theory of BCI-algebras, in this paper, we introduced the notion of generalized left derivations on BCI-algebras and investigate related properties. The concept of generalized left derivations covers the concept of left derivations on BCI-algebras. Further, we obtain some results on regular generalized left derivations. Also, for a generalized left derivation \(H\), we introduce the concept of a \(H\)-invariant generalized left derivations and give some examples. Using this concept we provide a condition for a generalized left derivation to be regular. Finally, we characterize the notion of p-semisimple BCI-algebra \(X\) by using the concept of generalized left derivation and show that let \(H\) be a self map in a p-semisimple BCI-algebra \(X\). Then \(H\) is a generalized left derivation if and only if it is a derivation on \(X\).
2 Preliminaries

In this section, we collect the following definitions and properties from the existing literature that will be needed in the sequel.

A nonempty set X with a constant 0 and a binary operation $*$ is called a BCI-algebra if for all $x, y, z \in X$ the following conditions hold:

1. $(I)(x * y) * (x * z) = (z * y) * x$,
2. $(II)(x * (x * y)) * y = 0$,
3. $(III)x * x = 0$,
4. $(IV)x * y = 0$ and $y * x = 0$ imply $x = y$.

Define a binary relation \leq on X by letting $x \leq y = 0$ if and only if $x \leq y$. Then (X, \leq) is a partially ordered set. A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$, is called BCK-algebra.

A BCI-algebra X has the following properties: for all $x, y, z \in X$

(a1)$x * 0 = x$.
(a2)$x * y * z = (x * z) * y$.
(a3)$x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.
(a4)$x * (z * y) \leq x * y$.
(a5)$x * (x * (x * y)) = x * y$.
(a6)$0 * (x * y) = (0 * x) * (0 * y)$.
(a7)$x * 0 = 0$ implies $x = 0$.

For a BCI-algebra X, denote by X_+ (resp. $G(X)$) the BCK-part (resp. the BCI-G part) of X, i.e., X_+ is the set of all $x \in X$ such that $0 \leq x$ (resp. $G(X) := \{ x \in X | 0 * x = x \}$). Note that $G(X) \cap X_+ = \{ 0 \}$ (see [13]). If $X_+ = \{ 0 \}$, then X is called a p-semisimple BCI-algebra. In a p-semisimple BCI-algebra X, the following hold:

(a8)$x * z * (y * z) = x * y$.
(a9)$0 * (0 * x) = x$ for all $x \in X$.
(a10)$x * (0 * y) = y * (0 * x)$.
(a11)$x * y = 0$ implies $x = y$.
(a12)$x * a = x * b$ implies $a = b$.
(a13)$x * b = x * b$ implies $a = b$.
(a14)$a * (a * x) = x$.
(a15)$x * (y * z) = (w * z) * (y * z)$.

Let X be a p-semisimple BCI-algebra. We define addition “+” as $x + y = x * (0 * y)$ for all $x, y \in X$. Then $(X, +)$ is an abelian group with identity 0 and $x - y = x - y$. Conversely let $(X, +)$ be an abelian group with identity 0 and let $x + y = x - y$. Then X is a p-semisimple BCI-algebra and $x + y = x * (0 * y)$ for all $x, y \in X$ (see [14]).

For a BCI-algebra X we denote $x \wedge y = y * (y * x)$, in particular $0 * (0 * x) = a$, and $L_p(X) := \{ a \in X | x * a = 0 \Rightarrow x = a, \forall x \in X \}$. We call the elements of $L_p(X)$ the p-atoms of X. For any $a \in X$, let $V(a) := \{ x \in X | a * x = 0 \}$, which is called the branch of X with respect to a. It follows that $x \wedge y \in V(a * b)$ whenever $x \in V(a)$ and $y \in V(b)$ for all $x, y \in X$ and all $a, b \in L_p(X)$. Note that $L_p(X) = \{ x \in X | x = a \}$, which is the p-semisimple part of X, and X is a p-semisimple BCI-algebra if and only if $L_p(X) = X$ (see [12],[Proposition 3.2]). Note also that $a_e \in L_p(X)$, i.e., $0 * (0 * a_e) = a_e$, which implies that $a_e * y \in L_p(X)$ for all $y \in X$. It is clear that $G(X) \subset L_p(X)$, and $x * (x * a) = a$ and $a * x \in L_p(X)$ for all $a \in L_p(X)$ and all $x \in X$. For more details, refer to [2, 3, 11, 12, 13, 14].

