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Abstract: PAC-Bayes risk bound combining Bayesian theory and structure risk minimization for stochastic classifiers has been con-
sidered as a framework for deriving some of the tightest generalization bounds. A major issue for calculating the bound is the unknown
prior and posterior distributions of the concept space. In this paper, we formulated the concept space as Reproducing Kernel Hilbert
Space (RKHS) using the kernel method. We further demonstrated that the RKHS can be constructed using the linear combination of
kernels, and the support vectors and their corresponding weights of SVM outputs describe the complexity of concept space. Therefore
the calculation of PAC-Bayes bound can be simulated by sampling weights of support vectors in RKHS. The experimental results using
random and Markov Chain Monte Carlo (MCMC) samplings showed that the simulation is reasonable and effective in practice.
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1. Introduction

With the revival of artificial intelligence in 1980s, Compu-
tational Learning Theory (CLT) and Statistical Learning
Theory (SLT) have gained huge progress [1,2]. Among
those achievements, PAC (Probably Approximately Cor-
rect) theory, proposed by Leslie Valiant in 1984[3], has
advanced the framework of machine learning into com-
putational complexity. PAC bounds is characterized by its
VC-dimension of the hypothesis space with the indepen-
dent identically distribution (i.i.d.) assumption. However,
unlike usual PAC bounds, PAC-Bayesian bounds, first pro-
posed by McAlleste[4] and improved by Langford[5], ap-
ply non-uniform treatment of the hypotheses by introduc-
ing a prior partition of the hypothesis space.

PAC-Bayes bound generalizing the Occam?s razor bound
for supervised algorithms which output a distribution over
classifiers rather than just a single classifier has been con-
sidered as a framework for deriving some of the tight-
est generalization bounds. Many researches demonstrated
that PAC-Bayes bound is a tighter bound for the classi-
fier and a better way for the analysis of the generalization
performance of learning algorithm[6–9]. Various well es-

tablished learning algorithms can be justified in the PAC-
Bayes framework and even improved. PAC-Bayes bounds
were originally applicable to classification[10], but over
the last few years the theory has been extended to regres-
sion[11], density estimation[12] , and problems with non
iid data[13].

However, some challenges still remain. First, the PAC-
Bayes bound theorem provides probably approximately cor-
rect mathematical form for the upper bound of a gener-
alization error rate. But the most of items in the formula
cannot be directly estimated from the experimental results,
the analytic expression of the bound is very difficult to re-
alize. This leads to the narrow applications of PAC-Bayes
bound. Furthermore, the calculation of PAC-Bayes bound
requires that prior and posterior distributions of concepts
of the classifiers outputs must be conformed normal dis-
tributions with constant covariance matrix, this leads that
it is applied only for linear classifier SVM and Gaussian
process.

In this study, we first highlighted the difficulties in gen-
eral PAC-Bayes bound calculations. Then, we formulated
the concept space as Reproducing Kernel Hilbert Space
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(RKHS) using the kernel method. We further demonstrated
that the RKHS can be constructed using the linear combi-
nation of kernels, and the support vectors and their corre-
sponding weights of SVM describe the complexity of con-
cept space. Therefore the calculation of PAC-Bayes bound
can be simulated by sampling weights of support vectors
in RKHS. Finally, we present an algorithm for calculating
the PAC-Bayes bound.

The paper is organized as the followings: section 2
overviewed PAC-Bayes Bound and its practical difficulties
in the specific calculations, section 3 presented the theoret-
ical foundation, section 4 proposed the algorithm for the
calculation of PAC-Bayes bound, section 5 presented the
correspond experiments, and section 6 concluded the pa-
per.

2. Overview of the PAC-Bayes bound

In this section, we recall the main PAC-Bayes bound for
the binary classification problems presented in [4,5]. Con-
sidered that a binary classification problem where the input
space X consists of an arbitrary subset of Rn and the output
space Y = {−1,+1}. An example is an input-output pair
(x,y) where x ∈ X and y ∈Y . Each example is drawn from
a fixed, but unknown, distribution on X ×Y .

