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Abstract: In this paper, I/O characteristics of data-intensive applications running on virtualized environments are explored.It is
observed that virtual machines have a tendency to request I/Os in a bursty manner. Also, I/Os are triggered by several virtual machines
at the same time. These concurrent and bursty I/Os cause the interference among virtual machines such as frequent context switches and
long seek distances, which eventually deteriorates I/O performance significantly. To overcome this problem, a novel burstiness-aware
I/O scheduler is proposed, which consists of three components: burstiness detector, coarse-grained dispatcher and starvation handler.
The key idea of the proposed scheduler is detecting bursty virtual machines on-line and allowing a detected machine to consume most
of disk bandwidth exclusively for a given time quantum to reduce the interference. In addition, it provides long-term fairness while
avoiding starvation. Performance evaluation based on implementation shows that the proposed scheduler can improve the execution
time and I/O throughput of the three real workloads by decreasing the number of context switches and seek distances.
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1 Introduction

This study is inspired by two technologies, big data
processing and virtualization. Big data processing drives
nearly every aspect of our society, including mobile,
financial, manufacturing and Internet services [1]. For
efficient big data processing, several frameworks such as
MapReduce [2] and Dryad [3] have been developed.
MapReduce is a simple, however, it is a powerful
programming model for data-intensive applications where
big data is distributed into multiple chunks and processed
in parallel by a large number of tasks, called map and
reduce tasks. It also has a popular open-source
implementation, Hadoop [4], which is actively used by
Yahoo, Facebook and Amazon [5].

Virtualization is a technology that abstracts physical
resources into multiple logical ones so that multiple
virtual machines can run at the same time on a single
physical machine [6]. It introduces a new software layer
called hypervisor ,also known as VMM (Virtual Machine
Monitor), that governs the behavior of virtual machines
[7,8]. The hypervisor supports various virtualization
techniques such as proportional-share algorithm [9] and
credit scheduler [10] for CPU virtualization, ballooning
[8] and difference engine [11] for memory virtualization,

and IDD (Isolated Device Domain) [7] and VMM-bypass
[12] for I/O virtualization.

Traditionally, the MapReduce framework works on a
large physical cluster that is composed of physical
machines such as commodity PCs and servers [2].
Recently, as the virtualization technology becomes
prevalent, the framework also makes use of a virtual
cluster consisting of virtual machines [5,13,14,15]. For
instance, we can rent large numbers of virtual machines
from Amazon’s EC2 (Elastic Compute Cloud) at low cost
(around $0.10 per CPU hour [14]) and use them to
execute the map and reduce tasks. Furthermore, we can
scale up and down flexibly by considering the workloads.

However, integrating big data processing with
virtualization raises a new issue since virtual machines
actually share the same physical resources including CPU
and disks [16,17]. Shafer showed that, in virtualized
environments, storage bandwidth is reduced to 51% and
77% of a non-virtualized disk for reads and writes,
respectively [18]. We have also observed the similar
phenomena; the I/O performance is degraded
approximately 31% as we run data-intensive applications
on multiple virtual machines concurrently. This
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degradation gives a negative impact on big data
processing using virtual machines.

To overcome this problem, we propose a new I/O
scheduler that is motivated by our observation about the
I/O characteristics of data-intensive applications in
virtualized environments. We observed that each virtual
machine has a tendency to issue I/Os in a bursty manner
and several virtual machines trigger the bursty I/Os
concurrently. Note that since virtual machines actually
share the same physical resources, these concurrent and
bursty I/Os incur the performance interference, resulting
in considerable amount of context switch overhead
among virtual machines and long seek distances in a disk.

The main objective of our proposed scheduler is to
alleviate such interference. In other words, it identifies
bursty virtual machines on-line and then schedules them
in a round-robin fashion with relatively large time
quantum. During the time quantum, a scheduled virtual
machine can utilize most of disk bandwidth in an isolated
manner, resulting in less interference. Moreover, in order
to avoid starvation, we reserve the minimum amount of
I/O bandwidth for the non-bursty virtual machines.