3 Generalized Left Derivations

We introduce the notion of generalized left derivation of a BCI-algebra X as follows:

Definition 1. Let X be a BCI-algebra. Then a self map $H : X \rightarrow X$ is called a generalized left derivation of X if there exists a left derivation $D : X \rightarrow X$ such that

$$D(x * y) = x * H(y) \wedge y * D(x)$$

for all $x, y \in X$.

Note that if $H = D$, then the generalized left derivation of a BCI-algebra X is a left derivation of a BCI-algebra X.

Example 1. Let $X = \{ 0, 1, 2 \}$ a BCI-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(1) We define a map

$$D : X \rightarrow X, x \mapsto \begin{cases} 2 & \text{if } x \in \{ 0, 1 \}, \\ 0 & \text{if } x = 2. \end{cases}$$

It can be easily verified that D is a left derivation of X. Again, define a map

$$H : X \rightarrow X, x \mapsto \begin{cases} 0 & \text{if } x \in \{ 0, 1 \}, \\ 2 & \text{if } x = 2. \end{cases}$$

It is easy to check that H is a generalized left derivation of X.

(2) Define a map

$$D : X \rightarrow X, x \mapsto \begin{cases} 0 & \text{if } x \in \{ 0, 2 \}, \\ 1 & \text{if } x = 1. \end{cases}$$

It is easy to check that D is a left derivation of X.

(2.1) Define a map

$$H : X \rightarrow X, x \mapsto \begin{cases} 2 & \text{if } x \in \{ 0, 1 \}, \\ 0 & \text{if } x = 2. \end{cases}$$

It is easy to see that H is a generalized left derivation of X.
(2.2) If we define a map \(H : X \to X \) by \(H(x) = 2 \) for all \(x \in X \), then we can easily verify that \(H \) is generalized left derivation of \(X \).

(2.3) If we define a map \(H : X \to X \) by \(H(x) = 0 \) for all \(x \in X \), then we can easily verify that \(H \) is generalized left derivation of \(X \).

Theorem 1. Let \(H \) be a generalized left derivation of a BCI-algebra \(X \). Then

(1) \(x \in L_p(X) \Rightarrow H(x) \in L_p(X) \) for all \(x \in X \).

(2) \(H(x) = 0 + H(x) \) for all \(x \in X \).

(3) \(H(x + y) = x + H(y) \) for all \(x, y \in L_p(X) \).

(4) \(x \in G(X) \Rightarrow H(x) \in G(X) \) for all \(x \in X \).

Proof. (1) For any \(x \in L_p(X) \), we have

\[
H(x) = H(0 \ast (0 \ast x)) \\
= (0 \ast H(0 \ast x)) \land ((0 \ast x) \ast D(0)) \\
= ((0 \ast x) \ast D(0)) \ast ((0 \ast x) \ast D(0)) \ast (0 \ast H(0 \ast x)) \\
= 0 \ast H(0 \ast x) \in L_p(X).
\]

(2) By (1), we have \(H(x) \in L_p(X) \). Then

\[
H(x) = 0 \ast (0 \ast H(x)) = 0 + H(x).
\]

(3) For any \(x, y \in L_p(X) \), we have

\[
H(x + y) = H(x \ast (0 \ast y)) \\
= (x \ast H(0 \ast y)) \land ((0 \ast y) \ast D(x)) \\
= ((0 \ast y) \ast D(x)) \ast ((0 \ast y) \ast D(x)) \ast (x \ast H(0 \ast y)) \\
= x \ast H(y) \\
= x \ast (0 \ast H(y)) \land (y \ast D(0)) \\
= x \ast (0 \ast H(y)) \\
= x \ast H(y).
\]

(4) Let \(x \in G(X) \). Then \(0 \ast x = x \), and so

\[
H(x) = H(x \ast 0) \\
= (0 \ast H(x)) \land (x \ast D(0)) \\
= (x \ast D(0)) \ast ((x \ast D(0)) \ast (0 \ast H(x)) \\
= 0 \ast H(x)
\]

since \(0 \ast H(x) \in L_p(X) \). Hence \(H(x) \in G(X) \). This completes the proof.

If we take \(H = D \) in Theorem 1, then we have the following corollary.