In the PAC-Bayes setting, a classifier h (also called a
concept) is defined by a distribution q(h) over the hypoth-
esis space. Each classification is carried out according to a
hypothesis sampled from q(h) . For given m examples, we
are interested in the gap between the expected generaliza-
tion error QD = E(x,y)∈DI(h(x) ̸= y) and the expected em-
pirical error Q̂S =

1
m ∑

(xi,yi)∈S
(I(h(xi) ̸= yi) , where I(α) = 1

if predicate α is true and 0 otherwise. The gap will be pa-
rameterized by the Kullback-Leibler divergence.

KL(q||p) ∆
= q ln

q
p
+(1−q) ln

1−q
1− p

(1)

In fact, QD denotes the probability that the classifier h
misclassifies an instance x chosen from the distribution D .
Meanwhile, the empirical error means the probability that
the classifier h misclassifies an instance x chosen from the
sample S.

Theorem 1.For an arbitrary D, arbitrary prior P and con-
fidence δ ∈ (0,1),we have:

ProbS∼Dm

{∀Q : KL(Q̂S ∥ QD)≤
KL(Q ∥ P)+ ln(m+1

δ )

m
}

≥ 1−δ

(2)

where KL is the Kullback-Leibler divergence and Q is
the posterior distributions of the classifier h.

The theorem 1 indicates that: 1) Probably Correctness
of (2) might be caused by the noise in training examples,

for an example, the small number of training examples
cannot cover the real distributions of the concepts; 2) Ap-
proximately Correctness might be caused by the system
errors of learning algorithms, for instance, the huge con-
cept space cannot be enumerated totally by learning algo-
rithms. Both of the correctness can be manually predefined
by the confidence degree δ .

In the following sections, we only focus on the inner
part of (2).

KL(Q̂S ∥ QD)≤
KL(Q ∥ P)+ ln(m+1

δ )

m
(3)

In the left of inequality (3), if Q̂S is fixed, QD is mono-
tonically increasing. Because Q̂S and the right expression
on the inequality are fixed for a given learning algorithm
and a training data set, the inequality gives the upper bound
of average true error rate QD .

The difficulties for calculating the average true error
rate QD come from two aspects. Firstly, most of learning
algorithms output a concept, other than the distribution of
the concept and the posterior distribution Q is difficult to
estimate. Meanwhile, the prior distribution P also need be
predefined. Therefore, the calculation for KL values be-
tween two distributions is not easy. A traditional way is
to make some assumptions. For an example, assumed that
P and Q follow independent identical normal distributions
with P∼N(

→
p,µ1,Σ1) and Q∼N(

→
q ,µ2,Σ2). Then, the KL

value can be computed using equation (4).

KL(Q|P) =1
2
(µ1 −µ2)

T Σ−1
2 (µ1 −µ2)

+
1
2

log
|Σ1|
|Σ2|

+
1
2

tr{Σ1Σ−1
2 − Id}

(4)

Further assumed that Σ1 and Σ2 both are unit matrices,
the KL value can be replaced by ∆ µ2

2 .
Secondly, the estimation of Q̂S is not easy, because (1)

the limited number of training examples, which leads that
the example error rates in concept space is a continuous
segmented function; 2) the posterior distribution of con-
cept space is unknown.

3. Theoretical foundations

3.1. SVM Kernel function

SVM (Support Vector Machine) is a machine learning ap-
proach proposed by Vapnik based on structural risk mini-
mization principle of statistics learning theory.

The PAC-Bayes bound can be particularized for the
case of linear classifiers in the following way. The m train-
ing patterns define a linear classifier that can be repre-
sented by the following equation: c(x) = sign(wT φ(x)),
where φ(x) is a nonlinear projection to a certain feature
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space where a linear classification actually takes place, and
w is a vector that determines the separating plane from the
feature space.

For any vector w we can define a stochastic classifier in
the following way: we choose the distribution Q=Q(w,µ)
to be a spherical Gaussian with identity covariance matrix
centered on the direction given by w at a distance µ from
the origin. Moreover, we can choose the prior P(c) to be
a spherical Gaussian with identity covariance matrix cen-
tered on the origin. The performance of classifiers can be
bounded by the form of expression (3). Here, QD(w,µ) is
the true error of the stochastic classifier and Q̂S(w,µ) =
EmF̃(µγ(x̄,y)) is the average over the m train examples,
where γ(x̄,y) = yx̄·w̄

∥w̄∥∥x̄∥ is the normalized margin of the
train patterns and F̃(x) = 1 − F(x) is the inverse of the
cumulative normal distribution F(x).