We have implemented the proposed scheduler in the
Xen hypervisor using the control group mechanism [20].
For performance evaluation, we considered three
I/O-intensive applications: Terasort [2], Fio [21] and
IOzone [22]. Experimental results have shown that the
proposed scheduler can improve the overall execution
time of the Terasort application from 192 to 165 seconds,
while enhancing the throughput of the FIO and IOzone
benchmark up to 24% and 22%, respectively. These
improvements are obtained by reducing the number of
context switches among virtual machines and seek
distances in a disk.

The rest of this paper is organized as follows. In
Section 2, we describe the motivation of our work. Then,
the burstiness-aware I/O scheduler is discussed in Section
3. In Section 4, we present the performance evaluation
results. Related work is discussed in Section 5. Finally,
conclusion and future work are summarized in Section 6.

2 Motivation

In this section, we describe the motivation of our work.
We first explain our experimental setup. Then, we present
our observations and discuss the reasons for the I/O
performance degradation.

2.1 Experimental Platform

Figure1 shows our experimental platform, consisting of
the MapReduce framework based on virtual machines. Our
system is composed of AMD Phenom 8 cores, 8GB DDR3
DRAM, and 500GB SATA disk as shown at the bottom of
the figure.

Fig. 1: MapReduce framework based on virtual
environments.

On top of the physical hardware, we install the Xen
hypervisor version 4.1.4 that abstracts physical resources
into multiple virtual resources. On these virtual resources,
we create one control machine and four virtual machines.
Each virtual machine executes a GuestOS such as
Microsoft windows or Linux, acting as an independent
computing platform. The control domain takes a special
role in Xen, managing virtual machines and I/O devices.
It also performs I/O requests on behalf of GuestOSes [7].

On these virtual machines, we install the Hadoop
version 1.1 Hadoop consists of a name node and several
data nodes. When a MapReduce application is delivered
to the name node, it creates map and reduce tasks, and
assigns them into the data nodes. Each data node executes
its assigned map and reduce tasks. In our experimental
system, we use the control domain as the name node
while using virtual machines as data nodes.

2.2 Observations

Now let us discuss the I/O behavior of Hadoop in
virtualized environments. The input data of a MapReduce
application is divided into multiple chucks, whose size is
typically 128MB or 256MB. Each map task reads its
chuck, performs the map operation, and writes
intermediate files using the spill and merge operations
[19]. Each reduce task performs the shuffle, merge and
reduce operations in sequence, and finally generates
output files.

Note that the spill and merge operations make use of
the buffer mechanism. They keep data in the DRAM
buffer and flush out all data when the buffer is almost full
(specifically, when the size of the buffered data becomes
larger than a threshold calledio.sort.spill.percent in
Hadoop [19]). Considering the buffering effect of the
large intermediate and output files, I/Os triggered by a
virtual machine tend to be bursty. This tendency has also
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Fig. 2: Performance comparison between a single virtual
machine and multiple virtual machines

been observed in [23]. In addition, the name node
dispatches and schedules the map tasks on virtual
machines at the same time. It implies that the bursty I/Os
are triggered by multiple virtual machines simultaneously.

Since virtual machines share the same physical
resources, the bursty and concurrent I/Os generated by
multiple virtual machines can cause the I/O performance
degradation. To estimate this impact quantitatively, we
measure the I/O bandwidth for two different cases. In the
first case, a single virtual machine issues bursty I/Os
alone. However, in the second case, four virtual machines
issue bursty I/Os concurrently. To emulate bursty I/Os, we
run the UNIX ‘DD’ command on each virtual machine
that accesses a file with 1GB.

Figure 2 presents the measurement results. In the
single virtual machine case, the I/O bandwidth is reported
as 140MB/s, which is close to the upper bound supported
by our experimental disk. On the contrary, in the four
virtual machines case, the I/O bandwidth drops to the
96.7MB/s, which is the 31% reduction compared with the
single virtual machine case.

To analyze the reasons for the performance
degradation, we examine the I/O bandwidth of each
virtual machine individually, as depicted in Figure3.
Each virtual machine achieves similar I/O bandwidth
around 20∼25MBps, whose sum is 96.7MBps, which is
quite smaller than that measured in the single virtual
machine case.