Corollary 1(11). Let \(D \) be a left derivation of a BCI-algebra \(X \). Then

(1) \(x \in L_p(X) \Rightarrow D(x) \in L_p(X) \) for all \(x \in X \).

(2) \(D(x) = 0 + D(x) \) for all \(x \in X \).

(3) \(D(x + y) = x + D(y) \) for all \(x, y \in L_p(X) \).

(4) \(x \in G(X) \Rightarrow D(x) \in G(X) \) for all \(x \in X \).

Theorem 2. Let \(H \) be a generalized left derivation of a BCI-algebra \(X \). Then

(1) \(x \in L_p(X) \Rightarrow H(x) = x \ast H(0) = x + H(0) \) for all \(x \in X \).

(2) \(H(x + y) = H(x) + H(y) - H(0) \) for all \(x, y \in L_p(X) \).

(3) \(H \) is identity on \(L_p(X) \) if and only if \(H(0) = 0 \).

(4) \(H(x \ast y) \leq x \ast H(y) \) for all \(x, y \in X \).

Proof. (1) For any \(x \in L_p(X) \), we have

\[
H(x) = H(x \ast 0) = (x \ast H(0)) \land (0 \ast D(x)) \\
= (0 \ast D(x)) \ast ((0 \ast D(x)) \ast (x \ast H(0))) \\
= 0 \ast (0 \ast (x \ast H(0))) \\
= x \ast H(0) = x \ast (0 \ast H(0)) \\
= x + H(0)
\]

since \(x \ast H(0) \in L_p(X) \) and \(H(0) \in G(X) \).

(2) If \(x, y \in L_p(X) \), then \(x + y \in L_p(X) \). Using (1), we have

\[
H(x + y) = (x + y) + H(0) \\
= x + H(0) + y + H(0) - H(0) \\
= H(x) + H(y) - H(0).
\]

(3) It follows from (1).

(4) For any \(x, y \in X \), we have

\[
H(x \ast y) = (x \ast H(y)) \land (y \ast D(x)) \\
= (y \ast D(x)) \ast ((y \ast D(x)) \ast (x \ast H(y))) \\
\leq x \ast H(y).
\]

This completes the proof.

Definition 2. A generalized left derivation \(H \) of a BCI-algebra \(X \) is said to be regular if \(H(0) = 0 \).

Example 2. (1) The generalized left derivation \(H \) of \(X \) in Examples 1 (1) and 1 (2.3) are regular.

(2) The generalized left derivation \(H \) of \(X \) in Examples 1 (2.1) and 1 (2.2) are not regular.

Theorem 3. If \(X \) is a BCK-algebra, then every generalized left derivation of \(X \) is regular.

Proof. Let \(H \) be a generalized left derivation of a BCK-algebra \(X \). Then

\[
H(0) = H(0 \ast x) \\
= (0 \ast H(0)) \land (x \ast D(0)) \\
= 0 \land (x \ast D(0)) = 0.
\]

Hence \(H \) is regular.

In a BCI-algebra, Theorem 3 is not true as seen in the following example:
Example 3. In Example 1 (2.1), H is a generalized left derivation of a BCI-algebra X which is not regular.

Theorem 4. Let H be a regular generalized left derivation of a BCI-algebra X. Then

(1) Both x and H(x) belong to the same branch for all x ∈ X.
(2) H(x) ≤ x for all x ∈ X.
(3) H(x) * y ≤ x * H(y) for all x, y ∈ X.

Proof. (1) Let x ∈ X. Then we have

\[0 = H(0) = H(a_x * x) = (a_x * H(x)) \land (x * D(a_x)) = (x * D(a_x)) * ((x * D(a_x)) * (a_x * H(x))) = a_x * H(x) \]

since \(a_x * H(x) \in L_p(X) \). Hence \(a_x \leq H(x) \), and so \(H(x) \in V(a_x) \). Obviously, \(x \in V(a_x) \).

(2) Since H is regular, \(H(0) = 0 \). Then

\[H(x) = H(x * 0) = (x * H(0)) \land (0 * D(x)) = (x * 0) \land (0 * D(x)) = (0 * D(x)) * ((0 * D(x)) * x) \leq x. \]

(3) Since \(H(x) \leq x \) for all \(x \in X \) by (2). Using (a3), we have

\[H(x) * y \leq x * y \leq x * H(y). \]

This completes the proof.