In SVM, the function K(·, ·) or the projection Φ(·) is
chosen to project the input space X into a finite or infinite
dimensional Hilbert space.

Definition 1.(Kernel function)X is a subset of Rn, the func-
tion K(x,x′) defined in X ×X is called a kernel function, if
there is a map Φ : X → H from the input space to a Hilbert
space such that (5).

K(x,x′) = (Φ(x) ·Φ(x′)) (5)

In the form of kernel, the output of SVM learning al-
gorithm can be expressed by the following form:

c(x) = sign(
m

∑
i=1

αiK(xi,x)) (6)

where K is the kernel function, xi is called support vector
if αi ̸= 0 , αi is the weight of corresponding support vector.

Theorem 2.(Mercer theorem)Let X be a compact subset
of Rn , K is a continuous real-value symmetric function on
X ×X , and L2(x) is a second order integral real-valued
function space on X , the following two statements are
equal:

(1) The integral operator (7) is positive semi-defined.∫
X×X

K(x,x′) f (x) f (x′)dxdxi ≥ 0 ∀ f ∈ L2(x) (7)

(2) K(·, ·) can be expressed as a uniform convergent se-
quence of ψ on X ×X .

K(x,x′) =
∞

∑
t=1

λtψt(x)ψt(x′) (8)

Where λt and ψt ∈ L2(x) are the eigenvalue and its
corresponding unit eigenfunction of the integral operator
Tk f = (Tk f )(·) =

∫
X K(·,x′) f (x′)dx′ .

The mercer theorem shows that K(x,x′)= (Φ(x),Φ(x′))
( Φ(x) = (

√
λ1ψ(x1),

√
λ2ψ(x2), · · ·)T ) is a kernel func-

tion.

Definition 2.(Gram matrix) for a given function K : X ×
X → R and (x1,x2, · · · ,xn) ∈ X ? the matrix G = {(gi j =
K(xi,x j))} is called the gram matrix about x1,x2, · · · ,xn .

It is easy to show that the necessary and sufficient con-
dition that the symmetrical function K(x,x′) is a kernel
function defined in X ×X is that the gram matrix of the
function is positive semidefinite, for any (x1,x2, · · · ,xn) ∈
X .

3.2. Reproducing Kernel Hilbert Space

In section 3.1, we have known that the function Φ maps
the input data to a Hilbert space, and also mercer theo-
rem gives its formal expression. However, to get its spe-
cific form, we have to calculate the eigenvalues and their
corresponding eigen-functions of the integral operator Tk ,
which is a trivial task in practice.

From mercer theorem, we can prove that the set de-
fined in (9) is a vector space.

RH = {( f (x))| f (x) =
k

∑
i=1

αiK(x,xi)} (9)

for all (x1, · · · ,xn) ∈ X and(α1, · · · ,αk) ∈ R
And for the inner product, defined in (10), of two ele-

ments f (·) =
k f

∑
i=1

αiK(·,xi) ∈ RH and (·) =
kg

∑
j=1

β jK(·,y j) ∈

RH, the vector space is complete. So, the vector space RH
is also a Hilbert space.

f ∗g =

k f

∑
i=1

kg

∑
j=1

αiβ jK(xi,y j) (10)

Now we can conclude that the kernel function maps
Φ into a Hilbert space. RH is so-called the Reproducing
Kernel Hilbert Space(RKHS). In this sense, K is called the
reproducing kernel.

RKHS admits a well-defined structure that the target
function of an optimization problem can be represented as
a finite linear combination of kernel products. The Riesz
Representation theorem gives its formal description.

Theorem 3.(Riesz Representation theorem) Let RH to be a
RKHS with the reproducing kernel function K : X ×X → R
. For any function L : Rn →R and any non-decreasing func-
tion Ω : Rn →R , if the expression (11) is well defined, then
there exist α1, · · · ,αn(αi ∈ R) that make (12) minimizing
(11) .

J∗ = min
f∈RH

J( f )

= min
f∈RH

{Ω(∥ f∥2
RH)+L( f (x1), f (x2), ..., f (xn))}

(11)

f (·) =
n

∑
i=1

αiK(·,xi) (12)
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This theorem implies that finding a minimal function
f ∗ in RKHS is equal to finding optimal values α1,α2, · · · ,
αn(αi ∈ R) in Euclidean space. In another words, the opti-
mal values α1,α2, · · · ,αn well describe the structure of the
function f ∗ using kernel method.