Our sensitivity analysis shows that the performance
degradation is due to the I/O interference among virtual
machines. The control domain in XEN uses the CFQ
(Complete Fairness Queuing) I/O scheduler for
supporting fair I/O services to virtual machines [24]. It
schedules I/Os in an interleaved manner among virtual
machines, handling an I/O request from one virtual
machine and the next one from the other virtual machine.
In other words, I/Os triggered by a virtual machine is
interfered by other I/Os triggered by different virtual
machines.

In the control domain, I/Os triggered by a virtual
machine are managed by the corresponding task, called
Blkback, which will be discussed later in Figure4.
Therefore, the I/O interference among virtual machines
incur frequent context switches among the Blkback tasks.
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Fig. 3: I/O interference among multiple virtual machines

Besides, since each virtual machine commonly uses a
separated disk partition, the I/O interference causes long
seek distances in a disk. These two overheads result in the
performance degradation observed in Figure2

3 Burstiness-aware I/O Scheduler

To alleviate the performance degradation due to the I/O
interference among virtual machines, we propose a new
burstiness-aware I/O scheduler. The key ideas of our
proposed scheduler are as follows; 1) allows a bursty
virtual machine to consume most of disk bandwidth for a
given period exclusively to reduce the I/O interference, 2)
when there are several bursty virtual machines, schedules
them in a round-robin fashion to support fairness from the
long-term viewpoint, and 3) reserves minimal disk
bandwidth for non-bursty virtual machines to avoid
starvation.

Figure 4 illustrates the overall structure of our
proposed scheduler. It consists of three components:
Burstiness Detector, Coarse-Grained Dispatcher, and
Starvation Handler. Also, it has three control parameters:
B threshold, S quantum, andM reserved.
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Fig. 4: Structure of the burstiness-aware I/O scheduler
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When a virtual machine requests I/Os, it delivers them
to the corresponding Blkback task in the control domain.
The Blkback task is a kind of daemon process, actually
performs I/Os on a disk on behalf of the related virtual
machine. It sends the requested I/Os to the Block I/O
layer that consists of the CFQ I/O scheduler and native
device drivers. Our proposed scheduler is located between
the Blkback tasks and the Block I/O layer, orchestrating
the I/O flows between them.

Firstly, the Burstiness Detector examines I/Os
managed by each Blkback task and determines whether
the I/Os are bursty or not. In order to check the burstiness,
we introduce the control parameter, Bthreshold. When
the total bandwidth required by a Blkback task is larger
than the Bthreshold, the task is treated as bursty.

When there are several bursty Blkback tasks, the
Coarse-Grained Dispatcher schedules them in a
round-robin fashion. The scheduled task is allowed to
consume most of disk bandwidth during a given time
quantum, namely Squantum, which is our second control
parameter. In Figure4, we assume that the Blkback 1, 2
and 3 are determined as bursty and scheduled by the
Coarse-Grained Dispatcher, as denoted the scheduling
flow in the figure.

Finally, the Starvation Handler monitors the
non-bursty tasks and handles their I/Os if they are read
requests. But, the total I/Os that can be handled here are
restricted to be under the Mreserved, minimal reserved
bandwidth, to decrease the I/O interference caused by
non-bursty tasks. This mechanism is devised to avoid the
starvation situation of the non-bursty tasks. Note that a
task may suffer from delayed services due to the
restriction. However, the delayed requests enlarge the
required disk bandwidth, which eventually leads the task
to be determined as bursty and managed by the
Coarse-Grained Dispatcher. If there is no bursty task, all
I/Os are processed in the similar way as the original I/O
scheduler does.

4 Experiments

We have implemented the burstiness-aware I/O scheduler
in our experimental system depicted in Figure1. We use
the XEN hypervisor 4.1.4 as the virtualization software,
Linux kernel 3.5.5 as GuestOS for both control domain
and virtual machines. The Hadoop 1.1 is used as the
MapReduce framework. Our proposed scheduler is
implemented in the control domain, using the blkio
subsystem supported by the control group mechanism
[20]. This mechanism allows us to configure tasks as
several groups and allocates I/O bandwidth to each group
independently.