Theorem 5. For any generalized left derivation H of a BCI-algebra X, the set

\[H^{-1}(0) := \{ x \in X \mid H(x) = 0 \} \]

is a subalgebra of X if \(x = 0 \) for all \(x \in X \). Moreover, \(H^{-1}(0) \subseteq X_+ \).

Proof. Assume that \(x = 0 \) for all \(x \in X \). Let \(x, y \in H^{-1}(0) \). Then \(H(x) = 0 = H(y) \), and so

\[H(x * y) \leq x * H(y) = 0 * 0 = 0 \]

by Theorem 2(4). Hence \(H(x * y) = y * H(y) \) for all \(x, y \in X \).

Example 4. (1) Let H be a generalized left derivation of X which is described in Example 1 (2.1). We know that \(I := \{ 0, 1 \} \) is an ideal of X which is not \(H \)-invariant.

(2) Let H be a generalized left derivation of X which is described in Example 1 (1). We know that \(I := \{ 0, 1 \} \) is a \(H \)-invariant ideal of X.

Theorem 6. Let H be a generalized left derivation of a BCI-algebra X. Then H is regular if and only if every ideal of X is \(H \)-invariant.

Proof. Let I be an ideal of X. Suppose H is regular, then it follows from Theorem 4 (2) that \(H(x) \leq x \) for all \(x \in X \) implying thereby \(H(x) * x = 0 \). Let \(y \in X \) be such that \(y \in H(I) \). Then \(y = H(x) \) for some \(x \in I \). Thus

\[y * x = H(x) * x = 0 \in I. \]

Since I is an ideal of X, it follows that \(y \in A \) so that \(H(I) \subseteq I \). Therefore I is \(H \)-invariant.

Conversely, suppose that every ideal of X is \(H \)-invariant. Since the zero ideal \(\{ 0 \} \) is clearly \(H \)-invariant, we have \(H(\{ 0 \}) \subseteq \{ 0 \} \), and so \(H(0) = 0 \). Hence H is regular.

If we take \(H = D \) in Theorem 6, then we have the following corollary.

Corollary 2([1]). Let D be a left derivation of a BCI-algebra X. Then D is regular if and only if every ideal of X is \(D \)-invariant.

Next, we prove some results in a p-semisimple BCI-algebra.

Theorem 7. Let H be a generalized left derivation of a p-semisimple BCI-algebra X, we have the following assertions:

(1) \(x * H(x) = y * H(y) \) for all \(x, y \in X \).
(2) \(H(x * y) = x * H(y) \) for all \(x, y \in X \).
(3) \(H(x) * x = H(y) * y \) for all \(x, y \in X \).
(4) \(H(x) * x = y * H(y) \) for all \(x, y \in X \).

Proof. (1) Let X be a p-semisimple BCI-algebra. Then for any \(x, y \in X \), we have

\[H(0) = H(x * x) = (x * H(x)) \lor (x * D(x)) = x * H(x). \]

Also,

\[H(0) = H(y * y) = (y * H(y)) \lor (y * D(y)) = y * H(y). \]

Henceforth, we get \(x * H(x) = y * H(y) \).

(2) Let X be a p-semisimple BCI-algebra. Then for any \(x, y \in X \), we have

\[H(x * y) = (x * H(y)) \lor (y * D(x)) = x * H(y). \]
(3) Using (I), we have

\[(x \ast y) \ast (x \ast H(y)) \leq H(y) \ast y\]

and

\[(y \ast x) \ast (y \ast H(x)) \leq H(x) \ast x\]

these above inequalities can be rewritten as

\[((x \ast y) \ast (x \ast H(y))) \ast (H(y) \ast y) = 0\]

and

\[((y \ast x) \ast (y \ast H(x))) \ast (H(x) \ast x) = 0\]

Consequently, we get

\[((x \ast y) \ast (x \ast H(y))) \ast (H(y) \ast y) = ((y \ast x) \ast (y \ast H(x))) \ast (H(x) \ast x)\]

Also, using (1) and (2), we obtain

\[(x \ast y) \ast H(x \ast y) = (y \ast x) \ast H(y \ast x)\]

\[\implies (x \ast y) \ast (x \ast H(y)) = (y \ast x) \ast (y \ast H(x))\] \hspace{1cm} (3.2)

Since, \(X\) is a \(p\)-semisimple \(BCI\)-algebra. Hence, by using equation (3.2) and (a12), the above equation (3.1) yields \(H(x) \ast x = y \ast H(y)\).