Let’s go back SVM learning algorithm again. We can
easily know that the function Φ maps examples into Hilbert
space, while the kernel function K maps examples into
RKHS. A concept for learning algorithms to be learned
is an element in RKHS. Therefore, learning a concept is
identical to finding optimal values α1,α2, · · · ,αn(αi ∈ R).

Recall the equation (6), we can easily draw the follow-
ing conclusion.

Theorem 4.A concept to be learned for SVM algorithm
can be described by the weights of support vectors.

From the theorem, we can know that different support vec-
tors and their weight vectors correspond to different con-
cepts that learning algorithms aim to optimize. The num-
ber of support vectors reflects the complexity of the con-
cept space.

4. PAC-Bayes bound calculation

The major issue for calculating the true average error QD
in (3) is the unknown prior (P ) and posterior (Q ) distri-
butions of the concept space. A simple solution is to re-
place the KL value by ∆ µ2

2 . Through above theoretical
analysis, it cannot well describe the structure of concept
space. Instead, the support vector and their weight vectors
are well suited to the situation. Different support vectors
and their weight vectors correspond to different concepts
that learning algorithms aim to optimize. Therefore, the
distributions of the concepts in RKHS can be simulated
using the distributions of the weight vectors from the out-
puts of the SVM algorithm. In this section, we will present
how to estimate the distributions of concepts in RKHs by
ones of the weight vectors through sampling weight vec-
tors in Euclid space for computing the true average error
QD .

Supposed that there are m training examples in a dataset
T , the main steps are illustrated in algorithm (1) to calcu-
late true average error QD of a learning algorithm L.

The explanations of algorithm calcPacBayesBound are
the followings:

Step (1) gets the weight vector of the support vectors
by training data set T using SVM algorithm.

Step (2) calculates the average example error using
learning algorithm L on dataset T .

Step (3) to step (5) are used to calculate the KL value of
the prior and posterior distributions of concepts in RKHS.
Supposed that there are k support vectors and their weights
are considered as multiple random variables following mul-
tivariate normal distributions. The concepts in RKHS are
simulated by these random variables. We sample the prior

Algorithm 1: calcPacBayesBound
Input: T = {(xi,yi)|xi ∈ Rn,xi ∈ {0,1}, i = 1 . . .m}

//training set
Output: KL ; /* KL value of the prior and

posterior distributions of
concepts */

Output: QD ; /* true average error */
1 Alpha=trainingSVM (T) ; /* getting weight
vector of the support vectors by
training data set T */

2 QS=calcEAverageError(L,T) ; /* calculating the
true average error of examples on T
using learning L. */

3 TPExamples=samplingNormal() ; /* get prior
examples of concepts using normal
distributions */

4 TQExamples=samplingAlpha(Alpha) ; /* getting
the true examples of concepts by
sampling weight vector Alpha */

5 KL=calcKL(TQExamples, TPExamples) ;
/* calculating KL value of the
distributions of TQExamples and
TPExamples */

6 QD=binarySearch(QS, KL, m, delta) ;
/* calculating /true average error */

examples of concepts by the assumption that weight vari-
ables with mean value 0 and unit covariance follow mul-
tivariate normal distributions. And the posterior examples
of concepts are sampled around the centers of weights with
unit covariance.

We use two types of sampling methods: random sam-
pling and Markov Chain Monte Carlo (MCMC) sampling.

Step (6) calculates the average true error using a binary
search approach. Because is monotonically increasing if is
fixed in the inequality (3), we intend to seek the largest
value satisfying inequality (3) as the true average error.
The pseudo code for the binary search method is listed in
algorithm (2).

5. Experiment results

5.1. Data sets

We use two datasets for testing the capability of algorithm
calcPacBayesBound in calculating PAC-Bayes bound. The
numbers of support vectors in the two data sets are 3 and
4 respectively. See Table ( 1) and (2) for more details.