Physical resources and virtual resources per each
virtual machine are summarized in Table1. This table
also shows how we set the control parameters of the
proposed scheduler in this experiment.

Table 1: Experimental Environment

Virtualzation software XEN-4.1.4

GuestOS Linux-3.5.5

MapReduce framework Hadoop-1.0.0

Workload Terasort, Fio, IOzone

Physical
resource

CPU AMD Phenom Processor

Memory 8 GB

Disk 500 GB

Virtual
resource

CPU Credit scheduler

Memory 1 GB

Disk 100 GB

Type Full-Virtualization

Control
Parameters

B threshold 4 MB/s

S quantum 1 second

M reserved 4 MB/s

Figure 5 presents the performance evaluation results
for the Terasort application [3] under the original and
proposed burstiness-aware scheduler. The overall
execution time is reduced from 192 to 165 seconds. This
improvement is due to the reduction of the seek distance
in a disk, as shown in Figure5(b).

Figure5(c) reveals an interesting point. Our proposal
gives more opportunities to a bursty virtual machine for
performing I/Os, which enables map tasks on the machine
to be finished earlier. The earlier completion of map tasks
triggers the beginning of reduce tasks earlier, which
eventually shortens the execution time of the reduce
phase. On the contrary, some map tasks on a
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Fig. 6: Total I/O bandwidth

non-scheduled machine become straggled, which
increases the execution time of the map phase shown in
the Figure 5(c). Note that the execution of map and
reduce phases are overlapped, hence the sum of the
execution time of the phases is larger than the overall
execution time.

In addition, we observe the I/O behavior and
performance results vary noticeably each time we execute
the Terasort application. This is because the execution
time of the Terasort application depends not only on the
I/O scheduler but also on Hadoop runtime decisions such
as task allocation and scheduling [19].

To focus on the effect of I/O scheduling, we
experiment with another two I/O-intensive benchmarks,
namely Fio [21] and IOzone [22]. Specifically, we run
each benchmark on the four virtual machines at the same
time and measure the aggregate I/O bandwidth under the
two conditions. One is based on the original I/O scheduler
(denoted as 4VMs in the figure) and the other is based on
our proposed burstiness-aware I/O scheduler (denoted as
4VMs-BA).
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Fig. 7: I/O interference: number of context switch and seek
distance
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Fig. 8: Revisit the Figure3 under the burstiness-aware I/O
scheduler

Figure 6 shows the total I/O bandwidth for the two
benchmarks. For Fio, we change the write ratio from 100
to 0 and measure the I/O bandwidth with and without the
proposed burstiness-aware I/O scheduler. The results
reveal that our proposal improves performance up to 24%
with an average of 12%. The IOzone supports various
operations such as write, rewrite, read, and reread. For
these operations, our proposal enhances performance on
average 15% and at maximum 22%.

Figure 7 presents the number of context switches
among Blkback tasks and the seek distances during the
execution of each benchmark on four virtual machines.
From the results, we find out that the performance
improvement of the proposed scheduler is due to two
sources: one is reducing the context switch overhead and
the other is decreasing the seek distances in a disk.

Figure 8 shows the I/O behavior under the proposed
burstiness-aware I/O scheduler when we execute the same
workloads observed in Figure3. In comparing two
figures, we notice that the proposed scheduler indeed
allows a virtual machine to utilize most of the disk
bandwidth exclusively during a given time quantum. This
burstiness based coarse-grained allocation results in the
reduction of I/O interference among virtual machines.

Figure9 illustrates the amount of I/O bandwidth each
virtual machine obtains. This figure shows that four
virtual machines achieve similar I/O bandwidth. It implies
that, even though our scheduler allows a virtual machine
to monopolize most of the disk bandwidth during a given
time quantum, it provides fairness at a long-term scale.
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As a result, the proposed burstiness-aware scheduler can
enhance both performance and fairness.

5 Related work

I/O performance in virtualized environments have been
studied intensively in recent decades. Boutcher and
Chandra examined whether the traditional disk I/O
scheduling still provides benefit in a layered system
consisting of virtual machines and underlying hypervisor
[16]. They found out that using the default Linux
schedulers does not appear to be the optimal and
suggested several research areas of investigation such as
reducing the number of transitions among virtual
machines and hypervisor, and cooperative schedulers.