(4) We know that \(H(0) = x \ast H(x)\). Using (3), we get \(H(0) \ast 0 = H(y) \ast y\) implies \(H(0) = H(y) \ast y\). Therefore \(H(y) \ast y = x \ast H(x)\) implying thereby \(H(x) \ast x = y \ast H(y)\). This completes the proof.

If we take \(H = D\) in Theorem 7, then we have the following corollary.

Corollary 3([1]). Let \(D\) be a left derivation of a \(p\)-semisimple \(BCI\)-algebra \(X\), we have the following assertions:

1. \(D(x \ast y) = x \ast D(y)\) for all \(x, y \in X\).
2. \(D(x \ast y) = y \ast D(x)\) for all \(x, y \in X\).
3. \(D(x \ast y) = y \ast D(x)\) for all \(x, y \in X\).

Theorem 8. Let \(H\) be a self map in a \(p\)-semisimple \(BCI\)-algebra \(X\). Then \(H\) is a generalized left derivation if and only if it is a derivation on \(X\).

Proof. Suppose that \(H\) is a generalized left derivation on \(X\). First, we show that \(H\) is a \((r,l)\)-derivation on \(X\). Let \(x, y \in X\). Using (a14), we have

\[H(x \ast y) = x \ast H(y)\]

\[= (H(x) \ast y) \ast ((H(x) \ast y) \ast (x \ast H(y)))\]

\[= (x \ast H(y)) \ast (H(x) \ast y)\]

Hence \(H\) is a \((r,l)\)-derivation on \(X\).

Again, we show that \(H\) is a \((l,r)\)-derivation on \(X\). Let \(x, y \in X\). Using Theorem 7(4) and (a15), we have

\[H(x \ast y) = x \ast H(y)\]

\[= (x \ast 0) \ast H(y)\]

\[= (x \ast (H(0) \ast H(0))) \ast H(y)\]

\[= (x \ast ((x \ast H(x))) \ast (H(y) \ast y)) \ast H(y)\]

\[= (x \ast H(y)) \ast ((x \ast H(x)) \ast (H(y) \ast y))\]

\[= (x \ast H(y)) \ast ((x \ast H(y)) \ast (H(x) \ast y))\]

\[= (H(x) \ast y) \land (x \ast H(y))\]

Conversely, suppose that \(H\) is a derivation of \(X\). As \(H\) is a \((r,l)\)-derivation on \(X\). Then for any \(x, y \in X\), we have

\[H(x \ast y) = (x \ast H(y)) \land (H(x) \ast y)\]

\[= (H(x) \ast y) \ast ((H(x) \ast y) \ast (x \ast H(y)))\]

\[= x \ast H(y)\]

\[= (y \ast D(x)) \ast ((y \ast D(x)) \ast (x \ast H(y)))\]

\[= (x \ast H(y)) \land (y \ast D(x))\].

Hence \(H\) is a generalized left derivation. This completes the proof.

If we take \(H = D\) in Theorem 8, then we have the following corollary.

Corollary 4([1]). Let \(D\) be a self map in a \(p\)-semisimple \(BCI\)-algebra \(X\). Then \(D\) is a left derivation if and only if it is a derivation on \(X\).

Acknowledgement

This research was partially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah 21589, Ministry of Higher Education, Saudi Arabia. The authors would like to express their sincere thanks to the anonymous referees.

References

G. Muhiuddin is working at Department of Mathematics, Tabuk University, Tabuk 71491, Saudi Arabia as an Assistant Professor. He has received his Ph.D. degree in Mathematics. His mathematical research areas are Algebras related to logic (BCK, BCI, BCC-algebras, Hilbert algebras, implication algebras), Fuzzy logical algebras and Category theory. He has reviewed many research papers in this area as well as other related areas.

A. M. Al-roqi is working at Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia as an Associate Professor. He has received his Ph.D. degree in Mathematics from School Of Mathematics and Statistics, University of Birmingham, United Kingdom. His mathematical research areas are Algebras related to logic, Finite Group Theory, Soluble groups, Classification of finite simple groups and Representation Theory.