5.2. Results

To show that weight variables follow multivariate normal
distributions after MCMC sampling, we draw trace graphs
and histograms of 3 weight variables in data set (1) over
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Algorithm 2: binarySearch
Input: QS, KL, m, delta
Output: QD

1 eps = 0.0001 ;
2 a=QS ;
3 b=(KL+ln((m+1)/delta))/(m+1) ;
4 lower = upper = a ;
5 while (kl(a, upper) ≤ b ∥ upper ≤ 1- eps/2) do
6 upper = upper + (1-upper)/2 ;

7 if (upper ≥ 1− eps/2) then
8 return 1 ;

9 while (upper− lower ≥ eps) do
10 if (kl(a, lower+(upper− lower)/2)≥ b)) then
11 upper= lower+ (upper-lower)/2

12 else
13 lower=lower+ (upper-lower)/2

14 return upper ;

Table 1: data set with 3 support vectors
Label Support vector weight
1 0 0.2 0.7 0.5 0.4065091465768443
1 0.9 0.4 0.2 0.1 0.5934908534231558
-1 0.6 0.3 0.5 0.3 -1

Table 2: data set with 4 support vectors
Label Support vector weight
1 0 0.2 0.7 0.5 1
1 0.9 0.4 0.2 0.1 0.3633408445028599
1 0.1 0.6 0.8 0 0.1447171435460205
-1 0.6 0.3 0.5 0.3 0.4919420119511196

106 times sampling (Figure 1). From the figure, we notice
that all the values of autocorrelation for the three variables
are almost are 0. It implies that they follow a multivariate
normal distribution. The positions of the largest values in
histogram are initial values of weights. Therefore, exam-
ples for posterior concepts by MCMC sampling meet our
requirements.

For each dataset, we calculate PAC-Bayes bounds us-
ing 105 and 106 examples using random and MCMC sam-
plings. The KL and QD values for two datasets are given
in Table (3) and (4) respectively

From the tables, we can see that QD values in both
sampling methods are smaller than ones using the tradi-
tional method, in which KL value is replaced by ∆ µ2

2 . Both
of sampling methods get similar QD values. With more ex-
amples sampled the variances of KL values changed more
slowly. This is agreed to our intuition that the concepts
tend to be stable when enumerated enough examples. The
variances of KL values in MCMC sampling are larger than
ones in random sampling. This might imply that MCMC
sampling has better generation performance than random
sampling.

Figure 1: MCMC sampling graph (the left part is the trace and au-
tocorrelation graphs in which the horizontal axis denotes the time
of sampling, vertical axis denotes corresponding values and auto-
correlations. The right part is the histogram in which the horizon-
tal axis denotes sampled values, vertical axis denotes the number
of corresponding value in sampling)

Table 3: PAC-Bayes bounds with 3 support vectors
Mean and variance of KL value QD

105 106 105 106

A 0.85805 0.984095244
B 0.759694899

±1.00592E-05
0.758760291
±1.18045E-06

0.3414
71321

0.3361
00227

C 0.75920889
±3.64688E-05

0.75973941
±1.94675E-06

0.3414
71321

0.33610
0227

(A-KL replaced by ∆ µ2

2 ; B-Random sampling; C-MCMC sam-
pling, the value after ± is the variance of corresponding value for
100 times samplings)

Table 4: PAC-Bayes bounds with 4 support vectors
Mean and variance of KL value QD

105 106 105 106

A 0.00005 0.97287178
B 0.695865957

±4.7845E-06
0.697531242
±9.57609E-07

0.5085
44922

0.5029
29688

C 0.700675771
±3.0465E-05

0.697837009
±1.53214E-06

0.5085
44922

0.5029
29688

(A-KL replaced by ∆ µ2

2 ; B-Random sampling; C-MCMC sam-
pling, the value after ± is the variance of corresponding value for
100 times samplings)

6. Conclusion

PAC-Bayes risk bound combining Bayesian theory and struc-
ture risk minimization for stochastic classifiers has been
considered as a framework for deriving some of the tight-
est generalization bounds. A major issue for calculating
the bound is the unknown prior and posterior distributions
of the concept space. In this paper, we formulated the con-
cept space as Reproducing Kernel Hilbert Space (RKHS)
using the kernel method. We further demonstrated that the
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RKHS can be constructed using the linear combination of
kernels, and the support vectors and their corresponding
weights of SVM describe the complexity of concept space.
Therefore the calculation of PAC-Bayes bound can be sim-
ulated by sampling weights of support vectors in RKHS.

We used two sampling methods to draw examples in
concept space with the normal distribution assumption. One
of our feature works is to relax this assumption with the
consideration of prior distribution of concept space. An-
other work is to incorporate the feedbacks of sampled con-
cepts to training examples.
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