Yang et al. showed that the I/O performance of a
virtual machine can be affected negatively by co-resident
virtual machines [17]. Also, they proposed a framework,
called vExplorer that can be used to understand the I/O
scheduling characteristics within a hypervisor. Shafer
showed that VMs can achieve only 51% and 77% of
non-virtualized performance for storage writes and reads,
respectively, becoming bottlenecks in cloud computing
[18]. Kesavan et al. examined the VM-level I/O scheduler
and its ability to enforce isolation and fair utilization [28].

Ongaro et al. explored the relationship between virtual
machines scheduling in the XEN hypervisor and I/O
performance [25]. They found that the credit scheduler
used as default scheduler in XEN has a significant impact
on I/O performance especially when bandwidth and
latency-intensive applications are introduced. In addition,
they suggested several optimization techniques such as
sorting virtual machines based on their remaining credits
and placing latency-sensitive applications in their own
virtual machine.

Gulati et al. observed that the I/O throughput available
to a virtual machine can fluctuate widely based on the
behavior of other virtual machines accessing the shared
disks [26]. To overcome this fluctuation, they presented a
new I/O scheduler, called mclock that supports three
controls, namely shares, limits, and reservations and
provides predictable I/O allocation with strong isolation.

Seelam and Teller’s study proposed a new scheduler,
called VIOS (Virtual I/O Scheduler) that provides
absolute performance virtualization and performance
isolation [27]. It controls the coarse-grain allocation of
disk time to the different virtual machines, whose idea is
similar to ours. The difference between theirs and our
approach is that ours orchestrates the I/O allocation
adaptively based on burstiness monitored during the
execution of virtual machines.

Running the MapReduce applications on virtual
machines and investigating their performance have been
studied actively. Matsunaga et al. developed the
CloudBLAST that integrates the MapReduce, virtual
machine and virtual network technologies for the
execution of large-scale bioinformatics applications [13].

Park et al. examined the dynamic virtual machine
reconfiguration technique for data-intensive computing on
clouds [14].

Zaharia et al. noticed that virtual machines, which are
used as data nodes in Hadoop on virtualized
environments, are not homogeneous. This heterogeneity
gives a negative effect to the speculative execution of
stragglers. To overcome this problem, they proposed a
new Hadoop scheduler, called LATE, that is robust to
heterogeneity [5]. Kang et al. designed a novel Xen CPU
scheduler, called MRG (MapReduce Group) that can
reduce the domain switch overhead and support
scalability and fairness in terms of the MapReduce cluster
[30].

Ibrahim et al. investigated the impact of disk pair
schedulers in Hadoop [15]. In their study, the term of the
pair schedulers means a pair of disk schedulers: one
within the hypervisor and the other within the virtual
machines. They suggested an approach that tunes the pair
schedulers adaptively during the execution of a
MapReduce job for improving performance. Blagojevic et
al. introduced the priority-based I/O scheduling that
deliver priority information from Hadoop to kernel-level
scheduler for enhancing I/O latency [29]. It is a kind of a
cooperative scheduler across multiple layers. Fang et al.
proposed two strategies to accelerate the performance of
MapReduce applications on virtual machines [31]; one is
dynamic adjusting the control domains weight and the
other is selecting a physical machine as the master node.

6 Conclusion

In this paper, we explored the feasibility of the I/O
intensive applications on virtualized environments. One
concern is the I/O bottleneck, which is caused by the I/O
interference among virtual machines, especially during
the processing of big data. To mitigate this problem, we
proposed a new I/O scheduler that can identify bursty
virtual machines and give a chance for them to use most
of the disk bandwidth without violating fairness.

We are considering two research directions as future
work. I/O behavior in virtualized environments depends
not only on the I/O scheduler but also on CPU scheduler
for virtual machines and event delivery mechanism
among virtual machines. The first research direction is to
extend our proposal so that it can cover the interactions
among these aspects. The second direction is applying our
proposal to different types of storage systems such as
SSDs (Solid State Drives) and SAN (Storage Area
Network).
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